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Abstract
AIM: To evaluate the roles and mechanisms of celecoxib in
inducing proliferation inhibition and apoptosis of human
cholangiocarcinoma cell lines.

METHODS: Cyclooxygenase-2-overexpressing human
cholangiocarcinoma cell line QBC939 and cyclooxygenase-
2-deficient human cholangiocarcinoma cell line SK-CHA-1
were used in the present study. The anti-proliferative effect
was measured by methabenzthiazuron (MTT) assay;
apoptosis was determined by transferase-mediated dUTP
nick end labeling (TUNEL) detection and transmission
electron microscopy (TEM). Cell cycle was analyzed by flow
cytometry (FCM). The PGE2 levels in the supernatant of
cultured cholangiocarcinoma cells were quantitated by
enzyme-linked immunoabsordent assay (ELISA).

RESULTS: Celecoxib suppressed the production of PGE2

and inhibited the growth of QBC939 cells. Celecoxib at 10,
20, and 40 µmol/L inhibited PGE2 production by 26 %,
58 %, and 74 % in QBC939 cells. The PGE2 level was
much lower constitutively in SK-CHA-1 cells (18.6±3.2)
compared with that in QBC939 (121.9±5.6) cells (P<0.01)
and celecoxib had no significant influence on PGE2 level in
the SK-CHA-1 cells. The PGE2 concentration in SK-CHA-1
cells also reduced but not significantly after treatment with
celecoxib. The PGE2 concentration in SK-CHA-1 cells was
(16.5±2.9) ng/well, (14.8±3.4) ng/well, (13.2±2.0) ng/well
and (12.6±3.1) ng/well respectively, when pre-treated with
1 µmol/L, 10 µmol/L, 20 µmol/L and 40 µmol/L of celecoxib
for 48 h (P>0.05, vs control). The anti-proliferation effect of
celecoxib (20 µmol/L) on QBC939 cells was time-dependent,
it was noticeable on day 2 (OD490=0.23±0.04) and became
obvious on day 3 (OD490=0.31±0.07) to day 4 (OD490=
0.25±0.06), and the OD490 in the control group (day 1)
was 0.12±0.03 (P<0.01, vs control). The anti-proliferation
effect of celecoxib could be abolished by the addition of
200 pg/mL PGE2. The proliferation of SK-CHA-1 cells was
inhibited slightly by celecoxib, the cell density OD490 in
the presence of celecoxib and in control group was 0.31±0.
04 and 0.42±0.03 respectively on day 2 (P>0.05), 0.58±0.
07 and 0.67±0.09 respectively on day 3 (P>0.05), and 0.71±0.
08 and 0.78±0.06 respectively on day 4 (P>0.05). Celecoxib
induced proliferation inhibition and apoptosis by G1-S cell
cycle arrest: the percentage of QBC939 cells in G0-G1 phase
after treatment with 40 µmol/L (74.66±6.21) and 20 µmol/
L (68.63±4.36) celecoxib increased significantly compared

with control cells (54.41±5.12, P<0.01). The percentage
of SK-CHA-1 cells in G0-G1 phase after treatment with various
concentrations of celecoxib didn’t change significantly
compared with control cells. The TUNEL index was much
higher in QBC939 cells treated with 20 µmol/L celecoxib
for 2 d (0.063±0.018) and for 4 d (0.102±0.037) compared
with control cells (0.017±0.004, P<0.01).

CONCLUSION: The current in vitro study indicates that
inhibition of proliferation and induction of apoptosis in human
cholangiocarcinoma cells by cyclooxygenase-2 specific
inhibitor celecoxib may involve in COX-dependent mechanisms
and PGE2 pathway. Celecoxib as a chemopreventive and
chemotherapeutic agent might be effective primarily on COX-
2-expressing cholangiocarcinoma.
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INTRODUCTION
Prostaglandins (PGs) are important in the proliferation of
various types of cancer cells[1-13]. PGs are synthesized by two
isoforms of cyclooxygenase (COX) enzymes, COX-1 and
COX-2, each of which displays distinct physiological profile.
Inducible isozyme COX-2 has been shown to be important in
carcinogenesis[14-26]. PGE2 is the major metabolite of
arachidonic acid in many human cells[27,28]. The selective COX-
2 inhibitors are currently being evaluated for their effectiveness
as chemopreventive and chemotherapeutic agents[29-32].
However, the effects of specific inhibitor of COX-2 on the
proliferation of human carcinoma cells remain to be
investigated. There are many controversies on whether or not
these effects are mediated predominantly through the inhibition
of COX-2 activity and prostaglandin synthesis[33]. Our previous
studies have demonstrated that overexpression of COX-2 may
play a crucial role in the carcinogenesis and development of
extra-hepatic cholangiocarcinoma. In this study we aimed to
explore the effects and mechanism of celecoxib and the role
of PGE2 in inducing proliferation inhibition and apoptosis of
COX-2 overexpressing human cholangiocarcinoma cell line
QBC939 and COX-2-deficient human cholangiocarcinoma cell
line SK-CHA-1.

MATERIALS AND METHODS
Materials
Human extra-hepatic cholangiocarcinoma cells SK-CHA-1
were a gift from Professor A. Knuth (Frankfurt, Germany)[35];
and human cholangiocarcinoma cell line QBC939 was
established by Professor Wang SG in the Third Military
Medical University, China, and was offered to us as a gift[34].
Both cells were maintained as mono-layers in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10 %



fetal bovine serum (FBS, Gibco. USA.), 100 units/ml penicillin
and 100 mg/ml streptomycin in a humidified atmosphere of
95 % air and 5 % CO2 at 37 . They were subcultivated every 3-
5 d and given fresh medium every other day. Cholangiocarcinoma
cells at 70-80 % subconfluent were employed in all
experiments. PGE2 ELISA detection kit was purchased from
Jingmei Biotech Co., Wuhan, China. TUNEL kit was purchased
from Boster Co., Wuhan, China. PGE2 was purchased from
Sigma, USA. Celecoxib was synthesized by Dr. Mei ZN
(Wuhan University, China) and given to us as a gift[36]. Stock
solution was prepared in dimethylsulfoxide (DMSO) and stored
at -20 . In all experiments DMSO final concentration in the
medium was 0.1 %.

Methods
MTT assay  The human cholangiocarcinoma cells QBC939
and SK-CHA-1 proliferation status were determined by MTT
assay. Cholangiocarcinoma cells were seeded at a density of
1×104 cells per well in flat-bottomed 96-well microplates. 12
h after incubation, cells were treated with celecoxib (40, 20,
10, or 0 µmol/L respectively). In some experiments 200 pg/
mL PGE2 was added to cells prior to addition of celecoxib.
After 1, 2, 3, or 4 days’ incubation, 20 µl MTT (5 g/L) was
added to each well and incubated for 4 h. Supernatant was
then removed and 150 µl DMSO was added. It was shaken for
5 min until the crystal was dissolved. OD490nm value was
measured by an enzyme-linked immunoabsorbent assay reader.
The negative control well had no cells and was used as zero
point of absorbance. Each well was read three times in triplicate.
TUNEL  Preparation of specimens: cholangiocarcinoma cells
QBC939 were subcultured on coverslips in 6-well culture
plates. After 12 h, cells were treated with 20 µmol/L celecoxib.
Every day medium and celecoxib were changed. After 2 and 4
d the coverslips were taken out and fixed with 4 % fresh
polyformaldehyde in PBS (pH 7.4-7.6) for 30 min at room
temperature. Cell apoptosis was measured by TUNEL method
according to the instruction of the kit. Cells were washed with
PBS for 2 min, 3 times, followed by washing with distilled
water for 2 min, 3 times. Cells were soaked in fresh 3 % H2O2

for 10 min, and then rinsed with distilled water for 2 min, 3
times. Cells were digested with proteinase K (diluted 1:100
by TBS) for 5 min at 37 , and were rinsed with distilled
water for 2 min, 3 times. Labelling buffer (20 µl/sample) was
added to keep the slides wet. TDT and DIG-d-UTP (1 µl each)
were mixed in 18 µl labelling buffer. The redundant liquid
was removed and labelling reagent (20 µl/sample) was added.
The slides were put in a humidified box and incubated for 2 h
at 37 . The slides were washed with TBS for 2 min, 3 times.
Blocking solution (50 µl /sample) was added to the slides for
30 min at room temperature. The blocking solution was removed
from the slides. The biotin-DIG antibody was diluted with a
blocking solution at a ratio of 1:100, and 50 µl/sample of it was
added to the slides. The slides were kept in a humidified box,
incubated at 37  for 30 min, and followed by washing with
TBS for 5 min, 3 times. SABC was diluted to 1:100 with TBS
and added to the slides. They were incubated at 37  for 30
min and washed with TBS for 5 min, 3 times. BCIP/NBT was
diluted to 1:20 with TBS, and added to the slides. They were
incubated at 37  for 10-30 min. The reaction was monitored
under microscope: when purplish red was developed, the slides
were washed with distilled water. After being stained with
nuclear fast red, the slides were sealed with glycerite.
Substitution of PBS for TUNEL staining solution was used as
negative control. Three hundred cells were counted, and the
TUNEL index was expressed as the number of positive cells/
the total number of cells.
ELISA  The PGE2 levels in the supernatant of cultured human

cholangiocarcinoma cells QBC939 and SK-CHA-1 were
quantitated by ELISA. Cells were seeded into 4.0×105/well
microplates and allowed to adhere overnight. The cells were
then incubated in the presence or absence of celecoxib for 24
h. The supernatants were aspirated and centrifuged to prepare
for the detection of PGE2. Supernatant (0.5 ml) was added
into 1 N HCl  (0.1 ml) and centrifuged for 10 min at room
temperature, then 1.2 N NaOH (0.1 ml) was used to neutralize
the acidified samples. Standard solution (200 µl per well) or
activated samples were added into the microplates. Then the
steps for ELISA were performed as instructed. The value of
OD of each well was measured at 450nm. The supernatants
were harvested in triplicates and the experiment was
performed twice.
FCM  Human cholangiocarcinoma cells QBC939 and SK-CHA-
1 were trypsinized and plated in 6-well culture dishes in the
presence of celecoxib (40, 20, 10, 0 µmol/L respectively). After
48 h, cells were harvested, centrifuged at low speed and fixed in
70 % ethanol. After overnight incubation at 4 , cells were
stained with 50 µg/ml propidium iodide in the presence of RNAse
A (10 µg/ml) and 0.1 % Triton X-100 and measured with a flow
cytometer. The experiments were repeated three times.
TEM  Af te r  t r ea tmen t  wi th  ce l eco x ib  fo r  3  d
cholangiocarcinoma cells QBC939 were digested by 0.25 %
trypsin and collected. Cells were rinsed with PBS and fixed
with 3 % glutaraldehyde for 30 min. After routine embedding
and sectioning, cells were examined under electron microscope.

Statistical analysis
Data were expressed as mean ± standard deviation. Student’s
t-test was used for statistical analysis. P<0.05 indicates
significant difference.

RESULTS

PGE2 production
The concentration of PGE2 in culture medium of each cell line
treated with or without celecoxib is shown in Figure 1.
Celecoxib at 10 µmol/L inhibited PGE2 production in QBC939
cells by 26 %. With 20 µmol/L and 40 µmol/L of celecoxib,
PGE2 production was further inhibited by 58 % and 74 %,
which were statistically significant (P<0.01, vs control). The
PGE2 level was much lower constitutively in SK-CHA-1 cells
(18.6±3.2) compared with that in QBC939 (121.9±5.6) cells
(t test, P<0.01). The PGE2 concentration in SK-CHA-1 cells
was also reduced, but not significantly after treatment with
celecoxib. The PGE2 concentration in SK-CHA-1 cells was
(16.5±2.9) ng/well, (14.8±3.4) ng/well, (13.2±2.0) ng/well and
(12.6±3.1) ng/well respectively, when pre-treated with 1 µmol/
L, 10 µmol/L, 20 µmol/L and 40 µmol/L of celecoxib for 48 h
(P>0.05, vs control).

Celecoxib inhibition on cholangiocarcinoma cells growth
QBC939 and SK-CHA-1 cells were incubated in the presence
or absence of celecoxib (20 µmol/L) and the cell density OD490
was measured. As shown in Figure 2, proliferation inhibition
of QBC939 by celecoxib was time-dependent: it was noticeable
on day 2 (OD490=0.23±0.04) and became obvious on day 3
(OD490=0.31±0.07) to day 4 (OD490=0.25±0.06), and the
OD490 in the control group (day 1) was 0.12±0.03 (P<0.01,
vs control). The proliferation of SK-CHA-1 cells was inhibited
slightly by celecoxib, but the effect was not statistically
significant (Figure 3). The cell density OD490 in the presence
of celecoxib and in control group was 0.31±0.04 and 0.42±0.
03 respectively on day 2 (P>0.05), 0.58±0.07 and 0.67±0.09
respectively on day 3 (P>0.05), and 0.71±0.08 and 0.78±0.06
respectively on day 4 (P>0.05).
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Figure 1  ELISA for PGE2 detection using supernatants from
QBC939 and SK-CHA-1 cells pre-treated with celecoxib at vari-
ous concentrations for 48 h. Celecoxib at 10 µmol/L inhibited
PGE2 production in QBC939 cells by 26 %. With 20 µmol/L
and 40 µmol/L of celecoxib, PGE2 production was further in-
hibited by 58 % and 74 %, which were statistically signifi-
cant (dP<0.01, vs control). The PGE2 level was much lower con-
stitutively in SK-CHA-1 cells (18.6±3.2) compared with that in
QBC939 (121.9±5.6) cells (t test, bP<0.01). The PGE2 concentra-
tion in SK-CHA-1 cells was also reduced, but not significantly
after treatment with celecoxib. The PGE2 concentration in
SK-CHA-1 cells was (16.5±2.9) ng/well, (14.8±3.4) ng/well,
(13.2±2.0) ng/well and (12.6±3.1) ng/well respectively, when
pre-treated with 1 µmol/L, 10 µmol/L, 20 µmol/L and 40
µmol/L of celecoxib for 48 h (P>0.05, vs control).

Figure 2  Growth curves of QBC939 cells in the presence of
celecoxib, celecoxib + PGE2 and control group. Proliferation
inhibition of QBC939 by celecoxib (20 µmol/L) was time-
dependent: it was noticeable on day 2 and became significant
on day 3 to 4 (bP<0.01, vs control). The anti-proliferation ef-
fect of celecoxib on QBC939 cells was abolished by pre-added
PGE2 (200 pg/mL).

Figure 3  Growth curves of SK-CHA-1 cells in the presence
of celecoxib, celecoxib + PGE2 and control group. The pro-
liferation of SK-CHA-1 cells was inhibited slightly by
celecoxib, the cell density OD490 in the presence of celecoxib
and in control group was 0.31±0.04 and 0.42±0.03 respectively
on day 2 (P>0.05), 0.58±0.07 and 0.67±0.09 respectively on
day 3 (P>0.05), and 0.71±0.08 and 0.78±0.06 respectively on
day 4 (P>0.05).

PGE2 abolished the anti-proliferation effect of celecoxib on
QBC939 cells
To investigate whether the anti-proliferation effect of celecoxib
on QBC939 cells was due to suppression of PGE2 production
by QBC939 cells, 200 pg/mL PGE2 was added to QBC939
cells prior to the addition of celecoxib, and MTT assay was
performed (Figure 2). The anti-proliferation effect of celecoxib
on QBC939 cells was abolished by PGE2. However, addition
of 200 pg/mL PGE2 had no significant influence on the
proliferation of SK-CHA-1 cells when pre-treated with 20
µmol/L celecoxib (Figure 3).

Apoptosis induction and detection
The TUNEL index of QBC939 cells treated with 20 µmol/L
celecoxib for 2 d (0.063±0.018) and 4 d (0.102±0.037) was much
higher compared with control cells (0.017±0.004, P<0.01).

Celecoxib induces G1-S cell cycle arrest
Cell cycle analysis by flow cytometry showed that the percentage
of QBC939 cells in G0-G1 phase after treatment with 40 µmol/L
(74.66±6.21) and 20 µmol/L (68.63±4.36) increased
significantly compared with control cells (54.41±5.12, P<0.01,
Figure 4). The percentage of SK-CHA-1 cells in G0-G1 phase
after treatment with various concentrations of celecoxib did not
change significantly compared with control cells.

Figure 4  Cell cycle analysis. Representative flow cytometry
data from QBC939 cells after 48 h in the presence of various
concentration of celecoxib: 0 µmol/L (A), 10 µmol/L (B), 20
µmol/L (C) and 40 µmol/L (D). The percentage of QBC939 cells
in G0-G1 phase after treatment with 40 µmol/L (74.66±6.21) and
20 µmol/L (68.63±4.36) of celecoxib increased significantly com-
pared with control cells (t test, P<0.01).

Electron micrography of apoptosis of cholangiocarcinoma
cells
QBC939 cells were treated for 3 d with 20 µmol/L of celecoxib.
The chromatin became condensed and attached to the inner
surface of nuclear membrane.

DISCUSSION
A substantial body of evidence indicates that COX and PGs
are important in carcinogenesis. COX catalyzes the synthesis
of PGs from arachidonic acid. Several PGs, most notably PGE2,

can promote tumorigenesis by stimulating angiogenesis,
inhibiting immune surveillance[37-40], modulating several signal
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transduction pathways[41-44]. Several studies have demonstrated
that COX-2 selective inhibitor celecoxib has significant
efficacy in animal cancer models: celecoxib inhibited intestinal
tumor multiplicity by up to 71 % compared with controls in
the Min mouse model and inhibited colorectal tumor burden
in the rat azoxymethane (AOM) model[45-48]. Recently celecoxib
has been approved by FDA to reduce the number of
adenomatous colorectal polyps in patients with familial
adenomatous polyposis (FAP). However, the exact
mechanisms that account for the anti-proliferative effects of
celecoxib are still not fully understood. It is still controversial
that whether or not these effects are mediated predominantly
through the inhibition of COX-2 activity and prostaglandin
synthesis. Several studies have shown both COX-dependent
and COX-independent mechanisms are involved in non-
steroidal anti-inflammatory drug (NSAIDs) induced growth
in human colorectal tumor cells[49].
      Our previous studies have demonstrated that overexpression
of COX-2 may play a crucial role in the carcinogenesis and
development of extra-hepatic cholangiocarcinoma. In the
present study we found the PGE2 level was much lower
constitutively in COX-2-deficient human cholangiocarcinoma
cell line SK-CHA-1 cells than that in COX-2 overexpressing
human cholangiocarcinoma cell line QBC939. In this study
we have shown that the proliferation of QBC939 cells was
inhibited by celecoxib in a time- and dose-dependent manner.
Our study also showed celecoxib had no significant influence
on the SK-CHA-1 cells. These findings indicate that COX-2
inhibitor might be an effective anti-proliferative agent,
especially against cancer cells that express COX-2 and produce
high-level PGE2. Our data demonstrated that celecoxib
suppressed the production of PGE2 in QBC939 cells, and the
anti-proliferative effect of celecoxib could be abolished by
addition of PGE2. These results suggest that COX-2 might play
a central role in production of PGE2 and the specific inhibition
of COX-2 inhibits proliferation and induces apoptosis of
QBC939 cells via suppression of PGE2 production. Our data
also indicate that celecoxib inhibits proliferation and induces
apoptosis of human cholangiocarcinoma QBC939 cells by an
accumulation of cells in the G0/G1 phase and the inhibition of
G0/G1 phase transition to S phase.
     In summary, our results in the present study demonstrate
that inhibition of proliferation and induction of apoptosis by
celecoxib in human cholangiocarcinoma cells may involve in
COX-dependent mechanisms and PGE2 pathway and these
findings also suggest that celecoxib, as a chemopreventive and
chemotherapeutic agent may be effective primarily on COX-
2-expressing cholangiocarcinoma.
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