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Abstract
In this review, we summarize the recent microbiome studies related to diabetes 
disease and discuss the key findings that show the early emerging potential causal 
roles for diabetes. On a global scale, diabetes causes a significant negative impact 
to the health status of human populations. This review covers type 1 diabetes and 
type 2 diabetes. We examine promising studies which lead to a better 
understanding of the potential mechanism of microbiota in diabetes diseases. It 
appears that the human oral and gut microbiota are deeply interdigitated with 
diabetes. It is that simple. Recent studies of the human microbiome are capturing 
the attention of scientists and healthcare practitioners worldwide by focusing on 
the interplay of gut microbiome and diabetes. These studies focus on the role and 
the potential impact of intestinal microflora in diabetes. We paint a clear picture of 
how strongly microbes are linked and associated, both positively and negatively, 
with the fundamental and essential parts of diabetes in humans. The microflora 
seems to have an endless capacity to impact and transform diabetes. We conclude 
that there is clear and growing evidence of a close relationship between the 
microbiota and diabetes and this is worthy of future investments and research 
efforts.

Key words: Diabetes; Microbiota; Causality; Mechanism; Type 1 diabetes; Type 2 
diabetes; Insulin resistance; Inflammation; Metabolites
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Core tip: Current research continues to uncover associations between microbiota and 
diabetes [type 1 diabetes (T1D) and type 2 diabetes (T2D)], and these appear to involve 
metabolic effects and immune response processes. Understanding the consequences of 
balance in human gut microbiota and diabetes may prove very useful in developing future 
therapeutic interventions. This review summarizes recent studies in both mouse models 
and human cases that support a potential cause-effect relationship, and discusses the role 
of gut microbial metabolites on T1D and T2D.

Citation: Li WZ, Stirling K, Yang JJ, Zhang L. Gut microbiota and diabetes: From correlation to 
causality and mechanism. World J Diabetes 2020; 11(7): 293-308
URL: https://www.wjgnet.com/1948-9358/full/v11/i7/293.htm
DOI: https://dx.doi.org/10.4239/wjd.v11.i7.293

INTRODUCTION
Recently, studies of the human microbiome are capturing the attention of scientists 
and healthcare practitioners worldwide by focusing on the interplay of gut 
microbiome and diabetes. Understanding the consequences of balance in human gut 
microbiota and diabetes should prove very useful in developing future promising 
therapeutic interventions. Diabetes is a common chronic endocrine and metabolic 
disease, which impacts humans globally. Type 1 diabetes (T1D) is prevalent among 
children and adolescents, although the disease can occur at any age. The pathogenesis 
of T1D occurs when the endocrine system cannot produce insulin due to an 
autoimmune-mediated response leading to both inflammation and destruction of 
pancreatic β-islet cells. Type 2 diabetes (T2D) is a more prevalent form of diabetes 
most commonly occurring among adults and is usually caused by a combination of 
insulin resistance and an insulin deficiency.

Among the risk factors associated with diabetes are often things like a family history 
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of diabetes, unhealthy eating habits, and obesity. The increasing prevalence of diabetes 
is a worldwide phenomenon following the continuous growth in urbanization, 
changes in diet, and the emergence of more sedentary lifestyles. According to a 2019 
report, about 463 million adults worldwide currently have diabetes and future 
projections indicate the number of diabetic patients will reach 700 million by 2045[1]. 
According to epidemiological observations, specific changes in the diversity of 
intestinal microflora are one of the characteristics of diabetic patients[2]. At the same 
time, there is also growing evidence of a close association between gut microbiota and 
diabetes[3].

The human gut is a complex ecosystem consisting of microbiome, host cells and 
nutrients[4]. There are about 100 trillion bacteria in the intestinal tract and they form the 
gut microbiota. Gut microbiota are composed of many diverse species of bacteria. 
These are taxonomically classified by genus, family, order and phylum. The intestinal 
microflora of healthy adults principally consists of six phyla: Firmicutes, 
Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria and Verrucomicrobia. 
Bacteroidetes and Firmicutes occupy the dominant position in the human intestinal 
tract and play a pivotal role in the nutritional absorption system and support intestinal 
barrier enhancement. Genomic analysis of lean mice and healthy humans also 
confirmed the dominance of Firmicutes and Bacteroidetes, and most research indicates 
that Bacteroidetes outnumber Firmicutes[5].

Current research continues to find associations between microbiota and diabetes 
(T1D and T2D), and these appear to involve many metabolic effects and immune 
response processes, and most of these associate with more specific mechanisms. Some 
of the future research activities exploring gut microbiota balance variations and 
diabetes will lead to new interventional experiments, and potential evaluation of a 
causal hypothesis. This review provides an overview of studies that focuses on gut 
microbiota balance in humans with diabetes. So far, we know there is a range of recent 
evidence leading to some support for the potential causal role of gut microbiota in 
aspects of diabetic disease. It is now clear that future research will examine the 
potential for and discovery of the microbiota-related underlying mechanisms of 
diabetes[5,6]. It is only a matter of time and effort to follow the increasing evidence 
supporting these linkages.

DIET IS A CRUCIAL REGULATOR OF INTESTINAL MICROFLORA
The composition of the microbial community ecosystem is dynamic and its 
composition is dependent upon many factors[7]. Recent experiments using animal 
models indicate that intestinal microflora is regulated by factors including genes, 
medication, and diet. The gut microflora is easily altered by dietary changes. 
Experiments have shown that dietary changes can induce temporary shifts in a large 
number of microorganisms as rapidly as within 24 h[8]. Since diet is the main source of 
energy for individuals and a crucial method for humans to maintain health and 
growth, the diet composition has a big impact on gut microbiota[9]. It therefore follows 
that diet is also a vital regulator of gut microbiota. Gut microbiota composition also 
varies with an individual’s age, and studies have shown these age-related gut 
microflora changes could possibly occur due to changes in diet at different ages and 
changes in inflammation due to some age-related diseases and changes leading to 
decreased immune system function[10]. At the same time, the varying composition of 
gut microorganisms has been identified in disparate geographical regions and this 
may also be related to different regional eating habits[11]. The gut microflora plays a 
pivotal role in the body's metabolism and immunity responses can also become a 
regulator of the effect of diet on the host's metabolic state[12]. On the other hand, these 
factors may also provide a potential impact on the onset of metabolic diseases like 
diabetes. The type, quality, components and source of human food intake will affect 
the composition of gut microbiome, as well as the functions and interactions in the 
microbiome ecosystem.

The main energy source of the gut microflora is dietary carbohydrates. The 
incidence of T2D is inversely associated with the total amount of dietary fiber intake. 
Dietary fiber is also found to impact intestinal microflora populations, and research 
indicates that fiber intake is associated with an increase in microbial diversity and the 
ratio of Firmicutes/Bacteroidetes[13]. Some studies have confirmed that an increase in 
dietary fiber intake also increases the abundance of the human intestinal microflora 
and leads to higher microflora richness. Fiber intake is also associated with higher 
microflora stability[14]. Dietary fiber intake promotes the fermentation of intestinal 
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microbes and this appears to cause an increase in short-chain fatty acids (SCFAs). As 
ligands of free fatty acid receptor 2 (FFAR2) and free fatty acid receptor 3 (FFAR3), 
SCFAs participate in the regulation mechanism of glucose homeostasis[15]. Propionic 
acid is reported to be produced mainly by threonine[16]; glycine, glutamic acid, lysine, 
ornithine and aspartic acid can be used to synthesize acetate; threonine, glutamic acid 
and lysine acid can be used to synthesize butyric acid, of which threonine can produce 
three main SCFAs[17]. Studies have reported that soluble fiber has a direct blood 
glucose lowering effect. Intake of soluble dietary fiber increases the viscosity of gastric 
juices, the more viscous fiber leads to gastric emptying times that are longer. 
Additionally these changes lead to small intestine transit time slowing, and increased 
starch digestion, which is associated with a reduced rate of glucose absorption, leading 
to changes in blood glucose and cholesterol concentrations[18]. Consuming more 
dietary fiber appears to reduce the risk of T2D, and is also associated with maintaining 
a healthy weight. Healthy adults and children can increase their intake of plant foods 
rich in fiber, while reducing total energy intake that is more often associated with 
high-sugar, high-fat, and low-fiber foods[19]. Nevertheless, some SCFAs appear to be 
involved in some of the mechanisms associated with diabetes, which also establishes 
the link between microbiota and diabetes[17,20].

A recent study combined measurements of intestinal microbiome diversity with diet 
history, and blood test parameters from volunteers. These data were evaluated using 
machine learning algorithms to predict how an individual’s postprandial blood 
glucose production responded to real-life diets[21]. This study indicated that a 
personalized diet can successfully improve postprandial blood glucose elevation[21]. By 
combining these techniques and big data analysis, and the use of more specific 
medicinal nutrition recommendations shows the possible prevention and management 
of T2D with more effective personalized nutrition guidance. The widespread use of 
personalized nutrition also faces many challenges, such as the historic lack of reliable 
and repeatable results, also there are omics technology problems such as high cost, 
and the need for more research evidence to support actual effectiveness[22].

In addition to SCFAs, intestinal microflora appears to regulate lipopolysaccharide 
(LPS) levels and these levels are also thought to be involved in the development of 
diabetes[23]. Patients with T2D have fewer butyrate-producing bacteria than non-
diabetic patients. Additionally, the ratio of Firmicutes/Bacteroidetes is also 
significantly lower in T2D patients than in non-diabetic patients[24]. By reviewing the 
results from across numerous studies, we can observe which intestinal microflora 
types and balances are co-occurring and possibly correlated with diabetes. In T2D 
patients, there is an abundance of Bacteroides, Faecalibacterium, Akkermansia, and there 
are lower concentrations of Roseburia, while Ruminococcus and Fusobacterium are 
elevated. Gut microbiota was also reported to have a relationship with T1D in 
previous studies[25]. Gut microbial communities appear to have an impact starting in 
infancy, and it is speculated that T1D is possibly related to the early effects of the gut 
microbiome. The interaction between the human body and the intestinal microflora 
appears to start at birth, and the development of the gut microbiome then evolves and 
goes through three fundamental stages: The first is a developmental stage (occurring 
during months 3-14), the second is a transition stage (occurring during months 15-30) 
and finally the third stage is a stable period (occurring during months 31-46)[26]. 
Abnormal gut microbiota is often observed in pre-diabetic patients. A controlled study 
was conducted to analyze 134 Danish patients with prediabetes. When these subjects 
were compared with normal controls, the intestinal microflora of patients with 
prediabetes showed abnormal characteristics, with low concentrations of Clostridium 
and mucin-degrading Akkermansia muciniphila[27]. In another study, vertical stool 
samples from 903 children aged 3-46 mo were analyzed, and the study found that 
early intestinal microorganism ecology is impacted by breastfeeding and childbirth[26]. 
The full implications of these observations, although not conclusive, appear to indicate 
that there is a developmental impact on microbiome development and the strength 
and outcome of these factors will need to be more fully explored in future research.

STUDIES USING ANIMAL MODELS
The mouse model is commonly used in the study of intestinal microflora, and the 
function of the intestinal microflora can model that for mammals. Studies using mice 
as models provide important insights and help to build an understanding of the 
relationship between the intestinal microflora and diabetes. Mice are generally used as 
the preferred model for research, because the intestinal structures of mice and human 
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subjects are quite similar. These models can also provide an evaluation of experiments 
designed to disturb the intestinal microbiota using controlled experimental apparatus. 
Closer observations of the microbiota composition is helpful in identifying and 
evaluating the potential causal relationships and possible mechanism of the interaction 
between host and intestinal microorganisms[28]. Although there is more work to be 
accomplished here, it is expected that a better understanding of how these balances in 
microbiota impact both health and diabetic disease processes will be forthcoming.

It is important to note that previous research indicated that when mice do not have 
gut microbiota (germ-free mice) they also have lower body fat and insulin resistance 
than conventional mice, and the tolerance of insulin and glucose in germ-free mice 
was higher than that observed in routinely fed mice. This study also paved the way for 
the examination of many potential mechanisms in the past decade[29]. This was 
followed by a subsequent intestinal microflora transplantation experiment, and the 
germ-free mice that received transplanted gut microflora from ob/ob mice showed a 
significant increase in obesity with associated insulin resistance[30]. In subsequent 
weight-loss surgery experiments, the correlation between obesity and intestinal 
microflora was also demonstrated, with an observed increase in fat mass in germ-free 
mice transplanted with altered microbiome[31].

In a recent study, the Koch hypothesis was a useful method to examine the possible 
causal link between gut microflora and obesity[32]. These studies all started to 
substantiate the potential cause-and-effect relationship. However, the results of gut 
microbiological studies in mouse models cannot be simply directly translated into 
human comparisons and these pitfalls of direct comparisons need to be avoided until 
more evidence from human studies can be completed to evaluate any potential 
causality.

TRANSLATIONAL STUDIES AND EXPLORATIONS
Studies in mouse models support the hypothesis of potential causality between gut 
microbiota and the development of obesity and diabetes, but so far there has been little 
research completed related to causality in human subjects. The reproducibility of 
human experimental studies is also sometimes limited, which may also be influenced 
by variations in differences among study settings, geographic locations of sample 
preparation, as well as inconsistencies in data analysis. Moreover, there are some 
studies which have produced contradictory observations and data in human research. 
It is unclear, as to the root cause of this variation; however, it may be partially 
attributed to different dietary habits and environmental/cultural factors around the 
world as well as to different experimental methods used. However, future conclusions 
regarding human microflora connections to diabetes will require intervention studies 
to determine if there is a causal relationship with microflora as a driving factor for 
disease development. To date, fecal microbiota transplantation (FMT), antibiotic 
therapy, diet, and probiotic therapy are considered effective in various intervention 
studies[33].

Contemporary research shows that FMT has also been considered an effective tool 
to gain evidence of microbiome association and the causality of many diseases[34]. In a 
randomized, double-blind controlled experiment of insulin-resistant men, patients 
received gut microbiota from lean body mass donors, and analysis of the experimental 
results demonstrated that FMT improved insulin sensitivity and the number of 
butyrate-producing bacteria also increased significantly. However, not all patients 
receiving FMT from lean donors experienced the same beneficial effects, and more 
research is required for comparative analysis[35].

Metformin
Forslund et al[36] proposed that changes in gut microbiome in diabetic patients are not 
entirely endogenous and can be explained in a large part by metformin treatment. 
Upregulation of glucagon-like peptide-1 (GLP-1) and peroxisome proliferator-
activated receptors has been reported in healthy individuals and in T2D patients after 
metformin treatment. Metformin is also an insulin hormone regulator that has 
multiple effects in the intestine, such as increasing GLP-1 concentration in the intestine 
and extraction of glucose[37]. Metformin can reduce lipid absorption and inflammation 
caused by LPS, and can also reverse T2D-related changes because the abundance of 
several gut microbiota appears more similar to non-diabetic control levels when 
treated with metformin[36].

Recent studies have shown that metformin disrupts the microbial characteristics 
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associated with diabetes, including changes in the composition of the intestinal 
microflora[38]. A double-blind, placebo-controlled experiment of T2D patients showed 
that metformin altered the intestinal microflora balance in treatment-naive T2D 
patients, while germ-free mice had glucose tolerance after receiving metformin-
modified microbiota and showed improved results[39]. Metformin was used in a 
controlled experiment in mice fed a high-fat diet (HFD), and the results showed that 
the abundance of the mucin-degrading bacteria Akkermansia muciniphila (
A. muciniphila) was higher than that observed in the control group[40]. Similar 
conclusions have been found in other human studies[41]. A recent study analyzed the 
gut microbiome of Chinese T2D patients receiving different anti-diabetes drugs, and 
metformin recipients showed enrichment of Turicibacter and Spirochaete[42]. Another 
study used genomic analysis to analyze the composition of intestinal microflora in 
diabetic patients taking metformin. The results showed that A. muciniphila and several 
SCFAs-producing microbiota were low when compared to non-diabetic patients who 
had a relatively high abundance, and this study revealed some of the mechanism by 
which metformin changes the composition of intestinal microflora by enriching A. 
muciniphila and several SCFAs-producing microbiota[41].

Probiotics and intervention experiments
Probiotics appear to have a wide range of effects on the host, including improved 
regulation of insulin sensitivity, which may also be related to host metabolism 
mediated by the gut microbiome balance, by improving host metabolism composition, 
by reducing pro-inflammatory cytokines, and by reducing intestinal permeability[43]. In 
addition, probiotics have the potential to directly improve host metabolism and 
increase SCFAs production. Supplementing probiotics can also improve intestinal 
balance through the production of antibacterial compounds and competition with 
pathogens. Probiotics may also regulate the host's immune response, and activate 
specific gene activation and impact extra-intestine processes and disorders[44].

Numerous experiments in mouse models and human experiments have confirmed 
that multiple probiotics reduce insulin resistance by affecting gut microbiota and 
consequently, may influence health. Preliminary studies have shown that ingestion of 
fermented dairy products such as yogurt can transport lactic acid bacteria to the gut, 
alter gut microbial composition, inhibit the production of LPS, and increase the close 
connection of gut epithelial cells[45]. At the same time, a prospective, double-blind, 
randomized trial of 21 people with high glucose tolerance showed that oral 
administration of Lactobacillus reuteri also improved insulin secretion[46].

Recently, A. muciniphila has been frequently mentioned in current studies, and these 
studies show it reduces insulin resistance and reduces destruction of the intestinal 
barrier. A. muciniphila was reported to be less abundant in pre-diabetic patients, as 
well as among newly diagnosed T2D patients, suggesting that the low levels of A. 
muciniphila may be a biomarker for impaired glucose tolerance[47]. A recent study 
found that A. muciniphila-derived extracellular vesicles (AmEVs) can regulate gut 
permeability. The analysis of fecal samples revealed that AmEVs levels were low in 
T2D patients. Moreover, in a study of diabetic mice, the administration of AmEVs was 
associated with an observed decrease in fat content and an increase in glucose 
tolerance in diabetic mice[48]. Studies in mouse models have shown that 
supplementation with A. muciniphila can reduce low-grade inflammatory responses 
and metabolic disorders[49]. In another study of HFD mice, Akkermansia was reported to 
be associated with reduced LPS levels, which may be related to the ability of 
Akkermansia to maintain mucus layer thickness, which reduces intestinal permeability 
and LPS leakage[50]. A. muciniphila is a mucus-degrading bacterium, and its abundance 
is negatively correlated with glucose tolerance and fat accumulation in mouse models, 
but more evidence needs to be acquired in human studies to establish clear results[51]. 
The mechanism of decreasing insulin sensitivity of A. muciniphila may also be related 
to its membrane protein. Amuc_1100 is a special membrane protein isolated from 
A. muciniphila. Studies have shown that the special protein binds to Toll-like receptor 2 
(TLR2) and participates in the protective mechanism of the intestinal barrier[52].

Clinical experiments are increasing in frequency and new results are encouraging. A 
recent randomized, double-blind placebo trial of 40 insulin-resistant adults who were 
orally supplemented with A. muciniphila showed that it played a role in reducing 
biomarkers associated with inflammatory responses, these biomarkers have also been 
linked to diabetes. Experiments have also shown that A. muciniphila improves insulin 
sensitivity in patients[53].

However, the regulatory effects of probiotics on improving insulin sensitivity have 
population limitations and may not work for everyone. It is worth noting, for example, 
that two recent studies have shown that probiotics have no effect on gestational 
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diabetes as this disorder appears entirely hormonal[54,55].

METABOLIC PRODUCTS AFFECT THE UNDERLYING MECHANISMS
Obesity and T2D are often characterized by changes in intestinal microflora, 
inflammation, and disruption of the intestinal barrier. Chronic, low-grade 
inflammatory response is a common characteristic of T2D and obesity, and this 
systemic inflammatory response is also thought to drive insulin resistance. Previous 
research in mouse models has confirmed that the intestinal microflora is responsible 
for the increased inflammatory response in obese patients[28]. Furthermore, the gut 
microbiome can interact with dietary components and habits to influence host insulin 
sensitivity, intestinal permeability, glucose and fat metabolism[56]. The gut microbiota 
has long been regarded as a virtual organ of human metabolic activity[57], and its 
metabolic activity interacts with insulin resistance and diabetes. Gut microbial 
metabolites can affect host physiological functions. Metagenomic analysis showed that 
the intestinal microflora of T2D patients and healthy individuals is often markedly 
different, and the decline in butyrate-producing bacteria may be the cause of impaired 
glucose metabolism[58]. Modification of gut microbiota caused by external interventions 
such as diet leads to dysregulation and secretory changes of intestinal microbial 
metabolites, triggering a variety of potential mechanisms leading to insulin resistance 
and diabetes. At the same time, intestinal microflora can also affect metabolism and 
the potential risk of diabetes by changing the way they respond to dietary 
ingredients[12]. There are many ways to interact with the host and intestinal 
microorganisms, and in the past decade, many studies were conducted to understand 
mechanisms for the analysis and hypothesis of microflora involved in regulating 
insulin resistance, including LPS and SCFAs. Most of the studies have focused on 
triggering the markers of diabetes: A low-grade inflammatory response and an 
immune response, in which intestinal microflora and its metabolites play a key role[5].

LPS
LPS is reported to induce inflammatory cytokines through immune cells and 
adipocytes, causing low-grade inflammation, while acetic acid or butyrate can regulate 
the function of immune cells. According to Gram staining analysis, the two most 
common phyla in clinical classification belong to different groups, namely Gram-
positive bacteria and Gram-negative bacteria. LPS is derived from the cell wall of 
Gram-negative bacteria[59]. The LPS of gut microbiota binds to Toll-like receptor 4 
(TLR4), then it initiates a signal cascade with good characteristics, inducing the 
inflammatory response and the expression and secretion of cytokines[60]. The TLR4 
signaling pathway is considered to be one of the main triggers of the obesity-induced 
inflammatory response. Studies have shown that saturated fatty acids can cause 
insulin resistance and low-grade inflammation by activating the TLR4 signaling 
pathway[61]. At the same time, different studies have shown that TLR2 is also involved 
in the inflammatory response when the signaling cascade caused by LPS-LBP-TLR4 is 
activated[15]. The integrity of the gut barrier seems to play a crucial role in the 
development of obesity and T2D. The intestinal epithelium acts as a barrier, and its 
basic function is to limit the interaction between the intestinal microflora, the basic 
local immunity and other parts of the body[62]. The integrity of the gut barrier can 
maintain the functional balance of the mucosa, which can be maximally absorbed 
while maintaining an effective defense response[63]. Increased production of LPS by the 
intestinal microflora will also activate the endocannabinoid system. In addition, too 
much LPS may destroy the integrity of the intestinal barrier, and increase LPS 
absorption[64]. Animal studies have indicated that LPS is involved in the regulation of 
diabetes-related mechanisms, which can be characterized by the occurrence of 
increased inflammatory response[65].

SCFAs
SCFAs are composed of acetic acid, propionic acid and butyric acid. The deficiency in 
SCFAs is thought to be associated with T2D. Currently, studies have shown there is 
confirmation that SCFAs have a protective effect on the gut barrier, and result in a 
decrease in the number of butyrate-producing bacteria that may lead to changes in 
intestinal permeability. Studies have shown that butyrate can promote the expression 
of tight junction proteins and affect the mucosal barrier function[66], while acetate has 
also been reported to have a good performance in reducing mucosal permeability and 
enhancing the intestinal barrier function[67]. The SCFAs mechanism involves activation 
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of G proteins of the L-cells to promote the release of GLP-1 and peptide YY (PYY) to 
regulate glucose homeostasis, and at the same time, the SCFAs also effect the intestinal 
barrier, up-regulate 5'-AMP activated in muscle and liver tissues and the protein 
kinase signaling pathway, which are related to insulin resistance and inflammation, 
and oxidative stress may have a potential role[43].

Clinical studies have shown that dietary fiber promotes SCFAs production by gut 
microorganisms, while most other potential producers are relatively reduced in T2D 
patients[68]. In a recent study, intestinal microflora before and after dietary fiber 
interventions in volunteers were transplanted into germ-free mice. The study 
indicated the strong and significant association between gut microbiome and 
improved fiber glucose-induced host glycemic control. At the same time, the study 
proposed that when the SCFAs-producing bacteria promoted by dietary fiber have 
greater abundance and diversity, participants' glycated hemoglobin levels were 
improved[68]. On the other hand, SCFAs activate the vagal afferent neurons, which 
establish a connection between the intestinal information and the brain. This 
connection has been proved to play a role in controlling human feeding behavior, 
which also raises new considerations for the potential mechanism of SCFAs in 
increasing the risk of diabetes by controlling human feeding behavior and selection of 
dietary response[69].

In a recent study, genome-wide genotyping, intestinal genomic sequences, and fecal 
SCFAs level information from 952 normal blood glucose individuals were synthesized. 
A two-way Mendelian randomization (MR) analysis was used to assess causality, and 
the results showed that butyrate and propionate were proved to be involved in a 
causal relationship with diabetes, with oral glucose tolerance test showing a positive 
correlation between butyrate and improved insulin resistance and between 
malabsorption of propionic acid and the incidence of T2D, which offers evidence for 
the causal effect of gut microbiota on metabolic characteristics[70].

Butyrate
In a fecal bacteria transplantation experiment, insulin resistance patients received fecal 
microflora from insulin-sensitive donors, which resulted in a significant improvement 
in insulin sensitivity with increased abundance of butyrate-producing bacteria[71]. 
Through the analysis of human fecal samples, Faecalibacterium prausnitzii (F. prausnitzii) 
was found to be the main butyrate-producing bacteria. The abundance of F. prausnitzii 
and Roseburia in intestinal microflora of T2D patients is lower than that of healthy 
individuals, according to large scale metagenomic association studies in different 
populations[72]. Other studies have also demonstrated that the enrichment of F. 
prausnitzii can reduce inflammatory symptoms and insulin resistance. Roseburia spp. is 
also a butyrate-producing bacteria, which has a pivotal part in maintaining intestinal 
health and immune defense. It can regulate the dynamic balance of T cells by 
producing butyric acid[73]. Butyrate has a protective effect on the intestinal barrier by 
inducing the synthesis of mucin, it reduces the intestinal permeability and prevents 
bacteria from passing through. Butyrate also acts on the colonic epithelium, reducing 
oxidative stress and inflammation. In addition, the abundance of butyrate-producing 
bacteria is lower in prediabetic patients than in healthy people[27], which may indicate 
that the absence of butyrate-producing bacteria is one of the precursors of diabetes.

Bile acids and branched-chain amino acids
Bile acids are synthesized in the liver, and are transformed into secondary bile acids 
through the enzyme metabolism of gut microbiota[74]. In an experiment on rats, the 
intestinal microflora of oral bile acid treated rats was analyzed and showed there were 
significant changes in phylum levels and an increased ratio of Firmicutes/ 
Bacteroidetes[75]. Secondary bile acids are associated with the regulation of insulin 
sensitivity through activation of Farnesoid X receptor (FXR) and the Takeda G protein-
coupled receptor 5 (TGR5) receptors[76]. A study reported reduced genetic and diet-
induced insulin resistance in FXR knockout mice[77]. FXR activation induces increased 
secretion of fibroblast growth factor 19 (FGF19 in humans, FGF15 in rodents), which 
improves glucose tolerance and insulin resistance[78]. Activation of the TGR receptor 
stimulates intestinal L cells to secrete GLP-1, thereby improving insulin sensitivity[79].

Branched-chain amino acids (BCAA) are thought to be related to the risk of 
developing T2D and are considered to be predictive markers for T2D[80,81]. Several 
studies have reported decreasing plasma BCAA levels in T2D patients[82,83].

A large cohort study also demonstrated the strong association between BCAA and 
diabetes, as well as the potential role of amino acid metabolism in the early stage of 
diabetes[80]. Studies in rats have demonstrated that high-fat dietary supplementation 
with BCAA also leads to insulin resistance[84]. Human studies have confirmed the 
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conclusion that supplementing BCAA in diet increases the risk of T2D and insulin 
resistance[85]. In a recent study, patients with T2D received a short-term dietary 
supplement of BCAA, which showed reduced insulin secretion after a meal and 
changes in the composition of the intestinal microflora. The synthesis pathway of 
BCAA has been shown to be related to Prevotella copri (P. copri) and Bacteroides vulgatus 
in intestinal microflora[86]. Subsequent experiments showed increased BCAA levels and 
increased insulin resistance in germ-free mice transplanted with P. copri[86]. The 
mechanism of BCAA inducing insulin resistance has been proposed to be attributed to 
the increased oxidation of free fatty acids and the activation of phosphatidylinositol 3-
kinase (PI3K)[87]. However, the exact mechanism is still unclear and needs further 
study.

GUT MICROBIOTA AND T1D
Both T1D and T2D are associated with complex immune system and gut microbiome 
interactions. Gut microbiota disorders are associated with the pathogenesis of T1D, 
and the incidence of T1D is related to the interaction of gut microbiota and the innate 
immunity. Non-obese diabetic (NOD) mice have developed into the prototype model 
of T1D. The occurrence of T1D in NOD mice depends on the composition of gut 
microflora and LPS-mediated gut signals involving TLR4 and MyD88[88]. MyD88 is a 
key signal transduction factor in interleukin (IL)-1 and TLR signal transduction 
pathway. Its defect alters the composition of distal intestinal microflora. Studies have 
reported that NOD mice lacking MyD88 protein will not develop T1D[89]. In the follow-
up study, the gut microflora of MyD88-deficient NOD mice protected by diabetes was 
transferred to wild-type NOD female mice, which reduced the intensity of pancreatitis 
and significantly delayed the occurrence of autoimmune glycosuria[90].

The gut microflora of preclinical T1D patients is characterized by the dominance of 
Bacteroidetes, the lack of butyric acid-producing bacteria, and the decrease of bacterial 
and functional diversity. A study in which colonic bacteria released large amounts of 
acetic acid or butyrate by feeding NOD mice with specific foods found that the key 
characteristics of the disease were negatively correlated with the concentrations of 
butyrate and acetate in blood and feces[91]. The mechanism is believed to be that the 
acetate diet reduces the frequency of autoimmune T cells in lymphoid tissues, while 
butyrate diet increases the number and function of regulatory T cells[91]. Human 
studies have also shown that SCFAs are involved in the prevention mechanism of 
early-onset human T1D. A recent prospective study demonstrated the protective effect 
of SCFAs on early-onset human T1D. This study analyzed 10913 metagenomes from 
783 stool samples, and increased several bacterial pathways that promote SCFAs 
biosynthesis was found in healthy controls[92].

However, unlike T2D, transfer of the whole microbiota may not reduce the 
incidence of T1D. Recently, a study investigated the incidence of T1D in two NOD 
groups with different gut microbiota. Afterwards, 16S rRNA gene sequencing was 
used to analyze the gut microbiota with high or low incidence of T1D in the two 
groups of NOD mice, and the high incidence population was colonized with the 
microflora of the low incidence population. The results showed that the gut microbiota 
changed but the incidence of diabetes did not[88]. In another study, germ-free mice 
received fecal microflora from children with loss of β-cells, the result of which 
indicated that loss of β-cells after human T1D onset cannot be converted in germ-free 
NOD mice by FMT[93]. However, it is interesting that single symbiotic bacteria, such as 
A. muciniphila, can be used as probiotics to reduce the incidence of diabetes[88]. LPS also 
participates in the regulation of autoimmunity, most of which are Escherichia coli LPS 
involved in suppressing innate immune signals, but Bacteroides dorei LPS does not 
show significant improvement in T1D incidence[94]. In a recent study, intraperitoneal 
injection of Escherichia coli LPS in T1D mice showed a decrease in the incidence of T1D 
and an improved autoimmune response[94], while another study of NOD mice that 
received oral injection of Escherichia coli LPS also demonstrated an improvement in 
local immunity[95]. The concept that the pathogenesis of T1D is affected by gut 
microbiota has been well established in mouse models, but human studies on the 
microbiome in T1D are still few and far between to provide convincing evidence.

Gut microbial colonization in fetuses and infants can lead to dynamic changes in 
diversity, which may further affect disease susceptibility. A study of 33 infants with 
T1D genetic predisposition observed a significant decrease in alpha diversity among 
T1D progenitors, along with peaks in inflammatory organisms, gene function, serum 
and fecal metabolites, and this diversity difference occurred after serum conversion 
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and was determined to be specific to T1D[96].
The pre-clinical T1D patients' intestinal microflora is characterized by a dominant 

Bacteroidetes, with low stability and diversity of intestinal microflora. Studies have 
shown that these changes were found after the body produced auto-antibodies, which 
could indicate the role of gut microbiota in the autoimmune process, while the 
triggering mechanism of T1D disease was not determined[97]. There is growing 
evidence that islet autoimmunity is the first stage of T1D. Islet autoimmunity refers to 
the continuous existence of islet antigen autoantibodies, which usually begin in early 
childhood[98]. The role of gut microbiota in activating T1D is still a very vague concept, 
current studies have few observations or evidence to support the explanation that gut 
microbiota activates T1D, and most studies focus on the involvement of gut microbiota 
in the β-cell autoimmunity process. The causal relationship between intestinal 
microflora and T1D is still unclear, because most studies are only observational 
studies, and lack specific mechanical and intervention.

ORAL MICROBIOTA: ANOTHER FACTOR OF GUT MICROBIOME AND 
DIABETES
As the starting point of the digestive tract, the importance of oral microbiota and its 
association with the intestinal microbiota are received increasing attention. The oral 
cavity serves as an endogenous reservoir for gut microbial strains, and oral-fecal 
transmission is an important process that shapes the gastrointestinal microbiome in 
both health and disease[99]. Oral bacteria can translocate to the gut and lead to changes 
in its microbiota and possibly immune defense. It has been recognized that oral 
microorganisms may cause diseases mainly by a synergistic or cooperative way, and 
oral diseases (e.g., caries, periodontal disease) and T2D appear to be mutually 
correlated[100]. Studies have reported significant differences in oral microbiota between 
patients with T2D and non-diabetic patients. Oral microbial biomarkers have been 
identified for T2D screening, diagnosis and prognosis[101-103]. Recently, researchers 
provided a possible mechanism for the improved understanding of how diabetes 
increases the risk and severity of tooth loss. Diabetes may cause changes in oral 
bacterial composition, and the oral microbiota of diabetic mice was found to be more 
pathogenic in studies transplanting to germ-free mice[104]. These studies suggested that 
oral microbiota is an important factor in the development of diabetes, and on the other 
hand, oral microbiota is also an important avenue for diabetes to cause other oral or 
systemic complications. This new area of investigation may represent another pathway 
for the oral-gut axis to potentially cause an increase in diabetic disease and deserves 
more in-depth research moving forward.

CONCLUSION
The current research into gut microbiome in the field of diabetes has gradually moved 
step by step from the initial correlation studies, which proved a strong association, to 
exploring the causality and potential mechanisms (Figure 1). It is very clear that as 
science looks to the future this will be a very promising frontier. It can be foreseen that 
the gut microbiota will be used not only as a biomarker for diabetes, but also as a 
target for potential therapeutic treatments. Through the intervention of gut microflora, 
it will eventually be possible to achieve a more precise and personalized diagnosis as 
well as treatment of diabetes (Table 1). This is only going to be possible with a 
significant investment in extensive multicenter, longitudinal, interventional and 
double-blind randomized clinical trials. Additionally, these will yield an extensive 
knowledge base upon which data science and exploration can occur. The scientific 
research community must proceed with a sense of urgency, if these data are to be used 
to their fullest advantage, as many new discoveries are waiting just ahead.
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Table 1 A summary of products of gut microbiota and their mechanism of action

Gut microbiota 
products Source Mechanism Function Ref.

LPS The cell wall of Gram-
negative bacteria

Activates the receptor 
TLR4

Increase the occurrence of inflammatory response [59,60]

Acetate Activates the receptor 
FFAR2

Reduce the frequency of 
autoimmune T cells in 
lymphoid tissues

Propionate Activates the receptor 
FFAR2 and FFAR3

Promote intestinal 
gluconeogenesis

SCFAs

Butyrate

Carbohydrate 
fermentation

Activates the receptor 
FFAR3

Increase the number and 
function of regulatory T cells

FFAR2 and FFAR3 stimulate the 
release of GLP-1 and PYY, 
which improve insulin secretion.

[15,91,
105]

Bile acids The microbiota from 
host cholesterol

Bind to the receptor TGR5 
and FXR

Improve insulin sensitivity [74,76]

BCAA Prevotella copri and 
Bacteroides vulgatus

Activate PI3K and 
increase the oxidation of 
free fatty acids

Increase the risk of insulin resistance [86,87]

LPS: Lipopolysaccharide; TLR4: Toll-like receptor 4; SCFAs: Short-chain fatty acids; FFAR 2: Free fatty acid receptor 2; FFAR 3: Free fatty acid receptor 3; 
GLP-1: Glucagon-like peptide-1; PYY: Peptide YY; TGR5: Takeda G protein-coupled receptor 5; FXR: Farnesoid X receptor; BCAA: Branched-Chain Amino 
Acids; PI3K: Phosphatidylinositol 3-kinase.

Figure 1  The main mechanism of gut microbiota affecting insulin resistance and diabetes. Gut microbes are influenced by diet, genetics and 
medication, and common types of interventions in humans include fecal microbiota transplantation, metformin and probiotics. Lipopolysaccharide (LPS), short-chain 
fatty acids (SCFAs) and bile acids are major regulators of diabetes. LPS binds to the Toll-like receptor 4 to induce low-grade inflammation and insulin resistance. Bile 
acids are synthesized by the liver and transformed into secondary bile acids through the metabolism of gut microbiota. Secondary bile acids activate Farnesoid X 
receptor to induce increased secretion of fibroblast growth factor 15/19. Secondary bile acids activate Takeda G protein-coupled receptor to stimulate intestinal L cells 
to secrete glucagon-like peptide-1 (GLP-1). SCFAs activate L cells to promote the release of GLP-1 and peptide YY to increase insulin sensitivity. SCFAs also have a 
regulatory effect on T cells. LPS: Lipopolysaccharide; TLR4: Toll-like receptor 4; FXR: Farnesoid X receptor; FGF15/19: Fibroblast growth factor 15/19; TGR5: 
Takeda G protein-coupled receptor 5; PYY: Peptide YY; GLP-1: Glucagon-like peptide-1; SCFAs: Short-chain fatty acids; FFAR 2: Free fatty acid receptor 2; FFAR 3: 
Free fatty acid receptor 3; FMT: Fecal microbiota transplantation.
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