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Abstract

AIM: To investigate the effects of DNA methylation on the
expression of tumor suppressor genes and proto-oncogene
in human colon cancer cell lines.

METHODS: Three colon cancer cell lines (HT-29, SW1116
and Colo-320) treated with different concentrations of DNA
methyltransferase inhibitor, 5-aza-2”-deoxycytidine (5-aza-dC)
were used to induce DNA demethylation. The expressions
of p16™4A p21WAT1 - APC and c-myc genes were observed
by using RT-PCR. The methylation status of p16™X** promoter
in HT-29 cells was also determined by methylation-specific
PCR (MSP).

RESULTS: Weak expressions of p16™** and APC in the
three colon cancer cells were detected, and p21"A* expression
was not found in SW1116 and Colo-320 cells before
treatment. After treatment of 1 mmol/L but not 10 nmol/L of
5-aza-dC, the methylation level of p16'™** gene promoter
decreased significantly, and the hypomethylation led to the
up-regulation of p16™** gene transcription in HT-29 cells.
In the cell lines of SW1116 and Colo-320, p16™%* and APC
mMRNA expressions were obviously enhanced after treatment
of either 10 nmol/L or 5 mmol/L 5-aza-dC for 24 h. However,
no evidence was found that methylation regulated the
expression of p21"4" and c-myc genes in human colon cancer
cell lines.

CONCLUSION: Expression of p16™k“and APC genes is
regulated by DNA methylation in three human colon cancer
cell lines.
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INTRODUCTION

DNA methylation is the main epigenetic modification after
replication in humang¥. DNA (cytosine-5)-methyltransferase
(DNMT) catalyzes the transfer of a methyl group from S-

adenosyl-L-methionine (SAM) to C5 of cytosine within CpG
dinucleotide sequencesin genomic DNA of higher eukaryotes.
The expression of some genes can be frequently inactivated
by reversible epigenetic events rather than genetic eventg23.

Colon cancer is one of the most common tumorsworldwide.
The loss of p21"AF1, p16'™*% and adenomatous polyposis coli
(APC) geneexpression, or/and the over-expression of c-myc gene
are believed to play acrucial role in colon carcinogenesis.
As described in our previous review!®, mutation of p16'™N«<
was not found but the frequency of hypermethylation was 10-
53 % in colon cancer. Previous studies by two independent
groups of investigators have demonstrated that inactivation of
p16'™*Ain human colon tissue might be due to de novo
methylation of promoter-associated CpG island!®®. Colon
cancer cell lines, Colo-3201% and SW1116!*214 were
frequently used in molecular biological experiments.

To date, most of these studies were focused on aberrant
methylation in a single gene. However, little is known about
theregulation of methylation on the expression of several tumor
suppressor genes and proto-oncogenes in the same human
colon cancer cell line. Furthermore, several clinical trials
indicated that methylation inhibitor, 5-aza-2’ -deoxycytidine
(5-aza-dC) was devoid of antitumour activity in adult patients
with colon cancer!*>*", We want to know whether 5-aza-dC
induces over-expression of proto-oncogene while regulatesthe
transcription of tumor suppressor gene.

In this study, we investigated the transcriptional level of
p16NKA p21WARL - APC tumor suppressor genes, and c-myc
proto-oncogenes. We examined whether the expression of these
geneswasinfluenced by methylation in colon cancer cell lines.
The focus of this work was to gain a better understanding of
the factorsinvolved in regulating DNA methylation.

MATERIALS AND METHODS

Cell culture

Colon cancer-derived cell linesHT-29, Colo-320 and SW1116
were maintained by serial passagesin MEM containing 10 %
heat-inactivated FCS, 20 mmol/L of L-glutamine, 62.5 mg/L
of penicillin, and incubated at 37 ‘C using standard tissue
culture incubators as described previously!*®. The cells were
plated as 10° cells onto per 100-mm dish.

Treatment with 5-aza-dC

5-aza-dC was a DNMT inhibitor!®, To assess the expression
of p16'™K p21W*1 APC and c-myc genes by 5-aza-dC, colon
cancer cell lines were exposed to different concentrations
(2 mmol/L and 10 nmol/L for HT-29 cells, 2 mmol/L, 5 nmol/L
and 10 mmol/L for Colo-320 and SW1116 cells) of 5-aza-dC
(Sigma, St. Louis, MO) for 24 hoursand 72 hours. The control
culturesweretreated ssmultaneoudy with PBS. Themediawere
changed, DNA and RNA were harvested at varioustime points,
respectively. We did not find cytotoxics reactions from 5-aza-
dC, even at 10 mmol/L concentration.

Reverse transcription polymerase chain reaction (RT-PCR)
Total RNA was isolated by using a commercial kit (Trizol)
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according to the manufacturer’ s instructions (Gibco BRL).
Reverse transcription reactions using 5 ng of total RNA in a
total reaction volume of 20 m were performed with Superscript
Il reverse transcriptase (Life Technologies, Inc.). The mRNA
transcription levels of p16'™<#, p21"#F1, APC and c-myc genes
were evaluated by using RT-PCR. Primer sequence and PCR
reaction for each primer are shown in Table 1. For control of
RT-PCR, a 612 bp (322 bp for p16'"* RT-PCR in HT-29)
fragment of b-actin cDNA was aso amplified. The density of
bands in RT-PCR were quantitated by using a molecular
dynamics phosphorl mager (Nucleo Tech Inc., San Mateo, CA),
which were normalized to the amount of total RNA as
determined by the density of b-actin band from RT-PCRI9,
RT-PCR was performed three times at |east.

Methylation-Specific PCR (MSP) for p16™A

Wefollowed Clark’ smethod of bisulfite treatment!® with some
modifications asfollows. Two ng of total genomic DNA (from
at least two independent treatments corresponding to RT-PCR
experiments) was isolated by using QlAamp DNA blood mini
kit (QIAGEN Inc.), then denatured by NaOH and modified by
sodium bisulfite solution (2.35 mol/L) containing hydroquinone
(0.04 mol/L)) freshly prepared. The bisulfite-treated DNA was
desalted using Wizard DNA clean up kit (Promega). To amplify
the p16'™<** promoter, we used 0.1 ng aliquot of converted
DNA. Methylation of the 5’ CpG island in p16™* gene was
also determined in samples from HT-29 cells treated by 5-
aza-dC. Thebisulfitetreated DNA was amplified by PCR using
primers specific for the methylated or unmethylated primer.
The GenBank accession number, sequences of primers and
program of PCR are also shown in Table 1. PCR product was
directly loaded onto 3 % agarose gels and el ectrophoresed.
The gel was stained with ethidium bromide and directly
visualized under UV illumination.

RESULTS

Methylation in p16™*** promoter in HT-29 cells treated with
5-ada-dC
We examined the methylation status of p16™* following 5-
aza-dC treatment using M SP. Bisulfite treatment converted
the cytosine residues in the genomic DNA to uracil, which
were amplified as thymine during subsequent PCR. As shown
in Figure 1, HT-29 cells showed a positive 150-151 bp band
for methylated and unmethylated specific primer sets for
pl6™«4 respectively, indicating that p16'N“4 gene was partially
methylated in this cell line. The methylated bands for p16'™<#
geneinthe mock treated HT-29 cellswere consistently stronger
than the products of 5-aza-dC treated HT-29 cells. Thus, the
product level from PCR using unmethylated primer was
significantly higher, and methylated product level was
correspondingly lower in HT-29 cells treated with 5-aza-dC.
Three days after treatment with 1 nm of 5-aza-dC, MSP
revealed a significant increase in the amount of unmethylated
product (Figure 1). These results suggested that p16'N*** gene
was atarget of the decreased methylation level in HT-29 cells
treated with 5-aza-dC.

Restoration of p16™*** gene expression by 5-aza-dC
We initially tried to find out whether there were expressions
of several tumor suppressor genes such as p16'N<4, p21WArt
and APC, and proto-oncogene c-myc in human colon cancer
cell lines HT-29 (p16'™k* only), Colo-320 and SW1116.
MRNA levels of the above genes were investigated by using
semiquantitative RT-PCR. p16™“*genewas expressed in these
three cell lines dlightly prior to the treatment with 5-aza-dC.
In the first part of the present study, we examined the

possihility of methylation on expression regulation of p16™
in three colon cancer cell lines. Increased levels of pl16'N«eA
expresson were seen in HT-29 cdlstreated with lower (1 mmol/L,
24 hours) but not higher (10 mmol/L, 24 hours) concentrations
of 5-aza-dC (Figure 2, Table 2). In contrast, 5-aza-dC induced
transcription of p16™<** at higher concentration (10 mmol/L) )
for 24 hours or 72 hours, but not at the lower concentration
(2 mmol/L or 5 mmol/L) for the same duration (Figures 3A and
3B, lanes 3 and 4, Table 3).

Table 2 The expression of p16™<*Agene in HT-29 cells (the band
density)

5-aza-dC conc Mock treated 1nM, 24 h 10nM, 24 h

Density 2257.7 2782.5 1975.3

The density of each band from RT-PCR in each lane of Figure
2 was normalized to the amount of total RNA as determined
by the density of band in RT-PCR for b-actin.

1 2 1 2

Methylated primers Unmethylated primers
MSP(150 bp) MSP(151 bp)

Wild-type primers
MSP(150 bp)

Figure 1 5-aza-dC induced hypomethylation of the promoter
of p16™«4 gene in HT-29 cells. Lane 1, untreated; lane 2, 5-aza-
dC treated; lane 3, untreated with bisulfite. MSP was performed
with the specific primers described in the Materials and Methods.

Actin pl16
1uM 10uM - 1uM 10uM 5-Aza-dC

322 bp 355 bp

Figure 2 Up-regulated mRNA level of p16™** by 5-aza-dC in
HT-29 cells. RT-PCR was performed as described in Materials
and Methods. b-actin was used as a loadingZamplification control.
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Figure 3 5-aza-dC increased the transcription of p16'"<* gene
in Colo-320 (A) and SW1116 cells. Lane 1: mock treatment.
Lanes 2-7: after 5-aza-dC treatment; lane 2: 2 mmol/L, 24 h;
lane 3: 5 mMmol/L, 24 h; lane 4: 10 mmol/L, 24 h; lane 5: 2 nmol/L,
72 h; lane 6: 5 nmol/L, 72h; lane 7: 10 mmol/L, 72 h. The
density of bands shown in Table 3.
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Table 1 Sequences of primers and program of PCR

Primers

Sense(5”—>37)

Antisense(5”—37)

Size of product and PCR condition

GenBank accession number

b-actin RT-PCR
(for p1l6'NKART-
PCR in HT-29)
b-actin RT-PCR
(for RT-PCR

in other cells)
p16INK4A
RT-PCR

APC
RT-PCR

p2LWAFL
RT-PCR

c-myc
RT-PCR

p16/NKeA MSP
(Wild-type)

p16INK4A MS

P-methyl-primers

GGAGTCCTG
TGG CATCCACG

GGC ATC GTG
ATGGACTCCG

CCCGCTTTC
GTAGTTTTC AT

GAG ACA GAA
TGG AGG TGC TGC

CAG GGG ACA
GCA GAG GAA GA

CCA ACAGGA
GCTATGACCTC

CAG AGG GTG
GGG CGG ACC CGC

TTATTA GAG GGT
GGG GCG GAT CGC

CTA GAA GCA
TTT GCG GTG GA

GCT GGA AGG
TGGACAGCGA

TTATTT GAG
CTTTGGTTC TG

GTAAGATGATTG
GAATTATCTTCT A

GGG CGG CCA
GGG TATGTAC

CTC GGT CAC CAT
CTCCAGCT

CGG GCC GCG
GCCGTGG

GAC CCC GAA CCG
CGA CCG TAA

322 bp

94°C3m;94°C30s,60C
1m,72°C1m,27X;72°C5m

612 bp

94 C 5min; 92 °C 405, 58 C 40 s,

72 °C50s,30X;72°C 5min

355 bp

94 °C 5 min; 94 C 1 min,58 'C 1 min,
72 °C,1min,35X; 72 °C 5 min

170 bp

95 “C 5 min; 95 °C 1 min, 53 'C 1 min,
72 °C,1min,35X; 72 °C 5 min

335 bp

94 °C 5 min; 94 °C 1 min, 58 'C 1 min,
72 C 1 min, 35 X; 72 °C 5 min

290 bp

94 °C 5 min; 94 °C 1 min, 52 °C 1 min,
72 °C,1min,35X; 72 °C 5 min

140 bp

XM004814

BC023204

L27211

AF209032

NM_000389

V00568

X94154

95 °C 5 min; 95 C 1 min, 65 'C 2 min, 72 °C 3 min,
5X;95°C 30s,65°C 30s,72 C 1 min, 35X;725 min

150 bp

X94154

95 °C 5 min; 95 C 1 min, 65 C 2 min, 72 °C 3 min,
5X;95°C 305,65 C 30s,72 C 1 min, 35 X;72 ‘C 5 min

151 bp

X94154

ple!NKaa TTATTAGAG GGT CAACCCCAAACC
MSP-unmethyl GGG GTG GATTGT ACAACCATAA
primers

95 °C 5min; 95 ‘C 1 min, 60 'C 2min,72°C 3 m C,
5X;95°C 305,60 C 30s,72 C 1 min, 35 X; 70 C 5 min

Table 3 Expression of p16™**Agene in SW1116 and Colo-320 cells (the band density)

5-aza-dC treatment  Mock treated 2 mmol/L,24h 5mmol/L,24h 10 mmol/L,24h 2mmol/L,72h 5mmol/L,72h 10 nmol/L, 24 h
SW1116 1494.7 2055.5 2436.9 3487.3 1592.0 2074.8 2774.0
Colo-320 809.1 860.6 829.2 1298.8 875.7 9235 1189.6

The density of each band from RT-PCR in each lane of Figure 3 was normalized to the amount of total RNA as determined by the

density of band in RT-PCR for b-actin.

Table 4 Expression of APC gene in SW1116 and Colo-320 cells (the band density)

5-aza-dC treatment  Mock treated 2 mmol/L,24h 5nmmol/L,24h 10 mmol/L,24h  2nmmol/L,72h 5mmol/L,72h 10 nmol/L, 24 h
SW1116 786.2 1481.2 782.6 796.9 802.9 1173.5 1236.8
Colo320 1804.6 2388.2 4055.2 1923.9 1803.0 3197.8 3271.7

The density of each band from RT-PCR in each lane of Figure.4 was normalized to the amount of total RNA as determined by the

density of band in RT-PCR for b-actin.

5-aza-dC increased transcription level of APC gene

To identify whether the transcription level of APC was
regulated by DNA methylation in human colon cancer cell
lines, we cultured Colo-320 and SW1116 cells with or without
5-aza-dC treatment for 24 hours and 72 hours. The data from
RT-PCR implied that before incubation with 5-aza-dC, the
levels of APC transcription in these cells were lower (Figure
4, line 1, Table 4). Incubation for 24 hours with 5-aza-dC
resulted in the accumulation of APC mRNA, whose levels
remained unchanged during the 72 hour incubation period.
APC mRNA levels were normalized with respect to the level
of b-actin mMRNA, which did not change during culture with
5-aza-dC (Figure 4, Table 4). RT-PCR was repeated twice and
the results were consistent.

The effectiveness of 5-aza-dC on the expression of APC
was high even at lower concentration (2 mmol/L), suggesting
that methylation-induced silencing of this gene was the
primary event. Restoration of APC expression by 5-aza-dC
treatment confirmed a causal relationship between DNA
hypermethylation and APC silencing in colon cancer cell lines
Colo-320 and SW1116.

5-aza-dC treatment failed to induce expression of p21*A* and
c-myc in Colo-320 and SW1116 cells

To further define the modification status of p21"**and c-myc
expression in colon carcinogenesis, we attempted to observe
whether their transcription levelswould change after treatment
with DNMT inhibitor. Although no expression of p21"¥**and



Fang JY et al. DNA methylation in colon cancer cells

1979

significant over-expression of c-myc were seen in mock
treatment. Our current study revealed that amost no change
in activity was seen when these two cell lines Colo-320 and
SW1116 cells were treated by 5-aza-dC. In other words,
regulation of methylation on the expression of p21"**and c-
myc genes was not found (data not shown).

Taken these together, it was suggested that the methylation
silencing transcription be localized at specific regions of the
chromatin. Other mechanisms might play arole in controlling
the activity of p21"#*and c-myc genes in colon cancer cell
lines Colo-320 and SW1116.

1 2 3 4 5 6 7

= = = = T
A I -0

1 2 3 4 5 6 7

™ scTin (520 bp)
T

Figure 4 5-aza-dC increased the transcription of APC gene in
Colo-320 (A) and SW1116 cells. Lane 1: mock treatment. Lanes
2-7: after 5-aza-dCtreatment; lane 2: 2 mmol/L, 24 h; lane 3:
5 mmol/L, 24 h; lane 4: 10 mmol/L, 24 h; lane 5: 2 nmol/L, 72 h;
lane 6: 5 nmol/L, 72 h; lane 7: 10 mmol/L, 72 h. The density of
bands shown in Table 4.

DISCUSSION

Compelling evidencesfor the role of epigenetic modification on
the regulation of gene transcription have been published(?29,
pl6™4“was a tumor suppressor gene originally identified by
Serrano et all?”, and the methylation profile of p16'Nk
promoter differed in each cancer type®. Several studiesindicat
that 5-aza-dC induced growth inhibition might be resulted from
the release of methylation silenced cell cycle regulatory gene
ple'Nk4aizl - APC gene hypermethylation is frequent but not
universal in colon cancer cell line. Previous studies showed
that p21"*** transcription was regulated by histone acetylation,
another modification of epigeneticsin human colon cancert®,
but little is known about the effect of DNA methylation on
this gene expression.

In the current study, our findings indicated firstly that
p16'K44 was expressed in these three human colon cancer cell
lines, and APC was expressed with p21"A"! inactivated in Colo-
320 and SW1116 cells. 5-aza-dC induced hypomethylation of
p16™<“A promoter and the restoration of p16'<* transcription,
suggesting that DNA methylation is the major regulation
mechanism for p16'"4 in HT-29, Colo-320 and SW1116 cells.
Previously it was suggested that lack of p21"A*! expression
appeared to bethe result of hypermethylation of it" s promoter
region, as p21"A" protein expression could be induced by
growth of Rat-1 cellsin the presence of 5-aza-dC*Y. However,
the influence of methylation on p21"A! gene expression was
dependent on differentiation of cells and tissuesi*. An
important finding from this study indicated that reduction of
DNA methylation might not play acrucial roleintheregulation
of p21"*** transcription in human colon cancer cell lines, Colo-
320 and SW1116.

c-Myc proto-oncoprotein has been found to be deregul ated
in colon cancer. Over-expression of c-Myc in tissue culture
caused an increase in cell proliferation with a shortened G1
phase, whereas loss of c-Myc resulted in slow growth and
longer G1 phase’®. Over-expression and abnormal intracel lular

location of the product of proto-oncogene c-myc in colon
dysplasia and neoplasia might be related to the alteration in
epigenetic mechanisms controlling the function of this gene
(33, Although hypomethylation of c-myc in human tumors has
also been reported, it isnot clear whether demethylation induces
the over-expression of c-myc in human tumor cell lines. This
paper reports that 5-aza-dC did not up-regulate c-myc
transcription, while the expression of p16'* and APC tumor
suppressor genes responded to 5-aza-dC treatment in colon
cancer cell lines. Thereason why 5-aza-dC failed to colon cancer
treatment was not due to c-myc over-expression from
demethylation.

In conclusion, our study results support the concept that
there are significant differencesin the regulatory response to
DNA methylation in different genes including tumor
suppressor gene and proto-oncogene, even in the same colon
cancer cell lines Colo-320 or SW1116.
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