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Abstract
The presence of excess glucose in blood is regarded as a sweet hurt for patients 
with diabetes. Human serum albumin (HSA) is the most abundant protein in 
human plasma, which undergoes severe non-enzymatic glycation with glucose in 
patients with diabetes; this modifies the structure and function of HSA. 
Furthermore, the advanced glycation end products produced by glycated HSA 
can cause pathological damage to the human body through various signaling 
pathways, eventually leading to complications of diabetes. Many potential 
glycation sites on HSA have different degrees of sensitivity to glucose concen-
tration. This review provides a comprehensive assessment of the in vivo glycation 
sites of HSA; it also discusses the effects of glycation on the structure and function 
of HSA. Moreover, it addresses the relationship between HSA glycation and 
diabetes complications. Finally, it focuses on the value of non-enzymatic glycation 
of HSA in diabetes-related clinical applications.

Key Words: Diabetes mellitus; Human serum albumin; Non-enzymatic glycation; 
Advanced glycation end products; Glycation sites; Diabetic complications
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Core Tip: In the case of hyperglycemia state, the glycation level of albumin in plasma is 
significantly increased, which alters the structure and function of albumin. Herein we 
review the different glycation sites and functional changes of glycated albumin, and 
discuss the relationship between albumin glycation and diabetes complications. The 
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INTRODUCTION
Diabetes is a metabolic disease caused by an absolute or relative deficiency of insulin 
in the human body related to various pathogenic etiologies; it leads to metabolic 
disorders involving sugars, lipids, and proteins, with severe hyperglycemia as the 
main clinical manifestation[1,2]. Abnormally high glucose concentrations in patients 
with diabetes can cause proteins in the body to undergo non-enzymatic glycation (i.e., 
without the involvement of glycosyltransferase), which is the initiating factor of 
diabetes-related complications[3,4]. Human serum albumin (HSA) is a high-
abundance protein in plasma that is mainly responsible for binding and transporting 
various endogenous or exogenous substances (e.g., fatty acids, cholesterol, and many 
drugs); thus, it has a profound impact on the pharmacokinetic properties and efficacy 
of many drugs[5,6]. In patients with diabetes, HSA has a higher probability of 
glycation than other proteins, so it is regarded as an indicator of glycemic control[7]. 
Elevated glycation levels can lead to changes in the structure and function of HSA, 
thus influencing the normal physiological activities of the body[8]. The distinct distri-
butions of multiple glycation sites on the three-dimensional structure of HSA cause 
different degrees of glycation under a range of glucose concentrations. A non-
enzymatic glycation modification at the main drug-binding site substantially affects 
the ability of this region to bind drugs, thereby influencing the pharmacokinetic 
properties and efficacies of therapeutic drugs[9]. In this paper, seven aspects of HSA 
and its non-enzymatic glycation are reviewed.

EXPLANATION OF NON-ENZYMATIC GLYCATION AND ITS REACTION 
MECHANISM
Non-enzymatic glycation (sometimes described simply as glycation) is an important 
post-translational modification that does not involve the catalytic activity of glycosyl-
transferase[10]. The reaction mainly begins with a nucleophilic addition reaction 
between the carbonyl group of reducing sugar and the amino group of lysine, 
arginine, or the N-terminus of protein[11]. Fructose and lactose are important reducing 
sugars in food, while glucose is the main source of energy in the human body[12]. 
Therefore, glucose is the primary raw material for non-enzymatic glycation in the 
human body. The non-enzymatic glycation process is mainly divided into three steps: 
(1) The carbonyl group of a reducing sugar undergoes a condensation reaction with 
the amino group of the protein to form a thermodynamically unstable Schiff base; (2) 
The unstable Schiff base is converted into a relatively stable Amadori product[13,14]; 
and (3) Amadori product undergoes a series of spontaneous reactions (e.g., 
dehydration, oxidation, rearrangement, and isomerization) that can generate various 
carbonyl compounds, such as methylglyoxal, glyoxal, 3-deoxyglucosone, and 
dehydroascorbic acid[15]. These carbonyl compounds usually react more strongly than 
the original reducing sugars and can quickly react with proteins to form various 
irreversible heterostructures, which are regarded as advanced glycation end products 
(AGEs)[16].

GENERAL STRUCTURE AND FUNCTION OF HSA
HSA is a highly abundant protein in plasma; its concentration of approximately 35-50 
g/L comprises approximately 60% of the total plasma protein content[17]. It is mainly 
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responsible for the regulation of plasma osmotic pressure[18] and pH, and binding 
various endogenous or exogenous substances (e.g., fatty acids, cholesterol, and many 
drugs)[19]. Additionally, HSA serves as an antioxidant, mediates lipid metabolism, 
and sequesters toxins[17]. It is composed of 585 amino acids and 17 intramolecular 
disulfide bonds, with a molecular weight of 66437 kDa[8]. Crystal structure analysis 
has shown that HSA possesses a spherical "heart-shaped" structure comprising 
approximately 67% of α-helices, 23% of extended chains, and 10% of β-sheets. HSA 
contains three homology domains: I (amino acids 1-195), II (amino acids 196-383), and 
III (amino acids 384-585); each of these domains contains two subdomains (A and B). 
The A subdomains of both domains II and III constitute the major drug-binding 
regions of HSA; these are regarded as sites I (amino acids 196-292) and II (amino acids 
384-489)[20].

OVERVIEW OF HSA GLYCATION 
Due to the high abundance of HSA, its non-enzymatic glycation represents approx-
imately 80% of all glycation involving circulating proteins[21]. Amadori products are 
the main form of glycated HSA present in the body; their amounts increase as the 
blood glucose concentration increases in the blood of patients with diabetes[22]. The 
proportion of glycated HSA in healthy people is approximately 1%-10% and can 
increase by 2-3-fold in patients with diabetes[8,17]. Basic amino acids on HSA, 
specifically, 59 lysines and 24 arginines, are regarded as potential sites of glycation.

Glucose-induced modifications strongly influence HSA functional properties and 
have important implications for protein activity, folding, degradation, and cell 
function[23,24]. Although initially harmless, these modifications can become 
destructive and pathogenic when they become sufficiently widespread. Figure 1 shows 
the mechanism of the different effects of HSA glycation on the body. First, HSA 
glycation change the intrinsic conformations and binding efficiencies of its major 
binding regions, thereby changing the drug efficacy[25]. Second, the interactions of 
AGEs with their receptors [receptor for AGEs (RAGE)] or other macromolecules will 
activate various signaling pathways such as nuclear factor κB, as well as tissue damage 
and metabolic complications[26]. Third, glycated HSA can also stimulate platelet 
activation and aggregation, thereby enhancing thrombosis and inhibiting cellular 
uptake of glucose[27-31]. As the main drug-binding protein in plasma, HSA strongly 
influences drug absorption, distribution, excretion, and efficacy characteristics[32]. 
Changes in HSA function caused by the pathological environment can lead to 
unexpected types of toxicity. Drug molecules either combine with proteins and lipids 
in plasma or exist in a free (i.e., unbound) state in the aqueous blood environment[33]. 
Only free drug molecules interact with their intended targets to produce therapeutic 
effects[33]. In some instances, the excessive modification of HSA by non-enzymatic 
glycation can increase the free drug concentration, which can produce severe drug 
toxicity[34,35].

METHODS FOR ASSESSMENT OF GLYCATED HSA
Glycated HSA has been used as a complementary indicator to standard assays 
involving glycated hemoglobin (HbA1c) or real-time glucose monitoring to assess 
glycemic control in patients with diabetes[10]. Notably, real-time glucose monitoring 
only provides a single data point concerning the glycemic status of patients with 
diabetes, while HbA1c provides an assessment of glycemic control over 2-3 mo and 
may be influenced by chronic kidney disease in some patients[36,37]. In contrast, 
glycated HSA provides an assessment of glycemic control over 21 d and can be used as 
an indicator with intermediate duration (i.e., between real-time glucose monitoring 
and assessment of HbA1c)[38]. Many methods have been developed to detect and 
quantify glycated HSA with the aim of predicting or preventing potential complic-
ations; these methods mainly involve the determination of total glycated HSA, as well 
as the qualitative and quantitative assessment of HSA glycation sites.

Methods for assessment of total glycated HSA
Immunoassays such as enzyme-linked immunosorbent assays and radio-
immunoassays are often used to detect total glycated HSA[39,40]. In addition, other 
traditional methods for evaluation of glycated HSA include boronate affinity 
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Figure 1 Mechanism of different effects of human serum albumin glycation on the human body. AGEs: Advanced glycation end products; RAGE: 
Receptor for advanced glycation end products; HSA: Human serum albumin.

technology; thiobarbituric acid analysis; nitro-blue tetrazolium colorimetric analysis; 
phenylhydrazone formation reaction; fructosamine assays; ketoamine oxidase 
analysis; high-performance liquid chromatography (HPLC) analysis of furosine 
hydrolysis by strong acid; phenylborate-containing acrylamide gel electrophoresis; 
and the analysis of reductive activity following alkaline solution treatment, using 
redox indicators[41-48]. However, the above traditional methods have their own 
characteristics or drawbacks. For example, colorimetric analysis methods such as nitro-
blue tetrazolium and thiobarbituric acid have high unspecificity[49]; fructosamine 
assays provide higher specificity and reliability[50]; HPLC method has a high 
sensitivity[41]; phenylborate-containing acrylamide gel electrophoresis method is 
time-consuming and not suitable for clinical measurement[51]. In recent years, electro-
chemical quantitative analysis methods with high sensitivity and specificity have also 
been developed[52]. Intact protein analyses by high resolution mass spectrometry 
(MS) can also be used to determine the total glycation degree of HSA[53].

Methods for qualitative and quantitative analysis of glycation sites on HSA
HSA is rich in basic amino acids that can undergo glycation; thus, the analysis of 
glycation sites on HSA mainly involves the application of high-resolution MS[54]. A 
“Top-Down” approach combined with tandem MS is considered a standard method to 
accurately assess glycation sites[55-57]. In the “Top-Down” approach, HSA is first 
enriched and then digested with trypsin or Lys-C[7,10]. Because of glucose steric 
hindrance, peptides will have missed cleavage to form peptides containing glucose 
modifications[58]. Thus, glycated peptides exhibit a mass shift of 162 kDa in primary 
MS analysis, as well as a neutral loss in tandem MS analysis, and these findings can be 
used to locate the accurate glycation site[12]. Many types of MS with ionization modes 
of matrix assisted laser desorption ionization (MALDI) or electrospray ionization (e.g., 
IT-TOF, LTQ-Orbitrap, Q-TOF, hybrid linear ion trap-Orbitrap, and MALDI-TOF MS) 
have been used to identify glycation sites[10,12,55,59,60]. For the quantitative analysis 
of glycated peptides, many approaches have been developed thus far[12,53,55,61]. 
Frolov et al[55] used the integral peak area to compare amounts of glycated peptides. 
In another study, isotopic labeling with 13C was performed to label native proteins, 
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which were then digested with trypsin; the coupled 12C and 13C isotope peaks provided 
different types of quantitative information concerning the same glycated peptides[12]. 
Furthermore, 18O- and 16O-labeled H2O has been used to hydrolyze normal and 
glycated HSA, respectively. The 16O/18O ratios in each digested peptide were 
measured to compare glycation levels[61]. Furthermore, Qiu et al[53] have developed 
an isobaric tags for relative or absolute quantitation (iTRAQ) labeling technology 
combined with three-stage MS (MS3) method to compare glycation levels between 
healthy individuals and patients with diabetes. The iTRAQ-MS3 method makes good 
use of the neutral loss of glycated peptides under collision-induced dissociation in 
MS/MS, and high-energy collisional dissociation in MS3 fragmentation of the neutral 
loss ions were performed to precise quantification of the glycated peptides[53]. Table 1 
shows the glycation sites that have been identified through qualitative and 
quantitative analyses. Notably, specific basic residues in HSA are involved in glycation 
in vivo[62]. Sites K525, K199, and K351 were reportedly the predominant glycation 
sites on HSA[62,63]. Figure 2 shows the number of reports for each potential glycation 
sites. Sites K12, K64, K137, K199, K233, K262, K274, K317, K378, K414, K525, K545, and 
K574 have been more easily identified than other sites (reported ≥ 8 times), which 
suggests that they are more sensitive to changes in serum glucose concentrations[7]. 
The underlying mechanism may be that these sites are both distributed on the HSA 
surface and spatially located near basic amino acids[53]. Although K199 is not 
completely distributed on the HSA surface, its low pKa value and spatial proximity to 
basic amino acids make it suitable for glycation reactions[62]. In Figure 2, we can find 
that some sites (e.g., K20, K41, R145, R197, R209, K212, R222, R337, and K524) had 
never been identified in analyses of glycation modifications, indicating that they are 
insensitive to changes in glucose concentrations, and further explorations of the 
underlying mechanism are needed to determine their roles[64-71].

EFFECTS OF GLYCATION ON THE STRUCTURE AND FUNCTION OF HSA
Many functions of HSA can be attributed to its structural characteristics. The relative 
structural stability of HSA is mainly dependent on 17 intramolecular disulfide bonds
[50]. This structural flexibility enables HSA to bind to many molecules with distinct 
structures[72]. The affinities of various metabolites and drugs depend on the 
multistage structures of binding sites, which are distributed throughout the whole 
HSA molecule. The major drug-binding sites of HSA are known as sites I and II[20,35,
73]. Glycation contributes to various changes in HSA structure and function[74]. First, 
it enhances the molecular weight of HSA by attaching one or several glucose units to 
the basic amino acid residues of the protein. Second, glycation will change the original 
conformation of HSA. The intrinsic fluorescence of HSA is mainly derived from 
tryptophan-214 located in site I; its fluorescence is extremely sensitive to changes in 
the HSA environment[24,35,73]. Glycated sites located in or near Site I, such as K199, 
will alter the HSA structural microenvironment, thereby altering the intrinsic 
fluorescent characteristics of the protein. The relative fluorescence intensity of glycated 
HSA is reportedly reduced by 51% compared with normal HSA[75]. In addition to 
fluorescence chromatography, circular dichroism has also been used to study the 
effects of glycation on the structure of HSA[76]. Nakajou et al[75] used circular 
dichroism to compare different HSA molecules, which revealed that the secondary 
structure of HSA was altered after glycation with 50 mmol/L glucose. Third, the 
glycation of HSA will act as an oxidant and a pro-inflammatory mediator through 
different mechanisms[77].

Glycation-related changes in the structure of HSA can have varying effects on its 
abilities to bind a range of ligands. The main mechanisms that affect binding may 
involve steric hindrance of covalently bound glucose, the blockage of charged 
residues, or a combination of these two mechanisms[75]. Techniques used to study the 
binding affinity of glycated HSA include fluorescence spectroscopy, circular 
dichroism, HPLC with ultraviolet detection, and nuclear magnetic resonance[78-80]. 
Changes in the binding affinities of glycated HSA to various ligands are influenced by 
drug concentration and the degree of protein glycation[35,53,75] (see Table 2 [81-85]). 
Warfarin, tryptophan, and dansylsarcosine have often been used as probe compounds 
for HSA sites I and II in binding studies[75,76]. In vitro analysis has shown that HSA 
glycation with a range of glucose concentrations (2.5 mmol/L, 12.5 mmol/L, and 50 
mmol/L) enhanced the binding of warfarin, but weakened the binding of dansylsar-
cosine[75]. Another study showed that both ex vivo (purified from the plasma of 
patients with diabetes) and in vitro glycated HSA exhibited weakened binding 
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Table 1 Review of the in vivo glycation sites of human serum albumin

Ref. Glycation sites reported so far Analysis tools

Iberg et al[63] HSA from a diabetic patient: Lys-12, Lys-199, Lys-233, Lys-281, Lys-317, Lys-351, Lys-439, Lys-525, Lys-534 Amino acid analysis 
after hydrolysis in 
HCl

Garlick et al[64] Freshly purified human serum albumin: Lys-525 Cation exchange 
chromatography

Frolov et al[55] HSA from five T2DM patients: Lys-12, Lys-51, Lys-64, Lys-162, Lys-174, Lys-181, Lys-233, Lys-262, Lys-276, Lys-
351, Lys-359, Lys-378, Lys-414, Lys-475, Lys-525, Lys-545

Q-TOF-MS

Kisugi et al[56] HSA from a female diabetic patients: Lys-64/Lys-73, Lys-199, Lys-136/ Lys-137, Lys-233, Lys-274/Lys-276, Lys-
317, Lys-389, Lys-439, Lys-534, Lys-525

QSTAR Pulsar-i mass 
spectrometer

Frolov et al[57] HSA from 5 T2DM patients and 4 healthy subjects: Lys-12, Lys-511, Lys-641, Lys-73, Lys-93, Lys-137, Lys-162, 
Lys-1741, Lys-1811, Lys-205, Lys-2331, Lys-2621, Lys-274, Lys-351, Lys-3591, Lys-3781, Lys-414, Lys-475, Lys-525, 
Lys-5451, Lys-5571 (detected only in diabetic samples), Lys-574

Nano-ESI-LTQ 
Orbitrap XL MS with 
ETD

Bai et al[10] HSA from a healthy subject and a diabetic patient: Lys-64, Lys-93, Lys-190, Lys-199, Lys-205, Lys-225, Lys-233, 
Lys-240, Lys-262, Lys-274, Lys-281, Lys-317, Lys-323, Lys-351, Lys-372, Lys-378, Lys-413, Lys-432, Lys-475, Lys-
525, Lys-545, Lys-557, Lys-557/ Lys-560/ Lys-564, Lys-564, Lys-573/ Lys-574

IT-TOF-MS/MS

Zhang et al[7] HSA from clinical T2DM, IGT, NGT and 389 volunteers: Lys-12/ Lys-201, Arg-144, Arg-186/ Lys-1901, Arg-222/ 
Lys-225, Lys-240, Arg-336, Lys-372, Lys-414/ Arg-4281. (8 glucose sensitive sites)

Agilent MSD trap

Anguizola et al
[59]

HSA from individual clinical plasma samples: Arg-10, Lys-12, Arg-10/Lys-121, Arg-981, Arg-160, Lys-162, Lys-
190, Lys-199, Lys-276, Lys-281, Lys-276/Lys-2811, Lys-2861, Lys-313, Lys-317, Lys-372, Lys-428, Lys-432, Arg-484, 
Arg-485, Arg-484/ Arg-4851, Lys-545, Lys-557, Lys-560, Lys-5641, Lys-573/ Lys-5741

MALDI-TOF-MS

Priego-Capote 
et al[12]

HSA from human Plasma: Lys-64, Lys-73, Lys-93, Lys-106, Lys-136, Lys-137, Lys-159, Lys-174, Lys-181, Lys-195, 
Arg-218, Lys-233, Lys -240, Lys-262, Lys-274, Lys-323, Lys-359, Lys-372, Lys-378, Lys-389, Lys -402, Lys-413, Lys-
432, Lys-436, Lys-439, Lys-444, Lys-466, Arg-472, Lys-475, Lys-500, Lys-519, Lys -525, Lys-573

Hybrid linear ion 
trap-Orbitrap MS

Korwar et al
[65]

HSA from clinical plasma samples: Lys-12, Lys -641, Lys -136, Lys-137, Lys-1591, Lys-4021, Lys-4141, Lys-4661, 
Lys-5251

Hybrid quadruple Q-
Exactive Orbitrap MS

Zhang et al[60] HSA from 12 NGT, 11 IGT and 8 T2DM: Lys-41, Lys-12, Lys-51, Lys-641, Lys-73, Lys-136, Lys-137, Lys-159, Lys-
162, Lys-1811, Lys-1901, Lys-195, Lys-1991, Lys-205, Lys-225, Lys-2331, Lys-262, Lys-274, Lys-276, Lys-3171, Lys-
351, Lys-378, Lys-414, Lys-4321, Lys-4361, Lys-475, Lys-525, Lys-538, Lys-545, Lys-5621, Lys-573, Lys-574

Ion Trap LC-MS

Miyamoto et al
[66]

HSA from 8 diabetic patients: Lys-51, Lys-64/ Lys-73, Lys-136/ Lys-137, Lys-159/ Lys-162, Lys-190/ Lys-195/ 
Lys-199/ Lys-205, Lys-233, Lys-262, Lys-274/ Lys-276, Lys-313/ Lys-317, Lys-351, Lys-378/ Lys-389, Lys-432/ 
Lys-436/ Lys-439, Lys-525, Lys-534/ Lys -536/ Lys-538/ Lys-541, Lys -545, Lys-573/ Lys-574

QSTAR Pulsar-i MS

Brede et al[67] HSA from plasma: Lys-12, Lys-137, Lys-414, Lys-5251 Q-TOF MS

Spiller et al[68] HSA from 48 T2DM patients and 48 non-diabetic: Lys-64, Lys-73, Lys-93, Lys-174, Lys-181, Lys-233, Lys-262, 
Lys-359, Lys-378, Lys-414, Lys-525, Lys-545, Lys-574

QTRAP 4000

Spiller et al[69] HSA from 5 T2DM patients and 5 non-diabetic individuals: Lys-641, Lys-731, Lys-1811, Lys-2621, Lys-3781, Lys-
5741

ESI-QqLIT-MS (4000

Takátsy et al
[70]

HSA from diabetic patients and healthy individuals: Arg-81, Lys-93, Arg-98, Lys-106, Arg-114, Lys-190, Lys-199, 
Arg-218, Arg-257, Lys-276, Lys-317, Arg -348, Lys-372, Lys-378, Lys-389, Lys-413, Lys-436, Lys-439, Lys-444, Lys-
466, Arg-484, Arg-485, Lys-500, Lys-519, Arg-521, Lys-564, Lys-536, Lys-538, Arg-445, Lys-541, Lys-560, Lys-573

MALDI TOF MS

Greifenhagen 
et al[71]

HSA from 5 diabetic patients: Lys-12, Lys-64, Lys-137, Lys-190, Lys-199, Lys-274, Lys-276, Lys-525 ESI-Orbitrap-MS

Qiu et al[53] HSA from 4 diabetic patients and 4 healthy subjects: Lys-4, Lys-12, Lys-511, Lys-641, Lys-73, Arg-81, Lys-931, 
Arg-98, Arg-117, Lys-136, Lys-137, Lys-1621, Lys-174, Lys-181, Arg-186, Lys-1991, Lys-205, Lys-2331, Lys-240, 
Arg-257, Lys-2621, Lys-274, Lys-276, Lys-281, Lys-286, Lys-3131, Lys-317, Lys-3231, Lys-351, Lys-359, Lys-372, Lys 
-3781, Lys-389, Lys-4021, Lys-410, Lys-4141, Lys-436, Lys-439, Lys-4661, Lys-4751, Lys-519, Lys-5251, Lys-538, Lys-
541, Lys-5451, Lys-5571, Lys-5641, Lys-573, Lys-5741

LTQ Orbitrap Velos 
Pro MS

1Represents glycation sites detected at higher quantities in diabetic patients than in healthy individuals. HSA: Human serum albumin; ESI: Electrospray 
ionization; NGT: Normal glucose tolerance; T2DM: Type 2 diabetes mellitus; MS: Mass spectrometry.

interactions with warfarin[35]. Joseph et al[76] proved that the binding of L-tryptophan 
was enhanced by 4.7-5.8 fold under glycation conditions similar to those in patients 
with diabetes, although the binding of warfarin remained unchanged. Notably, the 
above contradictory results concerning warfarin were obtained under relatively 
nonphysiological conditions in vitro. Qiu et al[53] found that the affinity of warfarin for 
HSA was greater in plasma from patients with diabetes. The level of free warfarin was 
also reduced in subsequent pharmacokinetic experiments[53]. Furthermore, a 
retrospective clinical study revealed that the anticoagulant effect of warfarin was 
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Table 2 Effects of glycation on the binding of human serum albumin to various ligands

Ref. Ligands In vivo/ vitro/ex 
vivo Glycation level of HSA Binding 

affinity

Nakajou et al[75] Warfarin In vitro HSA glycated with 2.5 mmol/L, 12.5 mmol/L, and 50 mmol/L glucose ↑

Baraka-Vidot et al[35] Warfarin In vitro and Ex vivo HSA purified from blood and HSA glycated with 25 mmol/L or 100 
mmol/L glucose

↓

Joseph et al[76] Warfarin In vitro HSA glycated with 0.5 mol/L glucose →

Qiu et al[53] Warfarin In vivo HSA from diabetic patients ↑

Joseph et al[76] Tryptophan In vitro HSA glycated with 0.5 mol/L glucose ↑4.7-5.8-fold

Nakajou et al[75] Dansylsarcosine In vitro HSA glycated with 2.5 mmol/L, 12.5 mmol/L, and 50 mmol/L glucose ↓

Qiu et al[53] Heparin In vitro and in vivo HSA from diabetic patients →

Guerin-Dubourg et al
[81]

Copper In vivo HSA purified from diabetic patients and control individuals ↓16%

Koizumi et al[82] Furosemide In vitro Prepared from HSA, and commercial HSA ↓

Okabe et al[83] Phenylbutazone In vitro Each mole of HSA contains 1.94 moles of glucose ↓

Yamazaki et al[84] Fatty acids In vitro HSA glycated with 100 mmol/L glucose ↓

Karp et al[85] Diazepam In vitro HSA glycated with 140 mmol/L glucose →

Karp et al[85] Bilirubin In vitro HSA glycated with 140 mmol/L glucose ↓30%

Okabe et al[83] Ibuprofen In vitro Each mole of HSA contains 1.94 moles of glucose ↓20

Okabe et al[83] Dansylproline In vitro Each mole of HSA contains 1.94 moles of glucose ↓25%

Okabe et al[83] Flufenamic acid In vitro Each mole of HSA contains 1.94 moles of glucose ↓

Koizumi et al[82] Naproxen In vitro Prepared from HSA, and commercial HSA →

“→”: No change; “↑”: Increase; “↓”: Decrease; HSA: Human serum albumin.

Figure 2 Number of reports for each potential glycation site. Dotted line represents that the number of reports reaches 8 times.

reduced in patients with diabetes[53]. These in vivo findings may provide better 
reference data with respect to warfarin binding.

HSA GLYCATION AND COMPLICATIONS
Chronic hyperglycemia is the primary condition associated with complications of 
diabetes. Hyperglycemia leads to excessive irreversible accumulation of AGEs on 
long-lived proteins, such as HSA and HbA1c. The degrees and durations of protein 
exposure to abnormally high levels of glucose are closely related to the degrees and 
rates of progression of nephropathy, stroke, neuropathy, retinopathy, and 
cardiovascular disease[86]. There remain questions concerning how the accumulation 
of AGEs promotes the development of these lesions. There are three main 
consequences of the formation of AGEs: (1) Cross-linking of various extracellular 
proteins[87]; (2) Changes in cell–matrix interactions[88,89]; and (3) Changes in DNA 
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structure and function[90]. HSA is the main protein in blood circulation; patients with 
diabetes exhibit significantly greater levels of the HSA-related AGEs[91]. Interactions 
between AGEs and RAGEs alter cellular signals and gene expression, thereby 
enhancing the secretion of pro-inflammatory molecules and leading to oxidative stress 
reactions in patients with diabetes[92].

HSA GLYCATION AND CLINICAL APPLICATIONS
Glycation is a continuous process in the human body. Elevated levels of glycated 
proteins are associated with elevated levels of blood glucose in patients with diabetes. 
Thus, there is considerable interest in measuring the glycation levels in patients with 
diabetes; these data can be used for diagnosis, treatment, and prognosis[93,94]. For 
many years, HbA1c has been used for the clinical monitoring of long-term blood 
glucose control[95]. However, HbA1c monitoring has some limitations. Because the 
lifespan of HbA1c is approximately 3 mo, rapid changes in serum glucose status (e.g., 
treatment response) are not clearly reflected in HbA1c measurements[96,97]. In some 
individuals, an abnormally elevated HbA1c value may be recorded, such as patients 
with hemoglobin variants[96,98], patients with rapid changes in glucose control, 
patients with iron-deficiency anemia, patients with HIV, or pregnant patients[99-102]. 
In patients with reduced erythrocyte lifespan, such as those with liver cirrhosis[103], 
hemolytic anemia[104], chronic kidney disease, and/or hemorrhage, the recorded 
values of HbA1c will decrease[105,106]. HSA glycation has been suggested as an 
alternative clinical indicator to circumvent many limitations of HbA1c assessment. The 
level of HSA glycation is not affected by hemoglobin genetic variations or changes in 
erythrocyte lifespan[107]. Compared with HbA1c, glycated HSA has a much shorter 
half-life and is therefore more sensitive to changes in glycemic status. The levels of 
glycated HSA reflect the average plasma glucose level over a 2-wk interval[94,108]. 
Therefore, glycated HSA is a more dynamic indicator of glycemic control, which can 
be used to evaluate the drug treatment efficacy and short-term changes in glucose 
control. In patients with pre-diabetes, the total degree of HSA glycation does not 
provide all possible information regarding short-term fluctuations in plasma glucose 
concentrations because of the high number of possible glycation sites. Therefore, the 
comparison of the glycation degree of specific HSA sites sensitive to glucose (e.g., K525 
and K199) can be used as clinical biomarkers for the occurrence and early diagnosis of 
diabetes[53,65]. However, it is noteworthy that glycated HSA levels are also influenced 
by hypoalbuminemic conditions such as malnutrition, nephrotic syndrome, liver 
cirrhosis, or other liver and renal disease[109]. Further verification is needed to 
determine whether and how glycated albumin can be used as an indicator of 
hyperglycemia under these conditions.

CONCLUSION
Hyperglycemia leads to enhanced HSA glycation in patients with diabetes; this highly 
non-enzymatic glycation at multiple sites can impact the function of HSA as a drug 
carrier. In this review, we have presented a detailed summary of non-enzymatic 
glycation sites identified thus far in vivo; we have also discussed the impacts of non-
enzymatic glycation on the three-dimensional structure and biological functions of 
HSA. It would be useful to determine how modifications in HSA glycation affect drug 
treatments for a range of diseases. Glycated HSA may serve as a new clinical indicator 
for assessment of glycemic control, potentially as an alternative for the long-term 
indicator HbA1c. Additional in vivo studies are needed to determine the effects of 
glycated HSA on combinations and efficacies of various drugs, thereby providing 
reference data to aid in the guidance of clinical treatment for patients with diabetes.
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