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Abstract
AIM: Previous studies showed that exogenous basic
fibroblast growth factor (bFGF or FGF-2) could improve
physiological dysfunction after intestinal ischemia/
reperfusion (I/R) injury. However, the mechanisms of this
protective effect of bFGF are still unclear. The present
study was to detect the effect of bFGF on the activities of
mitogen-activated protein kinase (MAPK) signaling
pathway in rat intestine after I/R injury, and to investigate
the protective mechanisms of bFGF on intestinal ischemia
injury.

METHODS: Rat intestinal I/R injury was produced by
clamping the superior mesenteric artery (SMA) for 45
minutes and followed by reperfusion for 48 hours. Seventy-
eight Wistar rats were used and divided randomly into
sham-operated group (A), normal saline control group (B),
bFGF antibody pre-treated group (C), and bFGF treated
group (D). In group A, SMA was separated without
occlusion. In groups B, C and D, SMA was separated and
occluded for 45 minutes, then, released for reperfusion for
48 hours. After the animals were sacrificed, blood and tissue
samples were taken from the intestine 45 minutes after
ischemia in group A and 2, 6, 24, and 48 hours after
reperfusion in the other groups. Phosphorylated forms of
p42/p44 MAPK, p38 MAPK and stress activated protein
kinase/C-Jun N-terminal kinase (SAPK/JNK) were measured
by immunohistochemistry. Plasma levels of D-lactate were
examined and histological changes were observed under
the light microscope.

RESULTS: Intestinal I/R injury induced the expression of
p42/p44 MAPK, p38 MAPK, and SAPK/JNK pathways and
exogenous bFGF stimulated the early activation of p42/
p44 MAPK and p38 MAPK pathways. The expression of
phosphorylated forms of p42/p44 MAPK was primarily
localized in the nuclei of crypt cells and in the cytoplasm
and nuclei of villus cells. The positive expression of p38
MAPK was localized mainly in the nuclei of crypt cells, very
few in villus cells. The activities of p42/p44 MAPK and p38

MAPK peaked 6 hours after reperfusion in groups B and C,
while SAPK/JNK peaked 24 hours after reperfusion. The
activities of p42/p44 MAPK and p38 MAPK peaked 2 hours
after reperfusion in group D and those of SAPK/JNK were
not changed in group B. D-lactate levels and HE staining
showed that the intestinal barrier was damaged severely 6
hours after reperfusion; however, histological structures
were much improved 48 hours after reperfusion in group
D than in the other groups.

CONCLUSION: The results indicate that intestinal I/R injury
stimulates the activities of MAPK pathways, and that p42/
p44 MAPK and p38MAPK activities are necessary for the
protective effect of exogenous bFGF on intestinal I/R injury.
The protective effect of bFGF on intestinal dysfunction may
be mediated by the early activation of p42/p44 MAPK and
p38 MAPK signaling pathways.
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INTRODUCTION
Previous studies have shown that intestinal ischemia/reperfusion
(I/R) injury reduce the expression of endogenous basic fibroblast
growth factor (bFGF) in rats, and the intravenous administration
of exogenous bFGF could induce the expression of endogenous
bFGF and improve the physiological functions of the intestine,
lung, kidney, and other internal organs after I/R injury[1-6].
However, the protective mechanisms of bFGF on intestinal I/
R injury remain unknown.
    Mitogen-activated protein kinase (MAPK) cascade, a
cytoplasmic protein kinase that requires dual phosphorylation
on specific threonine and tyrosine residues for their activation,
can transmit mitogen or differentiation signals from the cell
surface into the nucleus, thus regulating the gene expression[7-10].
P42/p44 MAPK, p38MAPK and stress activated protein kinase/
C-Jun N-terminal kinase (SAPK/JNK) are three important
members of the MAPK family. The purpose of the present
study was to detect the activities of mitogen-activated protein
kinase (MAPK) signaling pathway in rat intestine after
administration of bFGF, and to investigate the protective
mechanisms of bFGF on intestinal (I/R) injury.
    Rat intestinal I/R injury was produced by clamping the
superior mesenteric artery (SMA) for 45 minutes and by
different durations of reperfusion[11]. The activities of p42/p44
MAPK, p38 MAPK, and SAPK/JNK were measured after
administration of bFGF or bFGF monoclonal antibody. The
results indicate that the early activation of p42/p44 MAPK
and p38 MAPK is necessary for the protective effect of bFGF
on intestinal I/R injury.



MATERIALS AND METHODS
Animal model
Seventy-eight healthy Wistar rats weighing 220±20 g (Animal
Center, Academy of Military Medical Sciences, Beijing) were
used. All animals were housed in the laboratory and given free
access to food and water for 1 week before being used. The
animal was under anesthesia by 3 % sodium pentobarbital (40
mg/kg), a middle incision was made. The superior mesenteric
artery (SMA) was identified and freed by blunt dissection. A
microvascular clamp was placed at the root of SMA to cause
complete cessation of blood flow for 45 minutes, and thereafter
the clamp was loosened to form reperfusion injury[1, 11].After 2, 6,
24 and 48 hours reperfusion, the animals were sacrificed and blood
samples and intestinal tissue biopsies were taken. Blood samples
were centrifuged and serum was frozen to measure plasma D-
lactate. Tissue biopsies were fixed with 4 % paraformaldehyde.
     In this study, all operations were performed under aseptic
conditions. The animal experiments were approved by the local
animal management committee.

Experimental design
The animals were randomly divided into four groups: sham-
operated (A), normal saline control (B), bFGF monoclonal
antibody (Sigma, St. Louis, MO, USA) pre-treated (C) and bFGF
(Sigma, St. Louis, MO, USA) treated groups (D). In group A,
SMA was freed but without occlusion and blood samples and
tissue biopsies were taken 45 minutes after exposure of the SMA.
In groups B and D, 0.15 ml saline or 0.15 ml saline plus bFGF
(2 µg/rat) was injected immediately 45 minutes after SMA
occlusion from the tail vein. In group C, 0.15 ml saline plus
bFGF monoclonal antibody (25 µg/rat) was injected right before
SMA occlusion from tail vein for pre-treatment.

Measurement of phosphorylated forms of p42/p44 MAPK, p38
MAPK and SAPK/JNK
Formalin-fixed, paraffin-embedded small intestinal tissues
were used to measure the expression of phosphorylated forms
of p42/p44 MAPK, p38 MAPK, and SAPK/JNK by
immunohistochemistry. Immunohistochemical staining was
performed according to the instructions of the PowerVisionTM

kit (Santa Cruze, USA). Briefly, sections (5 µm) were dewaxed
and rehydrated in graded alcohols. Endogenous peroxidase
activity was quenched, and antigen retrieval was performed by
heating for 20 minutes at 100  in 0.01 mol/L sodium citrate.
The primary monoclonal antibodies for p42/p44 MAPK, p38
MAPK and SAPK/JNK (Cell Signaling Technology, Inc., USA)
were diluted to 1:100 in buffer and incubated for 40 minutes
at 37 . The sections were then incubated with HRP-conjugated
secondary antibodies (Santa Cruz, USA) for 20 minutes at
37 . Positive expression was detected with diaminobenzidine
(DAB) (Sigma, St. Louis, MO, USA). The sections were lightly
counterstained with hematoxylin, dehydrated in graded alcohol,
and mounted. For negative control, the sections were processed
similarly but PBS was used as primary antibodies instead of the
MAPKs monoclonal antibodies.
    The result of positive staining was semi-quantitatively
defined as -, +, ++ and +++. This was observed under microscope
with 10 times eyepiece and 40 times objective. “-” represents
no visible positive staining, “+” less than 10 stained cells and
“++” 10-30 stained cells, while “+++” represents more than 30
positively stained cells within one high power field.

Measurement of plasma D-lactate
The levels of plasma D-lactate were measured with modified
Brandt’s method[12]. Briefly, heparinized blood was centrifuged
at 3 200 rpm for 10 min and 2 ml of the plasma was
deproteinized with 0.2 ml perchloric acid (PCA) (1/10 vol),

mixed and kept in an ice bath for 10 min. The denatured protein
solution was centrifuged at 3 200 rpm for 10 min and the
supernatant solution was removed. To 1.4 ml of supernatant
solution, 0.12 ml KON was added and they were mixed for 20
s. Precipitant KClO4 was removed by centrifugation at 3 200
rpm for 10 min. The supernatant solution and neutralized-
protein-free plasma were used to measure the absorbency at 340
nm. Plasma D-lactate concentration was expressed as mmol/L.

Histological observation
Paraformaldehyde fixed, paraffin embedded small intestine
samples were also cut 5 µm in thickness, deparaffinized in
xylene, rehydrated in graded ethanol, and then stained with
haematoxylin-eosin (HE) for histological observation under
light microscope (Olympus, Japan).

Statistical analysis
Data were expressed as mean ± standard error. Comparisons
between groups of data were analyzed by Student’s t-test. P
values <0.05 were considered statistically significant.

RESULTS

Activities of p42/p44 MAPK and p38 MAPK
Quantitative immunohistochemical results for phosphorylated
forms of p42/p44 MAPK and p38 MAPK were evaluated
(Tables 1 and 2). The expression of activated p42/p44 MAPK
was localized in the cytoplasm and nuclei of villus cells and in
the nuclei of crypt cells, mainly in the epithelium and villus
cells (Figure 1). Activated p38 MAPK was localized primarily
in the nuclei of crypt cells, very few in villus cells (Figure 2).
There was a consistent correlation between positive expression
levels and the intensity of p42/p44 MAPK and p38 MAPK.
The positive expression of p42/p44 MAPK and p38 MAPK
was weak in the sham-operated intestinal tissues and ischemic
tissues. However, the number of positive staining cells
increased with high staining intensity after reperfusion injury.
In the normal saline and bFGF antibody pre-treated groups,
the number of positive staining cells of p42/p44 MAPK
(Figures 1B and C) and p38 MAPK (Figures 2B and C)
increased 2 hours after reperfusion, peaked at 6th hours, and
decreased from 24 to 48 hours. In the bFGF treated group,
however, the number of positive staining cells and the intensity
of p42/p44 MAPK and p38 MAPK peaked 2 hours after
reperfusion (Figures 1D and 2D) and decreased afterwards,
but they were still higher than those in the sham-operated
control at 48 hours. Compared with the normal saline and bFGF
treated groups, the intensity of p42/p44 MAPK and p38 MAPK
positive staining in the bFGF antibody pretreated group was
weaker from 2 hours to 48 hours after reperfusion.

Activities of SAPK/JNK
Weak staining of SAPK/JNK was observed in small intestine
after I/R injury. Positive staining was localized in the nuclei
and cytoplasm of villus and crypt cells. The staining, however,
was weak without much difference among the groups (Table
3). The positive staining of SAPK/JNK in bFGF treated group
was slightly higher only at 24 hours after reperfusion. Among
all the groups, the positive staining of SAPK/JNK was weaker
than that of p42/p44 MAPK and p38 MAPK.

Changes of plasma D-lacate levels
Plasma D-lactate levels were measured 2, 6, 24, and 48 hours
after reperfusion in all groups. They were elevated 2 hours after
reperfusion in all groups, peaked at 6th hour, and decreased to
nearly normal 48 hours later (Table 4). The levels at 45 min
after ischemia in the sham-operated group were served as controls.
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Figure 1  Immunohistochemical staining of phosphorylated
p42/p44 MAPK in intestinal biopsies in rats after ischemia/
reperfusion injury (SP×200). A: Negative control of p42/p44
MAPK staining. There was no positive expression signal in
this group. B: The expression of phosphorylated p42/p44 in
intestinal biopsies in the saline control group 2 hours after
reperfusion. The activated p42/p44 MAPK expression was
localized in the cytoplasm and nuclei of villus cells and in the
nuclei of crypt cells, mainly in the epithelium and villus cells.
C: Phosphorylated p42/p44 staining in the bFGF antibody pre-
treated group. The number of positive cells and intensity in
this group were weaker compared with those in the saline
control and bFGF treated groups. D: The expression of
phosphorylated p42/p44 in the bFGF treated group 2 hours

after reperfusion. The activated p42/p44 MAPK expression
was localized in the cytoplasm and nuclei of villus cells and in
the nuclei of crypt cells, mainly in the epithelium and villus
cells. The number of positive cells in this group was more
than that in the bFGF antibody pre-treated group. ISH×400.

Figure 2  Immunohistochemical staining of phosphorylated
p38 MAPK in intestinal biopsies in rats after ischemia/
reperfusion injury (SP×200). A: Negative control of p38
MAPK staining. There was no positive expression signal in
this group. B: Phosphorylated p38 MAPK staining in the saline
control group 2 hours after reperfusion. Few p38 MAPK
positive expression were localized in the cytoplasm and nuclei
of villus cells and in the nuclei of crypt cells, mainly in the
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epithelium and villus cells. C: P38 MAPK staining in the bFGF
antibody pre-treated group. The number of positive cells and
localization of p38 MAPK positive cells were similar with those
in the saline group. D: Phosphorylated p38 staining in the bFGF
treated group 2 hours after reperfusion. Activated p38 MAPK
was localized primarily in the nuclei of crypt cells, few in villus
cells. The number of positive cells was more than that in the
saline control and bFGF antibody pre-treated groups. In the bFGF
treated group, the number of positive expression cells of p38
MAPK as well as its intensity peaked 2 hours after reperfusion.

Histological evaluation
Intestinal I/R injury resulted in the damage of intestinal barrier
and the increase of mucosal permeability. HE staining showed
partial loss of the mucosa 2 hours after reperfusion. 6 hours
after reperfusion, however, the damage of intestinal epithelial
cells, hemorrhage and necrosis were observed and
accompanied by inflammatory cell infiltration into the intestinal
wall. Histological structure of the intestinal mucosa was
markedly improved after administration of bFGF.

DISCUSSION
Intestinal I/R injury causes release of bacteria and toxin from
the gut into the host blood circulation and changes of
inflammatory factors, cytokines and growth factors,
resulting in damage to the intestinal barrier and other internal
organs[1-3,13-17]. We found that administration of exogenous
basic fibroblast growth factor (bFGF) could reduce the
intestinal injury caused by I/R insult. However, the mechanisms
of this protective effect of bFGF are not elucidated. BFGF is
expressed in many normal adult tissues and has mitogenic
activity in a wide variety of cells of mesenchymal, neuronal,
and epithelial origins, and regulates events in normal embryonic
development, angiogenesis, wound repair, and neoplasia[18-20].
Also, it can regulate migration and replication of intestinal
epithelial cells in culture[21]. Recent studies have shown that L-
glutamine, tumor necrosis factor-α and epidermal growth factor
(EGF) stimulate proliferation of intestinal crypt cells by
activating the MAPK pathway, and that p42/p44 MAPK
activities are necessary for both cell cycle progression and
differentiation of the intestinal cells[22-25]. In many other cell
types, growth factor controls proliferation and differentiation

Table 1  Semi-quantitative results of immunohistochemical staining for phosphorylated forms of p42/p44 MAPK in different
groups

Groups Pre-injury 2 hrs post-injury 6 hrs post-injury 24 hrs post-injury 48 hrs post-injury

Group B - ++ ++ + ++

Group C - + ++ + +

Group D - +++ +++ + +

“-” represents no visible positive staining, “+” less than 10 stained cells and “++” 10-30 stained cells, while “+++” represents more
than 30 positively stained cells within one high power field.

Table 2  Semi-quantitative results of immunohistochemical staining for phosphorylated forms of p38 MAPK in different
groups

Groups Pre-injury 2 hrs post-injury 6 hrs post-injury 24 hrs post-injury 48 hrs post-injury

Group B - ++ ++ + ++

Group C - + ++ + +

Group D - +++ ++ + +

“-” represents no visible positive staining, “+” less than 10 stained cells and “++” 10-30 stained cells, while “+++” represents more
than 30 positively stained cells within one high power field.

Table 3  Semi-quantitative results of immunohistochemical staining for phosphorylated forms of SAPK/JNK in different
groups

Groups Pre-injury 2 hrs post-injury 6 hrs post-injury 24 hrs post-injury 48 hrs post-injury

Group B - + + ++ +

Group C - + + + +

Group D - + + ++ +

“-” represents no visible positive staining, “+” less than 10 stained cells and “++” 10-30 stained cells, while “+++” represents more
than 30 positively stained cells within one high power field.

Table 4  The changes of plasma D-lactate levels at different time points in three groups (mmol/L) (x±s)

Groups Animal numbers    Control            2 hours         6 hours       24 hours   48 hours

Group B 24 0.332±0.132         0.372±0.090      0.397±0.096     0.463±0.147 0.511±0.179
Group C 24 0.332±0.132         0.309±0.079      0.327±0.098     0.415±0.177a 0.425±0.208a

Group D 24 0.332±0.132         0.369±0.124      0.407±0.089     0.475±0.128 0.537±0.098

aP<0.05 vs compared with control.
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via the MAPK pathway. MAPK is a common signal pathway
to transmit the mitogen or the differentiating signals from the
cell surface to the nucleus, and thus ultimately regulates
different gene expression[26-28]. Hence, we hypothesized that
MAPK activation might be involved in the regulation of bFGF
signals in the process of intestinal barrier repair.
     To investigate this hypothesis, we evaluated changes of the
activated MAPK signal pathway after administration of bFGF
and bFGF antibodies. We found that intestinal I/R injury
stimulated the activities of phosphorylated forms of the p42/
p44 MAPK and p38MAPK pathways, and increased the SAPK/
JNK activity slightly. p42/p44 MAPK and p38MAPK activities
were increased 2 hours after reperfusion, and peaked at 6 hours.
At the same time, the levels of SAPK/JNK increased slightly
24 hours after reperfusion compared with those of the normal
control. Phosphorylated forms of p42/p44 MAPK were mainly
localized in the nuclei of crypt cells and in the cytoplasm and
nuclei of villus cells, whereas those of p38MAPK were
primarily localized in the nuclei of crypt cells, few in villus
cells. After administration of bFGF, the expression of both
p42/p44 MAPK and p38MAPK was quickly stimulated, and
the activation of both p42/p44 MAPK and p38MAPK peaked
2 hours after reperfusion, declined gradually to normal at 48
hours. A coherence was noted between the changes of p42/
p44 MAPK and p38MAPK and histological findings. These
results indicate that intestinal I/R injury induces the activities
of the MAPK pathways, and p42/p44 MAPK and p38MAPK
activities are necessary for the protective effects of exogenous
bFGF on intestinal I/R injury. The early stimulation of the p42/
p44 MAPK and p38MAPK signal pathways may mediate the
protective effects of bFGF on intestinal dysfunction.
    MAPK family is composed of “extracellular signal
regulated” p42/p44 MAPK, “stress-regulated” MAPK (SR-
MAPKs), stress-activated protein kinases (SAPKs)/c-Jun N-
terminal kinases (JNKs) and p38-MAPKs. On stimulation,
MAPKs are translated into the nucleus where they may
phosphorylate nuclear transcription factors and thus regulate
gene expression. The four principal differentiated cell lineages
of intestinal epithelium are derived from common multipotent
stem cells located near the base of each crypt. These crypt
stem cells divide to produce daughter stem cells as well as
more rapidly replicating transit cells, which in turn undergo 4-
6 rapid cell divisions in the proliferative zone located in the
lower half of each crypt[29,30].  Factors determining whether cells
continue to proliferate, cease dividing, and begin to differentiate,
appear to operate during the first gap phase (G1) of the cell
cycle. P42/p44 is activated during G0 to G1 transition, and the
activity remains elevated up to S phase entry, implicating this
family of protein quinces in the control of G1 progression[31,32].
Activation of p42/p44 MAPK is also necessary for growth
factor-dependent proliferation of some cell lines.
    We propose the possible mechanisms of the protective
effects of bFGF on intestinal I/R injury be involved in the
activation of MAPK pathway. First, to protect the survival of
intestinal stem cells within crypt and mediate the proliferation
and differentiation of these cells. Intestinal epithelium is
maintained by continuous and rapid replacement of
differentiated epithelial cells by replication of undifferentiated
epithelial cells. Exogenous bFGF markedly enhances the survival
of crypt stem cells before and after irradiation injury[33].
Microvascular endothelial apoptosis is the primary lesion
leading to stem cell dysfunction, while endothelial apoptosis
could be inhibited by intravenous bFGF[34]. Second, to regulate
the inflammation reactions after I/R injury. The TNF translation
by IL-10 is inhibited mainly by inhibiting the activation of the
p38 MAPK pathway[35]. This is necessary for maintenance of
immune homeostasis in the gut.
     In the perfused heart, ischemia/reperfusion activates stress-

regulated MAPKs, direct pharmacological activation of p38
triggers delayed preconditioning of the heart, and there is
minimal activation of the p42/p44 MAPK subfamily by heart
I/R injury[35-37]. Yet phosphorylation of p42/p44 MAPK occurs
consistently in the grey matter penumbra of brain tissue after
ischemic stroke, and may be associated with neuronal survival
and/or angiogenic activity in the recovering brain tissue[38].
The results indicate that the MAPK pathways respond
differently to ischemic injury in different sites.
     The changes of serum D (-)-lactate were used as a predictor
of intestinal I/R injury in this study. D (-)-lactate is the
stereoisomer of mammalian L (+)-lactate. Mammalian tissue
does not produce D (-)-lactate and only slowly metabolizes it.
It is a strict product of bacterial fermentation. Since mammals
do not possess the enzyme systems to rapidly metabolize D (-)
-lactate[11, 39,40], the released D (-)-lactate will pass through the
gut barrier and liver in an unchanged form and appear in the
peripheral blood. As intestinal ischemia injury causes mucosal
injury and subsequent bacterial proliferation, D (-)-lactate is
released from gut into the circulation. In this study, the serum
D (-)-lactate level was increased after injury, but in the bFGF
treated group, it was not significantly increased as in the control
group, indicating that bFGF exerts a positive protective effect
on the mucosal barrier and decreases the intestinal permeability.
     In summary, intestinal I/R injury induces the activities of
the MAPK pathways, and p42/p44 MAPK and p38MAPK
activities are necessary for the protective effect of exogenous
bFGF on intestinal I/R injury. The protective effect of bFGF on
intestinal dysfunction may be mediated by the early stimulation
of the p42/p44 MAPK and p38 MAPK signaling pathways.
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