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Abstract
The granin glycoprotein family consists of nine acidic proteins; chromogranin A 
(CgA), chromogranin B (CgB), and secretogranin II–VIII. They are produced by a 
wide range of neuronal, neuroendocrine, and endocrine cells throughout the 
human body. Their major intracellular function is to sort peptides and proteins 
into secretory granules, but their cleavage products also take part in the 
extracellular regulation of diverse biological processes. The contribution of 
granins to carbohydrate metabolism and diabetes mellitus is a recent research 
area. CgA is associated with glucose homeostasis and the progression of type 1 
diabetes. WE-14, CgA10-19, and CgA43-52 are peptide derivates of CgA, and act as 
CD4+ or CD8+ autoantigens in type 1 diabetes, whereas pancreastatin (PST) and 
catestatin have regulatory effects in carbohydrate metabolism. Furthermore, PST 
is related to gestational and type 2 diabetes. CgB has a crucial role in physiological 
insulin secretion. Secretogranins II and III have angiogenic activity in diabetic 
retinopathy (DR), and are novel targets in recent DR studies. Ongoing studies are 
beginning to investigate the potential use of granin derivatives as drugs to treat 
diabetes based on the divergent relationships between granins and different types 
of diabetes.

Key Words: Granin; Chromogranin A; Chromogranin B; Diabetes Mellitus; Mice; Inbred 
nonobese diabetic; Secretogranin III
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Core Tip: Granin glycoproteins are secretory proteins that are widely produced by 
neuronal, neuroendocrine, and endocrine cells throughout the human body. Recent data 
have shown that the granin proteins chromogranin A and B, and secretogranin II and 
III play a role in carbohydrate metabolism and in the pathophysiology of diabetes 
mellitus. In this review, the current state of knowledge concerning the relationship 
between granin proteins, diabetes and glucose homeostasis is discussed in detail, 
including several ongoing studies investigating granin-based drug therapies of future 
promise in diabetes care.
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INTRODUCTION
Neuronal, neuroendocrine, and endocrine cells are involved in the production of many 
peptides and proteins with diverse functions. During the secretion of these biologically 
active molecules, secretory proteins play an important role in the protein sorting that 
takes place in the secretory vesicles of the Golgi apparatus. The members belonging to 
the granin glycoprotein family, chromogranin A (CgA), chromogranin B (CgB), and 
secretogranin (Sg) II–VIII (Table 1), participate in protein sorting[1]. Granin proteins 
all have an acidic pH, calcium-binding ability, and are produced throughout the body 
by several types of neuronal-, neuroendocrine-, and endocrine cells[1-4]. In addition to 
protein sorting, secondary functions that are related mainly to the cleavage products of 
the granin proteins (Table 2) have emerged during evolution. Some of these 
biologically active products have been described as participating in pathogen control, 
psychiatric disorders, and metabolic disorders such as diabetes mellitus[1,3,5-7]. The 
function of many other granin protein products is still unclear. The available literature 
on granin proteins and their cleavage products is discussed in this review, focusing on 
their relationships to diabetes mellitus and carbohydrate metabolism. The in-depth 
presentation of the biochemistry, genetics, distribution, and function of the various 
granin proteins is not the aim of the current review, but publications on those subjects 
are available[1,8-14].

THE ROLE OF GRANINS IN THE SECRETION OF INSULIN
The presence of CgA[15], CgB[16-18], SgII[15] and SgVII (VGF, non-acronymic)[19,20] 
as secretory proteins has been described in animal and cellular models of pancreatic 
islets. Pancreatic beta cells of chromogranin A gene (CHGA) knockout (KO) mice were 
reported to have compensatory overexpression of CgB and SgII, with simultaneous 
insulin overproduction and fewer immature secretory granules. The CgA cleavage 
products betagranin (CgA1-128)[21], vasostatin-I (CgA1-76) and catestatin (CST, CgA352-372) 
are found in beta cells; pancreastatin (PST, CgA250-301) is found in alpha cells[15,22], 
indicating different protein cleavage products mediated by different endoproteases
[14].

Betagranin was reported to have a negative effect on glucose-stimulated insulin 
secretion (GSIS). Betagranin treatment of murine insulinoma cell lines was found to 
inhibit insulin secretion in a dose-dependent manner that was associated with 
dysfunction of the calcium response[21]. Normal cell function was restored when 
betagranin was removed. Antibodies against CgA or PST have no effect on insulin 
secretion, while the partial absence of CgB results in increased proinsulin synthesis
[23]. Colocalization of insulin and CgB was confirmed in the trans-Golgi network of 
human and murine islet cells from healthy and insulinoma tissue[17]. Glucose-
stimulated insulin, glucagon, and somatostatin secretion were decreased in chromo-
granin B gene (CHGB) KO mice in parallel with a decrease in the amount of circulating 
insulin and a slight decrease in renal glucose clearance. The insulin sensitivity of 
CHGB KO mice did not differ from that of wild-type mice[18]. Proinsulin processing 
was slowed in the absence of CgB. The density of proinsulin-containing secretory 

https://www.wjgnet.com/1948-9358/full/v12/i7/1081.htm
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Table 1 Names, loci, and molecular masses of granin proteins[1,2]

Name Synonym Locus Number of amino acids and calculated molecular 
mass (kDa)

Chromogranin A Parathyroid secretory protein 1 14q32.12 439 (49 kDa)

Chromogranin B Secretogranin I 20pter-p12 657 (77 kDa)

Secretogranin II Chromogranin C 2q35-q36 587 (68 kDa)

Secretogranin III – 15q21 449 (51 kDa)

HISL-191 Secretogranin IV – –

7B2 Secretogranin V 15q13-q14 186 (21 kDa)

NESP55 Secretogranin VI 20q13.2 201 (23 kDa)

VGF Secretogranin VII 7q22.1 593 (65 kDa)

proSAAS Secretogranin VIII Xp11.23 227 (24 kDa)

1HISL-19 has only been confirmed with monoclonal antibodies; in vivo isolation has not been successful to date[2,87]. NESP55: Neuroendocrine secretory 
protein with an apparent molecular weight of 55,000 Daltons.

granules was altered, causing significantly slower detachment of these granules from 
the trans-Golgi network, which ultimately delayed the translocation of the granules to 
the plasma membrane. Although the function of cell surface receptors was not 
different from that of wild-type mice, the initial, rapid phase of GSIS was virtually 
absent in CHGB KO mice. The loss of rapid GSIS was compensated by increased basal 
insulin production, and the beta cells of CHGB KO mice stored and secreted twice as 
much proinsulin than the beta cells of wild-type mice[16,18]. These observations, seen 
in KO mice, are similar to the characteristics of type 2 diabetes mellitus (T2DM) in 
humans[18]. Stimulus-coupled insulin secretion was decreased in VGF (the gene that 
encodes SgVII protein) KO mice. An impairment of the second phase of insulin 
secretion was described, and secretory granules detached significantly more slowly 
from the trans-Golgi network, and was accompanied by an increase in the proinsulin 
level[20], similar to the effect observed in the case of CgB.

GRANIN PEPTIDES IN GLUCOSE HOMEOSTASIS
Pancreastatin
PST negatively regulates insulin sensitivity and glucose homeostasis. PST-mediated 
inhibition of insulin secretion promotes a high blood glucose level (hyperglycemia). 
Moreover, PST can: (1) Reduce the hepatic glucose uptake through inhibiting the 
insulin-stimulated glycogenesis in primary hepatocytes; (2) Decrease the insulin-
stimulated synthesis of lipids; and (3) Regulate the expression and secretion of leptin 
in adipocytes, which also increases blood glucose levels[24-27]. G-protein-activated 
phospholipase C β3 isoforms[5,28-30] or activation of nitric oxide pathways[31-33] in 
hepatocytes inhibit insulin but only the former pathway has been described in 
adipocytes[5,30]. CHGA KO mice are obese, have hypertension, diminished baroreflex 
sensitivity, increased plasma catecholamine and adipokine levels, and lower 
interleukin-6 and lipid levels compared with wild-type animals[32,34]. A normal 
blood glucose level (euglycemia) is maintained by increased liver insulin sensitivity in 
CHGA KO mice, which is supported by the abundance of hepatic phosphoen-
olpyruvate carboxykinase (PEPC) and glucose-6-phosphatase (G6Pase) mRNAs. 
CHGA KO mice treated with PST are euglycemic, even in the absence of PEPC and 
G6Pase mRNAs[32].

The PST inhibitor peptide-8 (PSTi8)[35-39] reduces the effects of PST-induced 
insulin resistance. PSTi8 increases translocation of glucose transporter type 4 to the cell 
surface in hepatocytes and adipocytes, thereby promoting glucose uptake. It also 
reduces hepatic glucose release, lipid deposition, dexamethasone-induced oxidative 
stress; stimulates hepatocellular energy levels, and enhances the activity of glucose 
response protein 78[37,40]. PSTi8 treatment reduces lipogenesis, enhances fatty acid 
oxidation, improves glucose homeostasis via increased glycogenesis and glycolysis, 
and decreases gluconeogenesis in streptozotocin-induced diabetic mice[35,38]. The 
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Table 2 Cleavage products of granin proteins[1,3,88-90]

Granin protein Cleavage product

Vasostatin-I (CgA1-76) and -II (CgA1-115)

Betagranin (CgA1-128)

CgA10-19 and CgA43-52
1

Chromofungin (CgA47-66)

Vasoconstriction-inhibiting factor (CgA79-113)

Chromostatin (CgA124-143)

Chromacin (CgA173-194)

Pancreastatin (CgA250-301)
1

WE-14 (CgA324-337)1

Cateslitin (CgA344-358)

Catestatin (CgA352-372)
1

Parastatin (CgA357-428)

GE-25 (CgA367-391)

CgA1

Serpinin (CgA417-442)

CgB1-41

GAWK (CgB420-493)

BAM-1745 (CgB579-593)

PE-11 (CgB555-565)

Secretolytin (CgB647-657)

CgB1

43kDa large CgB fragment

Secretoneurin (conjugate of SgII133-151 and SgII154-186)

EM66 (66 amino acid long)

SgII1

Manserin (SgII497-536)

SgIII1 –2

HISL-19 –2

7B2 –2

LSAL (NESP55159-162)NESP55

GAIPIRRH (NESP55234-241)

Neuroendocrine regulatory peptide-1 (VGF281-306)

Neuroendocrine regulatory peptide-2 (VGF310-347)

NAPP129 or VGF20 (VGF417-617)

TPGH (VGF422-430)

TLQP-21 (VGF556-576)

TLQP-62 or VGF10 (VGF556-617)

HHPD-41 (VGF576-617)

AQEE-11 (VGF588-599)

AQEE-30 (VGF588-617)

VGF

LQEQ-19 (VGF599-617)

KEP (proSAAS1-7)

Big SAAS (proSAAS1-26)

Little SAAS (proSAAS9-26)

proSAAS
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GAV

PEN (proSAAS188-209)

PEN-LEN (proSAAS188-227)

Little LEN (proSAAS212-221)

Big LEN (proSAAS212-227)

1Granins and their cleavage products involved in carbohydrate metabolism.
2No cleavage product described to date. CgA: Chromogranin A; CgB: Chromogranin B; NESP55: Neuroendocrine secretory protein with an apparent 
molecular weight of 55000 Daltons; SgII: Secretogranin II.

insulin-sensitizing effect of PSTi8 is equivalent to that of metformin, one of the most 
commonly used oral antidiabetic agents. Therefore, its potential role as a new 
antidiabetic agent is an ongoing area of research[39].

Catestatin
CST is indirectly associated with diabetes and carbohydrate metabolism by its effects 
on hypertension, obesity, and metabolic syndrome, and its possible use as a future 
antihypertensive or antiobesity agent has been considered[41]. External administration 
of CST reduces the bodyweight of obese CHGA KO mice[42] and can normalize 
catecholamine levels and baroreceptor function[34] to a state similar to that of wild-
type mice. The obesity-reducing effects of CST result from enhancement of leptin 
receptor signaling and inhibition of alpha2-adrenergic receptor signaling[43]. CHGA 
KO mice fed a high-fat diet have elevated insulin levels. Treatment with external CST 
normalizes the glucose metabolism of hepatocytes and improves the insulin sensitivity 
of the animals[44]. Obese children and adolescents have a significantly lower serum 
CST levels than those in healthy controls. In a cohort of obese children, those with any 
symptoms of metabolic syndrome or increased cardiovascular risk had the lowest 
serum CST levels[45].

ROLES OF GRANINS IN DIABETES MELLITUS
Diabetes mellitus is one of the most prevalent diseases in our time. Recent estimates of 
the prevalence range from 4% to 10%, and there are more than 460 million diabetes 
patients worldwide. Approximately 10% of diabetes patients have type 1 diabetes 
mellitus (T1DM); most of the remaining patients have T2DM[46]. The former has an 
autoimmune pathomechanism; the latter is a consequence of insulin resistance. 
Furthermore, T1DM develops mostly in younger people, while T2DM develops at later 
ages[47,48]. Although our knowledge on the pathomechanism of diabetes is very 
extensive, new relationships between diabetes and molecules involved in the 
development or subsequent progression of the disease is still a recent and popular area 
of research[49]. Examples of these recently described molecules include CgA, CgB, 
SgII, and secretogranin III (SgIII), the CgA cleavage peptide derivatives PST, WE-14, 
and small N-terminal fragments CgA10-19 and CgA43-52.

Chromogranin A
CgA in T1DM
The role of CgA in the development of T1DM has been demonstrated by the absence of 
T1DM in CHGA KO nonobese diabetic (NOD) mice, in contrast to wild-type NOD 
mice (a TIDM animal model system)[50]. Furthermore, insulitis, the inflammation of 
the pancreatic islets, occurred in only one-fifth of CHGA KO NOD mice, but did occur 
in all wild-type NOD mice. Insulitis was accompanied by significantly decreased 
numbers of infiltrating CD4+ and CD8+ T cells in CHGA KO NOD mice. It should be 
noted that it was not possible to investigate more accurately whether the absence of 
the entire CgA molecule or any of its cleavage products prevented the development of 
T1DM in the CHGA KO NOD mouse model.

CgA has been reported to be elevated in approximately 20% of patients with T1DM 
when examined many years after the onset of the disease[51]. An even greater 
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prevalence of high CgA levels was found in another study[52]. A positive correlation 
has been found between serum CgA and glycated hemoglobin (HbA1C) levels, with a 
slight but steady elevation of CgA with the increased duration of T1DM, indicating 
that CgA does not only contribute to T1DM pathogenesis, but also to disease 
progression[51].

Blood CgA level is elevated in enterochromaffin-like (ECL) cell hyperplasia, 
autoimmune gastritis, and in gastrointestinal neuroendocrine tumors[53,54], which are 
more frequent in T1DM patients than in the healthy population[53,55]. A significant 
proportion of patients with a high CgA level have ECL cell hyperplasia[51,55]; hence 
early detection of these conditions is possible with regular serum CgA level 
measurements[51,56]. There is a possible connection between ECL cell hyperplasia and 
high HbA1C in T1DM patients with high CgA. It is known from animal experiments 
that 70%-90% of the circulating PST is produced by gastric ECL cells[57], and PST is 
actively involved in the regulation of glucose homeostasis[5]. The worsened metabolic 
status and high CgA levels may result from the hyperplasia of ECL cells, which can be 
further impaired by the appearance of more advanced clinical symptoms and 
comorbidities.

CgA cleavage products in T1DM
The CgA cleavage products WE-14 (CgA324-337)[7], CgA10-19, and CgA43-52[58] are newly 
discovered autoantigens involved in the pathogenesis of T1DM. Embryonic medullary 
thymic epithelial cells do not contain CgA mRNA, which may serve as a cause for the 
insufficient deletion of CgA-reactive T cells[7,59] and autoimmunity against CgA-
producing pancreatic beta cells. Among the aforementioned peptide products, CgA10-19, 
and CgA43-52 induced CD8+ T cell proliferation and displayed increased cytotoxic 
activity in both human T1DM patients and NOD mice[58]. In contrast, WE-14 has been 
shown to have CD4+ T cell autoreactivity[7] that does not occur in other gastro-entero-
pancreatic tissues, except for pancreatic beta cells[60]. WE-14 presumably interacts 
with the major histocompatibility complex (MHC) class II antigens outside of the 
normal peptide binding grooves of MHC molecules, as WE-14 lacks the N-terminal 
amino acids that easily bind to the MHC class II antigen-binding sites[7]. The above 
observation that the antigenicity of WE-14 occurs only in pancreatic islets is 
presumably depends on a difference in the proteolytic processing of CgA in beta cells
[7].

The modification of WE-14 by enzyme tissue transglutaminase (TGase)[61,62] or in 
vitro N-terminal arginine-leucine-glycine-leucine amino acid addition[63] dramatically 
increases its antigenic activity. Covalent cross-linking[14] between the side chains of 
glutamine and lysine caused by TGase[64] treatment increases the antigenicity of WE-
14[65]. Similar to animal models, newly diagnosed T1DM patients have also been 
shown to exhibit elevated WE-14 antigenicity[62]. Antigenicity can be further 
increased if the patient’s blood has been treated with TGase in vitro[62].

Hybrid insulin peptides (HIPs) are formed by the coupling of proinsulin and other 
peptides, are stored within the same secretory granules[66], and include a peptide 
called 2.5HIP, which is formed by a fusion of a C-peptide fragment and WE-14[67]. 
CD4+ T cell autoimmunity against 2.5HIP was demonstrated in NOD mice[66,67]. 
Peripheral NOD mouse-specific CgA-reactive T cells (BDC2.5) can bind 2.5HIP with 
up to 100 times higher affinity than WE-14 or CgA29-42 alone[68], and the number of 
these HIP-reactive T cells increases with disease progression[66,67]. Human HIP-
reactive CD4+ T cells have also been identified[66]. The development of T1DM can be 
prevented for more than 2 mo by transferring preactivated BDC2.5 T cells and 2.5HIP 
nanoparticles into NOD mice, whereas the disease manifested in untreated mice 
within 10 d[69].

Treating young NOD mice with liposomes containing a CgA mimotope (amino acid 
chain: AHHPIWARMDA) and the immunomodulator calcitriol (1α,25-dihydro-
xyvitamin D3) can postpone the development of T1DM[70]. Furthermore, the adoptive 
transfer of CD4+ T cells from liposome-treated animals into NOD severe-combined-
immunodeficiency mice also suppressed the development of the disease[70].

CgA and its cleavage product PST in other forms of diabetes
The few published data on the relationship between CgA and T2DM are somewhat 
controversial. Kogawa et al[71,72] reported that salivary and serum CgA were 
significantly higher in T2DM patients than in healthy controls and patients with higher 
CgA values had worse glycemic control (HbA1C ≥ 7.0%)[71]. Impaired salivary flow 
was correlated with increased serum and salivary CgA levels and was associated with 
two genetic variants of CHGA (rs9658635 and rs9658655)[72]. In contrast to those 
findings, another study found that an almost negligible portion of T2DM patients had 
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serum CgA levels above the normal upper limit (> 98.1 ng/mL)[73], and no differences 
were found in the laboratory results and anamnestic data between the groups with 
normal or high serum CgA levels[73].

Postprandial serum PST levels are significantly higher in patients with prediabetes
[74] or T2DM[75] compared with healthy controls, and are associated with consequent 
hyperglycemia[75], possibly because of the effect of PST on GSIS[75,76]. Fasting PST 
levels of the patients and controls did not differ[75]. Another study found that obese 
T2DM patients had significantly higher PST levels than obese and healthy nonobese 
control subjects, and that weight loss did not affect the differences in PST levels[77]. 
Serum PST is increased in patients with gestational diabetes, and positive correlations 
of PST, epinephrine, and norepinephrine levels have also been observed[78].

CHROMOGRANIN B AND SECRETOGRANINS
Even though a few hundred publications on CgB are available, very little is known 
about its relationship to diabetes. CgB has been reported to play a role in physiological 
insulin secretion[16-18] and its posttranslational changes[79], altered processing[80], 
and decreased serum values[81] that have been observed in human diabetes. The 
expression of CHGB in the pancreatic islets was lower in human T2DM patients 
compared with healthy subjects[79]. T2DM patients treated with intensive conser-
vative insulin treatment had a significantly (approximately 20%) lower CgB level than 
T2DM patients treated with other regimens of antidiabetic drugs, or healthy controls. 
The serum CgB levels in T1DM were approximately 80% of the levels in control 
subjects, suggesting that pancreatic beta cells may produce a significant amount of 
circulating CgB. Furthermore, an assumption has been made that diabetes heavily 
affects CgB production. The autoimmune destruction of pancreatic beta cells in T1DM, 
and the more advanced state of the disease in T2DM, which is usually also associated 
with beta cell impairment, could cause the lower CgB levels. However, further studies 
are needed to test that hypothesis[81].

Diabetic retinopathy (DR), in which choroidal and retinal microvascular changes 
occur as complications of diabetes mellitus[82], can be characterized by an altered 
processing of granins in the vitreous[80]. Small peptide fragments of CgA, CgB, and 
SgII, which have been proposed to have anti-inflammatory properties, are rare in the 
vitreous of DR patients, but large fragments are rare in healthy subjects. Some authors 
have raised the possibility that the absence of small granin fragments may play a role 
in the pathogenesis of DR: Posttranslational processing of granins may be damaged 
because of some diabetes-specific reasons that ultimately lead to the impairment of the 
intraocular angiogenic balance, thus contributing to the neovascularization[80].

SgIII is a recently discovered DR-associated ligand with pro-angiogenic activity and 
selective binding. Based on cellular and animal-model studies, the effects of SgIII are 
restricted to the pathological condition, suggesting that the antibody against SgIII 
might be useful as a selective, anti-angiogenic drug in DR[83]. The angiogenic effect of 
SgIII could have been blocked via inhibition of the mitogen-activated protein kinase 
and extracellular signal-regulated kinase signaling pathways[84]. Consistent with the 
findings of animal studies, SgIII has been found only in the vitreous in humans[85]. 
Increased SgIII levels has been found in DR patients compared with retinopathy 
originating in patients without diabetes. Moreover, high lipid levels and a high body 
mass index, which are characteristic of T2DM[48] have been described as risk factors 
of DR[86], and have been associated with even higher SgIII levels[85].

CONCLUSION
Granin proteins are produced by various neuronal, neuroendocrine, and endocrine cell 
types of different organs throughout the body. They contribute intracellularly to the 
selective secretion of various peptides. A variety of extracellular functions of 
biologically active cleavage products have also emerged during their evolution. Recent 
studies have reported that CgA, CgB, SgII, SgIII, SgVII and some of the CgA cleavage 
products influence glucose homeostasis and different forms of diabetes mellitus. CgA 
and its peptide derivatives take part in the development and subsequent progression 
of T1DM, and also regulate glucose homeostasis. CgB and SgVII are prominent in 
physiological insulin secretion, and SgII and SgIII mainly contribute to DR. More data 
on the activity of granins is available for T1DM than for T2DM. The potential 
application of PSTi8, CST, and antibodies against SgIII as future medications further 
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increases the importance of granins in diabetes. Although our understanding of granin 
proteins in relation to glucose homeostasis and diabetes mellitus continuously extends, 
the most recent studies pose new challenges and raise more questions than they 
answer. To properly answer these questions, further clinical and experimental studies 
are needed.
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