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Abstract
Chronic wound healing has long been an unmet medical need in the field of 
wound repair, with diabetes being one of the major etiologies. Diabetic chronic 
wounds (DCWs), especially diabetic foot ulcers, are one of the most threatening 
chronic complications of diabetes. Although the treatment strategies, drugs, and 
dressings for DCWs have made great progress, they remain ineffective in some 
patients with refractory wounds. Stem cell-based therapies have achieved specific 
efficacy in various fields, with mesenchymal stem cells (MSCs) being the most 
widely used. Although MSCs have achieved good feedback in preclinical studies 
and clinical trials in the treatment of cutaneous wounds or other situations, the 
potential safety concerns associated with allogeneic/autologous stem cells and 
unknown long-term health effects need further attention and supervision. Recent 
studies have reported that stem cells mainly exert their trauma repair effects 
through paracrine secretion, and exosomes play an important role in intercellular 
communication as their main bioactive component. MSC-derived exosomes 
(MSC-Exos) inherit the powerful inflammation and immune modulation, 
angiogenesis, cell proliferation and migration promotion, oxidative stress 
alleviation, collagen remodeling imbalances regulation of their parental cells, and 
can avoid the potential risks of direct stem cell transplantation to a large extent, 
thus demonstrating promising performance as novel "cell-free" therapies in 
chronic wounds. This review aimed to elucidate the potential mechanism and 
update the progress of MSC-Exos in DCW healing, thereby providing new 
therapeutic directions for DCWs that are difficult to be cured using conventional 
therapy.

Key Words: Diabetic wounds; Wound and injuries; Mesenchymal stem cells; Exosomes; 
Pre-conditioning; Preclinical translation
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Core Tip: Diabetic chronic wounds (DCWs) are one of the most serious chronic complications of diabetes, 
and the efficacy of stem cell therapies for refractory chronic wounds has been studied previously. Stem 
cell-derived exosomes are one of the important active components of stem cell paracrine secretion, which 
inherit the wound repair capacity of parental cells as parts of novel cell-free therapies in addition to cell-
bases ones. Herein we discuss the mechanism and latest progress of mesenchymal stem cell-derived 
exosomes in promoting DCW healing.

Citation: Wu J, Chen LH, Sun SY, Li Y, Ran XW. Mesenchymal stem cell-derived exosomes: The dawn of 
diabetic wound healing. World J Diabetes 2022; 13(12): 1066-1095
URL: https://www.wjgnet.com/1948-9358/full/v13/i12/1066.htm
DOI: https://dx.doi.org/10.4239/wjd.v13.i12.1066

INTRODUCTION
Wound healing after skin tissue injury relies on a dynamic chain of physiological reactions including 
hemostasis, inflammation, cell proliferation, and tissue remodeling[1]. Any step out of balance, such as 
excessive inflammation, impaired fibroblast migration and proliferation, abnormal collagen formation 
and deposition, and hindered re-epithelialization, ultimately leads to delayed wound healing and 
formation of chronic wounds. Chronic wounds are those that have failed to proceed through an orderly 
and timely reparative process to produce anatomical and functional integrity of the injured site[2]. They 
refer to wounds caused by multiple factors that have not healed or have not demonstrated a tendency to 
heal after a certain period clinically, with a chronic duration ranging from 4 to 12 wk[3,4]. Various 
pathological states result in chronic wound development, including diabetes, pressure injuries, 
infections, and arterial/venous insufficiency of which reports are similar in China and developed 
Western countries[4-6], which have the most complicated pathogenesis and therapeutic strategies being 
diabetic chronic wounds (DCWs).

Diabetes mellitus (DM) is a metabolic disease characterized by elevated blood glucose levels, of 
which DCWs are among the most threatening complications. The combination of a high-glucose 
environment and several biological factors, including ischemia and hypoxia, abnormal inflammatory 
response, excessive oxidative stress, and peripheral neuropathy, contributes to wound formation[7-9]. 
Such wounds have problems of protracted healing, long treatment time, difficulties in management, 
high cost, repeated attacks, and high disability/mortality rates, resulting in heavy physical, psycho-
logical and economic burdens[10,11]. The intervention of DCWs cannot be underestimated based on 
what is mentioned above. Hence, solving persistent inflammation, impaired cell proliferation and 
migration, decreased angiogenesis, and remodeling of the extracellular matrix (ECM) is important. 
Innovative wound repair methods, such as local negative pressure, growth factors, and autologous 
platelet-rich gels, have remarkable effects on healing DCWs[12-15]. However, more specific treatment 
options are required for refractory and contraindicated wounds.

With the rapid development of tissue engineering, cell therapies have gradually become widely used 
in various disciplines. Stem cells can be used in regenerative medicine and play an indispensable role in 
wound repair[16], of which mesenchymal stem cells (MSCs) are the most commonly used. MSCs have 
self-renewal abilities and multi-directional differentiation potential, participating in damage repair 
through intercellular communication and bioactive factor secretion, finally achieving the effect of 
promoting wound healing[17]. Clinical trials of MSCs for treating various types of cutaneous wounds 
are currently in full swing, and their efficacy and safety in promoting wound regeneration have been 
initially demonstrated. As clinical trials continue to progress, further attention and supervision need to 
be paid to their potential safety issues of proliferative lesion formation, abnormal organ reaction and 
unknown long-term health effects after transplantation[18-20].

Studies have revealed stem cells promote repair and regeneration mainly through paracrine 
signaling, whereas exosomes are one of their important paracrine active components[21]. MSC-derived 
exosomes (MSC-Exos) carry genetic information, functional RNAs, and proteins from parental cells, 
demonstrating wound healing effects via intercellular communication after these biologically active 
substances are acquired by recipient cells[22-24]. Thus, MSC-Exos have broad application prospects in 
diabetic wound repair[25]; however, they have not yet been carried out in clinical practice. The 
important role of MSC-Exos in all stages of diabetic wound healing and the preclinical application are 
highlighted in this review, to pave the way for their use as an effective tool in the management of these 
harmful diabetic complications.

https://www.wjgnet.com/1948-9358/full/v13/i12/1066.htm
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DCWS: HEALING DISORDERS CAUSED BY VARIOUS MECHANISMS
DM is a metabolic disease characterized by elevated blood glucose levels, which poses a serious threat 
to human health. The continuous progression of hyperglycemic toxicity without effective control will 
affect macrovascular, microvascular, and peripheral nerves throughout the body and involve various 
organs such as the brain, eyes, heart, kidney, and skin, resulting in various diabetic chronic complic-
ations[26]. DCWs are one of the most common and threatening chronic complications, often 
accompanied by infection or deep-tissue destruction[27]. Protracted wounds are the most common 
cause of non-traumatic amputations. Diabetic foot ulcers (DFUs) are characterized by wounds on the 
feet, which are the most typical, and patients with DFUs have a 2.5 times higher risk of 5-year mortality 
than those with none[28]. The overall mortality of DFUs within 5 years is nearly 50%[29], and approx-
imately 20% of moderate-to-severe DFUs will lead to amputation; the 5-year mortality rate after 
amputation exceeds 70%[30].

Impaired wound healing processes caused by hyperglycemia-induced disturbances in wound-linked 
cellular behaviors contribute to diabetic wound healing difficulties[7, 31]. Hyperglycemia, oxidative 
stress, and insulin resistance affect the function of vascular smooth muscle cells, endothelial cells, and 
platelets, which in turn may lead to abnormal coagulation processes and affect platelets of triggering for 
subsequent inflammatory and proliferative phases[32]. The hyperglycemic microenvironment can lead 
to dysfunction of immune and inflammatory cells and dysregulation of inflammatory factors. 
Perpetuated inflammatory states induced by increased mast cell degranulation[33], excessive 
extracellular traps produced by neutrophils[34], dysregulated and persistent M1 (pro-inflammatory) 
macrophage polarization[35], pro-inflammatory factors (IL-1β, TNF-α, and IL-6) overexpression, and 
anti-inflammatory factors (IL-10 and TGF-β) deficiency finally hinder wound healing[7]. The prolif-
erative phase of diabetic wound healing is characterized by disturbed physiological functions of 
keratinocytes[36], fibroblasts[37], and endothelial cells[38], then the impaired re-epithelialization, 
granulation tissue formation, matrix deposition, and angiogenesis affect wound healing. Various factors 
also affect the function and activity of these cells during this phase, including decreased chemokines 
with pro-angiogenesis produced by macrophages, hemoglobin glycation, vascular stenosis, increased 
oxygen consumption affecting oxygen-dependent cellular behaviors, and impaired nerve fiber 
regeneration[7,31,39,40]. Remodeling of the ECM spans the entire injury response, and fibroblasts are 
the major cell type responsible for this phase[31]. Sequential changes in the ECM require a balance 
between collagen degradation and synthesis, achieved through temporal regulation of the dynamic 
changes in the ratio of matrix metalloproteinases (MMPs) to tissue inhibitors of metalloproteinases 
(TIMPs)[41,42]. Such changes in DCWs are unbalanced and lead to difficult wound healing and 
excessive scarring[41,43]. However, no clear demarcation exists between the various stages of wound 
healing, and functionally impaired cells can interact, eventually leading to poor diabetic wound healing, 
progressing to local infection, gangrene, and even amputation. Therefore, the most important aspect of 
effectively treating DCWs is to identify an appropriate approach that can comprehensively improve 
abnormalities in all phases of wound healing.

CURRENT STRATEGIES AND PROMISING DIRECTIONS FOR DCWS REPAIR
Traditional strategies for DCWs management include glycemic control, conventional dressings (e.g., 
hydrocolloids, alginates, and silver ions, etc.), thorough debridement (e.g., surgical, mechanical, 
ultrasonic waterjet, collagenase, and maggot, etc.), wound off-loading, autologous skin and skin 
substitute grafting, infection control, and revascularization, etc. These strategies are used to create the 
wound bed microenvironment suitable for repair through moisture balance maintenance, necrotic or 
inactivated tissues removal, systemic and local infections control, and local blood flow improvement[13,
44-46]. Negative pressure wound therapy can also be used to achieve its role in improving wound 
exudate drainage, enhancing local perfusion, removing bacterial products, promoting granulation tissue 
growth, and facilitating wound healing[47]. However, these conventional treatments are often 
ineffective in many patients because of impaired cell function around the wound sites caused by 
underlying microenvironmental alterations[48]. Several innovative wound adjuvant therapies, 
including exogenous supplementation of growth factors[49], platelet-rich plasma[50], autologous 
platelet-rich gels[15,51], and hyperbaric oxygen therapy[52] have been developed to promote the 
activity and function of damaged cells and offer the possibility of treating unselected refractory wounds. 
However, an updated systematic review has revealed that some measures had positive effects on 
accelerating wound healing, while others had limited impacts on diabetic ulcer healing[53]. However, 
the overall efficacy of various treatment modalities for DCWs remains unsatisfactory, and effective 
therapeutic strategies need to be continued.
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STEM CELL-BASED THERAPIES BECOME HOT TOPICS, COMING EXOSOMES INTO 
BEING
Stem cells have the potential for self-renewal and multidirectional differentiation with great research 
and application value in life sciences, clinical trials and disease research. Stem cell-based therapies are 
now approved by several countries, and have been widely used in various disciplines. MSCs are 
currently the main experimental cell sources and have shown their excellent therapeutic potential and 
value in clinical trials in the field of regenerative medicine[16,54].

MSCs provide assistance in all phases of wound healing by exerting their functions of regulating skin 
homeostasis and wound healing through migration into the skin damage site and interaction with skin 
cells and can influence the function of these cells by paracrine secretion of bioactive factors and differen-
tiation into them[55,56]. As MSCs have exhibited wound healing in many preclinical studies as 
powerful tools for regulating inflammation, promoting cell proliferation and migration, angiogenesis, 
and collagen synthesis[57-60], the application of MSCs for DCWs contributes to progress toward clinical 
trials. Twenty-five clinical trials of MSCs for diabetic ulcers have been conducted or are recruiting 
subjects, which are recorded in the ClinicalTrials.gov database (clinicaltrials.gov).

Previous clinical studies have demonstrated that MSC transplantation in patients with DFUs is safe 
and feasible with the properties of improving microcirculation, wound healing, ulcer recurrence, and 
amputation[61-63]. However, stem cell therapies are still in their early clinical stage, further attention 
and supervision are required of declined performance during production and application as cellular 
senescence and loss of multipotency during ex vivo expansion and from variable donors[64,65], 
decreased survival rate caused by advanced glycosylation end products[66], potential safety issues as 
proliferative lesion formation and abnormal organ reaction[20], and unknown long-term health effects 
after transplantation. Basic and clinical researches related to allogeneic/autologous stem cells are subject 
to the International Society for Stem Cell Research Guidelines for Clinical Translation of Stem Cells and 
national ethical guidelines and related guidelines/regulations[20,67].

MSCs exert their repair and regenerative effects mainly through paracrine signaling, and exosomes 
are one of the important active components[21] that provide a more stable entity that minimizes the 
potential safety concerns for cell transplantation. MSC-Exos play an important role in intercellular 
communication by carrying various important functional substances of parental cells, being used of 
promoting wound healing[68,69]. Compared to direct cell transplantation, MSC-Exos avoid the immune 
rejection because of low immunogenicity; allow to cross various biological barriers and avoid the risk of 
embolism from intravenous injection based on their smaller sizes[70]; the dose and fraction can be 
adjusted artificially and genetic modifications are easier and safer[71]; avoid the problem of malignant 
transformation; and allow to repair diabetic complications through multiple actions[72]. They can also 
be used as ideal carriers for carrying and delivering therapeutic drugs, genes, enzymes, or RNAs[73], 
and their efficiency and targeted transport capacity can be tuned through pretreatment or engineering 
transformation[74], demonstrating their promising applications in the field of repair and regeneration.

STEM CELL-DERIVED EXOSOMES: NOVEL CELL-FREE STRATEGIES
Exosomes biology
The concept of “exosomes” was first proposed in 1981 by Trams et al[75], using to collectively refer to 
extracellular vesicles (EVs) that originated from the exudation of various cell line cultures. The currently 
defined exosomes were first discovered in sheep reticulocytes and considered cellular waste[76-78]. Of 
note, “EVs” is the preferred term by the International Society for Extracellular Vesicles (ISEV) to 
describe all nanoparticles with lipid bilayer structures released by cells[79].

Exosomes, the biological nanoscale spherical lipid bilayer vesicles[80], can be secreted by almost all 
cell types and are widely present in cell culture supernatants and many body fluids[81]. Their diameters 
range from 10 to 200 nm. In addition to exosomes, EVs also include microvesicles that are also called 
ectosomes with a diameter of 100-1000 nm, and apoptotic bodies larger than 1000 nm according to 
different sizes and biogenesis[82,83]. The types and functions of the bioactive substances carried by 
exosomes differ according to their cellular origins and adjacent cellular components[84]. The major 
substances include genetic information, RNA species (mRNA, tRNA, rRNA, miRNA, lncRNA, circRNA, 
etc.), proteins, lipids, cytokines, and growth factors[85,86]. Exosomal proteins include intrinsic 
components involved in exosome biogenesis, such as fusion-related proteins (GTPases, annexins, 
flotillin, and Rab proteins), heat shock proteins (HSP70 and HSP90), tetraspanins (CD63, CD81, CD82, 
and CD9), ESCRT complex, and specific functional proteins originating from parental cells[87]. Apart 
from serving as a medium for cellular communication, some proteins are also involved in the membrane 
composition and biosynthesis as identified biomarker proteins and can provide stability and 
permeability in concert with phospholipid bilayers.

Exosomes originate from endosomes during generation, circulation, degradation, and liberation[88]. 
Extracellular substances fuse with early sorting endosomes through plasma membrane invagination and 

https://clinicaltrials.gov/
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endocytosis, and begin to accumulate bioactive substances. Eventually, they mature into late sorting 
endosomes, which invaginate to form intraluminal vesicles that can then generate multivesicular bodies 
(MVBs)[68,88]. MVBs can be absorbed by lysosomes comprising a degradative pathway, or they can 
undergo a specific exocytotic process whereby they fuse with the plasma membrane to release exosomes 
into the extracellular space[89]. After release, they act as mediators of intercellular and intra-organ 
communication to transfer the contained bioactive substances to recipient cells through direct fusion, 
endocytosis, and receptor-ligand binding to affect their functions[90,91], participating in the body's 
physiological and pathological state adjustment[92].

Isolation and characterization of exosomes
The extraction of exosomes is primarily based on their physicochemical properties. This process is 
difficult because of the heterogeneity of exosomes derived from different cell origins, the possible 
existence of subpopulations of exosomes with different functions and phenotypes even when extracted 
from a single cell line, and multiple EV subtypes with similar biophysical properties[93]. Therefore, 
different isolation methods should be targeted for different purposes[87]. Differential ultracentrifu-
gation is the most widely used separation technique and is also known as the gold standard for 
isolation, while the main principle is to harvest the desired components based on size and density 
differences[94]. Polymer precipitation uses polyethylene glycol to harvest exosomes under centrifugal 
conditions by reducing their solubility[95]. Size-exclusion chromatography[96] and ultrafiltration[97] 
are both based on size differences between exosomes and other components, although they may 
adulterate other particles of similar size. Immunoaffinity capture is based on the specific binding of 
antibodies and ligands to isolate exosomes from a heterogeneous mixture[98]. Current isolation and 
purification techniques have varying effects and many problems such as low purity and recovery, 
structural damage, and time and cost consumption, making achieving efficient enrichment difficult, 
which has become a bottleneck of the translational applications of exosomes[87]. Hence, continuously 
exploring new isolation and purification techniques or combining multiple techniques is necessary to 
improve the isolation efficiency and thus obtain ideal exosomes.

Exosomes are mainly characterized by external characteristics (morphology and size detection) and 
the identification of surface markers[87]. As mentioned above, some protein components of exosomes 
serve as surface protein markers for identification. The ISEV has proposed the need to identify two 
types of proteins as follows: one is the biomarker proteins shared by exosomes to determine whether the 
extracted components are exosomes, and the other is cell-type-specific exosomal proteins that need to be 
identified to determine cellular origin[79]. Therefore, exosomes can be characterized by detecting their 
morphology using transmission electron microscopy, their size and concentration by dynamic light 
scattering, and nanoparticle tracking analysis technology, and their marker proteins by western blot, 
enzyme-linked immunoassay, and flow cytometry[87].

Biological functions of MSC-Exos
Stem cells have self-renewal abilities and multi-directional differentiation potential, while MSCs are one 
of the most frequently used and promising adult stem cells that can be derived from most adult tissues 
such as the bone marrow, adipose tissue, and umbilical cord[99,100]. Bone marrow-derived MSC-Exos 
(BMSC-Exos) are biologically stable, have low immunogenicity, and exhibit good proliferation and 
viability after transplantation. They are most commonly used in clinical trials and can play a prominent 
role in various disorders, especially bone-related diseases[101]. Umbilical cord-derived MSC-Exos 
(UCMSC-Exos) can be isolated non-invasively, with low immunogenicity and strong self-renewal and 
proliferation ability, although it has limitations in maintaining bioactive and clinical therapeutic 
transport[102]. Adipose-derived MSC-Exos (AMSC-Exos) have relatively abundant sources that can be 
easily obtained by painless minimally invasive surgery; they are also pluripotent, plastic, easy to store, 
and stable in blood or body fluids[103]. Exosomes of different origins share most of their bioactive 
factors and are generally similar in their biological functions; however, their specific biological 
properties depend on the molecules that are specifically expressed[104].

MSC-Exos are involved in intercellular communication through the transfer of proteins, RNA, DNA, 
and bioactive lipids that can be delivered to target cells to regulate their activities and functions[68]. 
They are generally involved in the regulation of cell survival and differentiation, the immune system, 
and inflammation modulation, and are also capable of promoting angiogenesis and tissue remodeling
[73]. Considering these multiple biological functions, several studies have also reported that the MSC-
Exos play a therapeutic role in autoimmune diseases[105], ischemic injuries[106], and metabolic diseases
[107], and are also related to dynamically modulating tumor biological functions[108], promoting repair 
and regeneration of damaged osteochondral, neural, and tendon tissues, and facilitating wound healing
[109-112]. Current studies also discovered that they can improve COVID-19-related cytokine storms and 
the deterioration of lung function due to severe pneumonia[113].
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MSC-EXOS FOR REPAIRING DIABETIC WOUNDS
MSC-Exos play an important role in each phase of wound healing[81]. They can regulate diverse cell 
types related to wound repair by enhancing or suppressing certain bioactivities, achieving hemostasis, 
inflammatory regulation, cell migration to the wound site, cell proliferation, and differentiation to form 
granulation tissue, angiogenesis, and ECM reorganization[69]. They can also be expected to be 
therapeutic agents for different types of diabetes by alleviating autoimmune damages[114], attenuating 
insulin resistance, and improving β-cell exhaustion[115]. Additionally, they can be used to prevent and 
treat DM-related complications. Based on these potentials, MSC-Exos may be of considerable 
importance in DCW treatment.

Hemostasis
Tissue factor (TF) is an initiator of coagulation activation and was identified in the plasma membrane of 
exosomes[116]. TF can transfer to the platelets and initiate the extrinsic coagulation cascade, leading to 
the conversion of prothrombin to thrombin and fibrin clot formation[117]. Induced coagulation and 
stimulated thrombogenicity were observed using EVs carrying TF from the pericardial blood of patients 
who received cardiac surgery[116]. Rat BMSC-Exos were applied to the bleeding site in the hemorrhage 
liver model, which exhibited an inhibited amount of bleeding and shortened bleeding time, 
demonstrating their excellent hemostatic properties. However, no studies related to exosomes' 
promotion of coagulation in cutaneous wound healing have been conducted. Further studies are needed 
to demonstrate the potential role of exosomes in the hemostasis phase of wound healing.

Inflammation
Excessive inflammation is a major cause of persistent diabetic wounds. Abnormal macrophage 
polarization and cytokine overexpression lead to an uncontrolled and persistent inflammatory state and 
can cause secondary tissue damage[7]. MSCs-Exos can inhibit the differentiation, activation, and prolif-
eration of T cells as well as reduce IFN-γ release[118]. They can reduce the concentration of the inflam-
matory cytokines, TNF-α, iNOS, IL-1β, and IL-6[119] and upregulate the expression of the anti-inflam-
matory cytokine IL-10[120,121]. MSCs-Exos can also induce M2 polarization of macrophages to promote 
wound healing by delivering exosome-derived miR-223 to target regulating the expression of pknox1 
protein[122].

Such abilities can also be observed in diabetic wounds. Topical application of native AMSC-Exos to 
diabetic mice dorsal full-thickness skin wounds also downregulated inflammatory cytokines (IL-6, TNF-
α, CD14, CD19, and CD68) expression and promoted wound healing[123]. Similar alleviated inflam-
matory effects achieved by regulating inflammatory factors could also be observed in the combination 
of intraperitoneal Nrf2 pharmaceutical activator and BMSC-Exos subcutaneous injection, demonstrating 
decreased inflammatory cytokines TNF-α and IL-1β and increased anti-inflammatory cytokines IL-4 and 
IL-10[124]. Intradermal injection of MSC-Exos derived from human menstrual blood could induce 
macrophage polarization from the M1 to M2 phenotype, while this capacity is better than that of 
menstrual blood-derived MSCs[125]. Significantly lower M1 polarized macrophages and higher M2 
polarized macrophages were also observed in the diabetic mouse air pouch model and diabetic rat full-
thickness skin wound model using BMSC-Exos, while melatonin-stimulated BMSC-Exos (MT-Exos) had 
stronger effects[121]. Immunomodulatory capacity was enhanced after preconditioning. Moreover, MT-
Exos could improve wound healing by activating the PTEN/PI3K/AKT signaling pathway to promote 
macrophage M2 polarization, angiogenesis, and collagen synthesis; promote the resolution of persistent 
inflammation; and drive the transition from inflammation to proliferation[121]. HUCMSC-Exos 
pretreated with lipopolysaccharides have better regulatory properties for macrophage polarization and 
resolution of chronic inflammation by transferring miR-let7b, while the TLR4/NF-κB/STAT3/AKT 
pathway is important in regulating this mechanism to promote wound healing[126]. The use of 
engineered TNF-α/hypoxia-pretreated HUVMSC-Exos in infected DCWs also decreased proinflam-
matory cytokines (TNF-α, IL-1β, and IL-6), induced M2 macrophage polarization, reduced bacterial 
burden, and bacterial colonization at the wound sites. Reduced levels of oxidative biomarkers and 
increased levels of antioxidant mediators also demonstrated the ability of oxidative stress suppression
[127]. The combination of BMSC-Exos and carboxyethyl chitosan-dialdehyde carboxymethyl cellulose 
hydrogel revealed skewed macrophage functional polarity from M1 toward an anti-inflammatory M2 
phenotype, as well as enhanced antibacterial effects by significantly inhibiting bacterial growth[128].

Proliferation
Fibroblasts, keratinocytes, and endothelial cells participate in the proliferative phase. Unlike the dual 
regulatory effects on the tumor, MSC-Exos directly affect the proliferative phase of wound healing by 
stimulating the proliferation and differentiation of these cells, as well as promoting angiogenesis at 
injury sites[104]. Enhanced migratory and proliferative capacity and inhibited apoptosis of 
keratinocytes by activating the AKT/HIF-1α and Wnt/β-catenin pathways were observed with AMSC-
Exos[129,130]. BMSC-Exos demonstrated the ability to promote fibroblast proliferation, migration, and 
secretion of growth factors and can induce tube formation in human umbilical vein cells (HUVECs)
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[131]. AMSC-Exos induced angiogenesis in both in vivo and in vitro experiments, and the promotion of 
angiogenesis in endothelial cells was achieved by transferring miR-125a to inhibit DLL4 expression, 
accompanied by the downregulation of pro-angiogenic genes (Ang1 and Flk1), and upregulation of anti-
angiogenic genes (Vash1 and TSP1)[132]. In addition to its pro-proliferative ability in vitro, the pro-
healing effect of MSC-Exos has also been observed in acute non-diabetic wounds. MSC-Exos from 
human umbilical cord Wharton’s jelly could regulate HaCaT cell function by suppressing AIF nucleus 
translocation and PARP-1 hyperactivation, thus attenuating full-thickness skin wounds by enhancing 
re-epithelialization and angiogenesis[133]. Fetal dermal-derived MSC-Exos accelerated wound closure 
in a mouse full-thickness skin wound model by activating the Notch signaling pathway to promote the 
motility and secretory capacity of fibroblasts[134].

Similarly, exosomes from MSCs improve proliferation and angiogenesis in diabetic wounds. AMSC-
Exos accelerated cutaneous wound healing in diabetic mice with full-thickness skin wounds model by 
enhancing cell proliferation, inhibiting apoptosis, and promoting angiogenesis. They also repaired skin 
barrier functions, and produced large amounts, regular arrangement, and dense distribution of new 
collagen[123]. Shabbir et al[131] have also reported that these cells significantly increased their prolif-
eration when treated with MSC-derived exosomes. Enhanced angiogenesis and fibroblasts proliferation, 
migration, and differentiation abilities were observed in diabetic wounds treated with human decidua 
derived MSC-Exos, as well as an improved fibroblast senescent state, reduced scar width, and larger 
and better-organized collagen deposition[135].

Various methods have been used to modify MSC-Exos to enhance fibroblast proliferation and 
angiogenesis. Co-culture of lncRNA H19-transfected BMSC-Exos with fibroblasts extracted from foot 
tissue of patients with DFUs revealed that overexpressed exosomes regulated the PTEN-mediated 
PI3K/AKT signaling pathway by competitively binding miR-152-3p to enhance proliferation and 
migration of fibroblasts and inhibit apoptosis and inflammation[136]. Injecting such exosomes into the 
peri-wound tissue of diabetic mice revealed the same changes in expression and accelerated wound 
healing[136]. Atorvastatin-pretreated BMSC-Exos promoted proliferation, migration of HUVECs, and 
vascular endothelial growth factor (VEGF) expression and accelerated wound healing in diabetic full-
thickness skin injury rat models[137]. Pioglitazone-pretreated BMSC-Exos-treated full-thickness wounds 
in diabetic rats achieved faster-wound closure, with more adequate re-epithelialization and extensive 
collagen deposition, significantly enhanced wound perfusion, and had significantly upregulated levels 
of VEGF and CD31[138]. Subcutaneous injection of mmu_circ_0000250-modified AMSC-Exos via miR-
128-3p/SIRT1-mediated autophagy promoted wound healing in diabetic mice, and increased capillary 
and granulation tissue production was detected owing to promoted proliferation and migration and 
reduced apoptosis of endothelial cells[139].

Biological scaffolds can improve the survival of exosomes in the inflammatory environment of 
diabetic wounds and maintain their sustained release. UCMSC-Exos combined with the Pluronic F127 
hydrogel revealed promoted chronic wound healing in diabetic mice. The elevated number of blood 
vessels and microvascular density, enhanced regeneration of granulation tissue, and cell proliferation 
were also observed, with the significant formation of new hair follicles in the center of the wounds, 
sufficient subepidermal collagen deposition, and orderly arrangement of collagen fibers[140]. Similar 
changes were observed in the wounds of diabetic mice using engineered bioactive self-healing antimi-
crobial exosome hydrogels (FHE@exo), and the elevated number of dermal appendages and differen-
tiation and re-epithelialization of the epidermis were also observed[141]. The combination of human 
gingival tissue-derived MSC-Exos (GMSC-Exos) and a chitosan/silk hydrogel sponge promoted re-
epithelialization, angiogenesis, and collagen deposition, while the increased nerve fiber density also 
reflected enhanced neuronal ingrowth in the proliferative stage[142].

Matrix remodeling
In the final stage of wound healing, the production and remodeling of the ECM are key factors in 
determining the time of wound healing and degree of scarring. Recently, some studies have reported on 
the effects of exosomes on matrix remodeling. BMSC-Exos have been demonstrated to restore normal 
skin morphology in rats with full-thickness skin injury[143], while these capacities relied on the 
downregulation of TGF-β1 and upregulation of TGF-β3 by inhibiting the TGF-β/Smad signaling 
pathway. UCMSC-Exos had large amounts of miR-21, miR-23a, miR-125b, and miR-145, while it 
inhibited the differentiation and excessive aggregation of myofibroblasts and exerted an anti-scarring 
effect via the TGF-β2/Smad2 pathway in vivo[144]. UCMSC-Exos can also promote the phosphorylation 
of YAP, a key site of the Hippo pathway, to negatively regulate the Wnt4/β-catenin pathway to balance 
tissue regeneration and repair, with excessive cell proliferation and collagen deposition in the 
remodeling stage[145]. It was noted that intravenous injection of ADSC-Exos could increase the ratio of 
type III collagen to type I and TGF-β3 to TGF-β1, prevent fibroblast-to-myofibroblast differentiation, and 
reduce scarring at incisions in the full-thickness skin injury models[146]. They could also induce the 
ERK/MAPK pathway in fibroblasts to increase the expression of MMP3, thereby increasing 
MMP3/TIMP1 to regulate ECM remodeling[146].

In contrast to the promoted cell proliferation and abundant granulation tissue in the early stage of 
healing, proliferative activities were reduced during the late repair stage to prohibit tissue hyperplasia 
when using FHE@exo, suggesting entry into the remodeling phase that prevents excessive tissue prolif-
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eration to promote wound healing[141]. The application of GMSC-Exos with chitosan/silk hydrogel 
sponge on the wounds of diabetic rats revealed more collagen deposition and thick wavy collagen fibers 
that were arranged in an orderly fashion, which is similar to that in normal skin, implying enhanced 
ECM remodeling[142]. These were also observed in the local transplantation of HUCMSC-Exos with 
polyvinyl alcohol/alginate nano hydrogel and of miR-126-3p overexpressed synovial-derived MSC-
Exos with hydroxyapatite/chitosan composite hydrogel[147,148]. Altogether, these studies indicate that 
MSC-Exos play a pivotal role in the ECM remodeling phase of wound healing.

The various stages of wound healing are closely interwoven. MSC-Exos inherit the genetic 
information of their parental cells and can transfer the therapeutic bioactive substances to target cells to 
participate in intercellular communication, resulting in the regulation of target cell function and 
promotion of wound healing[81,149]. We analyzed the current preclinical application of MSC-Exos in 
diabetic wound models, and the cell source, administration method, dose, frequency, animal type, 
wound diameter, efficacy, and possible molecular mechanisms are summarized in Table 1[104,121,123-
128,147,148,135-142,150-158]. Additionally, MSC-Exos were not only responsible for a specific stage but 
also promote microenvironment changes in the wounds at each stage to exert a pro-healing effect. 
Although the biological functions of promoting diabetic wound healing are generally similar, certain 
differences exist in the regulated signaling pathways of different cell-derived exosomes or receiving 
different preconditioning, according to previous studies. The regulatory mechanisms most frequently 
studied in diabetic wound models and may potentially confirmed in DCWs, as well as the microenvir-
onmental changes in inflammatory and proliferative stages of wound healing after using MSC-Exos, are 
depicted in Figure 1.

CURRENT STATUS AND PROSPECTS OF CLINICAL APPLICATIONS OF EXOSOMES IN 
DCWS
Preclinical studies have demonstrated the ability of MSC-Exos to promote diabetic wound healing. No 
evident pathological abnormalities in the heart, liver, spleen, lung, and kidneys sampled after exosome 
treatment were observed, and biomarkers reflecting liver and kidney function blood biochemistry were 
also within normal limits[127]. Meanwhile, no erythema, edema, or irritation was observed in the 
wound area after exosome treatment[137], confirming the superior biosafety of exosome therapy.

We also searched for applications of exosomes secreted by stem cells from other sources in diabetic 
wounds and summarized them in Supplementary Table 1. Noteworthy, the types of animals used for 
modeling were limited to mice and rats. Most of the studies involved acute diabetic wounds, that is, 
exosomes were administered immediately after successful modeling of full-thickness skin wounds. Only 
one study introduced Staphylococcus aureus to establish infected chronic wounds after the establishment 
of full-thickness cutaneous wounds and confirmed that exosomes were effective in treating infectious 
DCWs[127]. The efficacy and safety of MSC-Exos need to be further confirmed in larger animal models 
and DCW models. Because the islet morphology, structure and function, blood biochemical indices, and 
skin structure of minipigs are more similar to those of the human body, they are ideal animal models for 
studying diabetic wounds[159]. Our team has established a chronic skin ulcer model in diabetic 
miniature pigs in the early stage[160] and is researching on exosome products to explore the optimal 
administration methods and dosages and to verify their therapeutic effects.

According to the search results in ClinicalTrials.gov, no clinical trials of MSC-Exos and exosomes 
from other sources for diabetic cutaneous wound healing have been registered. Therefore, we expanded 
the scope of clinical trials to search for exosomes derived from any sources and exosome-enriched stem 
cell-conditioned medium in various wound types (Table 2). None of the included four registered clinical 
trials had related results published, while they were all non-randomized one-arm pilot studies. Thus, 
more high-quality randomized controlled trials are required to further confirm these research results. Of 
note, the application of cell-free therapies in clinical patients requires special attention to security, 
although no adverse reactions of exosomes have been reported in preclinical studies. Moreover, ADSC-
Exos has been confirmed to not induce any irritation or toxicity in skin sensitization, irritation, or oral 
toxicity tests[161]; therefore, they can be considered in clinical practice to promote wound healing in 
combination with basic wound care measures. Nevertheless, toxicological analysis of different tissue-
derived MSCs-Exos and more evidence of short and long-term health safety assessments are required to 
confirm their safety.

Exosome research is still in its infancy, and the realization of the transformation from preclinical 
research to clinical application still has great exploration value. The problems of optimal preparation, 
extraction, isolation, and storage of exosomes on a large scale and their production efficiency have not 
yet been determined; preparation and identification of components due to different source cells and the 
high heterogeneity of exosome components have not yet been solved; specific regulatory mechanisms in 
DCWs have not yet been fully elucidated; efficacy and safety of different cell sources and/or adminis-
trations have not been proven, and reasonable and effective methods of fusing exosomes with other 
biomaterials have not yet been implemented, all these issues are barriers that limit the clinical 
application of exosomes.

https://f6publishing.blob.core.windows.net/d3a762e6-91af-4c11-9986-02130c5eb5ee/WJD-13-1066-supplementary-material.pdf
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Table 1 Mesenchymal stem cell-derived exosomes application of diabetic full-thickness acute/chronic cutaneous wounds model

No. Ref. Institution(Nation) Exosomes 
source

Intervention, administration, 
dose and time Control Model 

species
Wound 
diameter Therapeutic effect Molecular mechanism

1 Accelerated wound 
closure rate

1 HUCMSC-Exos + PF-127 
hydrogel; injected topically; 100 
µg in 100 µL PF-127 (24%); at 
Day 0 2 New hair follicle 

formation, fibroblasts 
proliferation, sufficient and 
order collagen deposition

3 Reduced inflammatory 
cell infiltration

2 HUCMSC-Exos + PF-127 
hydrogel; injected topically; 100 
µg in 100 µL PBS; at Day 0

4 Higher microvessel 
densities and higher 
number of blood vessels 
(CD31, MVD)

5 Promoted cell prolif-
eration (Ki67) and 
enhanced regeneration of 
granulation tissue

6 Upregulated expression 
of VEGF and TGF-β

1 Yang et al[140], 
2020

The Third Affiliated 
Hospital of Southern 
Medical 
University(China)

Human umbilical 
cord 

3 PF-127 hydrogel; injected 
topically; 100 µL PF-127 (24%); at 
Day 0

PBS (100 µL) Rats (Sprague-
Dawley)

10 mm × 2 (1.5 
cm apart)

7 Hydrogel supported 
exosome survival and 
biological activity

—

1 Accelerated wound 
closure rates

1 AMSC-Exos + F127/OHA-EPL 
hydrogel; covered the wound; 10 
μg; at Day 0

2 Promoted cell prolif-
eration and abundant 
granulation tissue in early 
stage of healing; reduced 
proliferative activities 
during the late repair stage 
to prohibit tissue 
hyperplasia

2 AMSC-Exos; covered the 
wound; 10 μg; at Day 0

3 Abundant and well-
organized collagen fibers, 
more collagen deposition 
(Col I, Col III)

4 Faster re-epithelization 
(cytokeratin) and epithelial 
cell differentiation

2 Wang et al[141], 
2019

The Affiliated Hospital of 
Wenzhou Medical 
University; Xi'an Jiaotong 
University(China)

Mouse adipose 
tissue

3 F127/OHA-EPL hydrogel; 
covered the wound; 10 μg; at 
Day 0

Saline Mice (ICR) 8 mm × 2 mm —
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5 Promoted angiogenesis (α
-SMA) and blood vessels 
formation

6 Complete skin 
regeneration: skin 
appendages and less scar 
tissue appeared

1 Accelerated diabetic 
wound healing

2 Anti-inflammatory effect 
on macrophages by 
promoting M2 and 
inhibiting M1 polarization

3 Enhanced re-epithelial-
ization (increased 
neoepithelium length)

4 Improved angiogenesis (α
-SMA, CD31, Microfli 
perfusion) and collagen 
synthesis (Col I and III)

1 Melatonin-pretreated BMSC-
Exos (MT-Exo); injected 
subcutaneously at least six sites 
per wound; dose not mentioned; 
at Day 0

3 Liu et al[121], 
2020

Second Military Medical 
University; Shanghai 
Sixth People’s Hospital 
affiliated to Shanghai Jiao 
Tong University(China)

Human bone 
marrow

2 BMSC-Exos; injected 
subcutaneously at least six sites 
per wound; dose not mentioned; 
at Day 0

PBS Rats (Sprague-
Dawley)

20 mm

5 Activated the 
PTEN/AKT signaling 
pathway

PTEN/AKT signaling 
pathway

Human bone 
marrow

BMSC-EVs + carboxymethylcel-
lulose; applied on the wound; 1 
× 109 in 25 µL of vehicle; at Day 
0, 3, 7 and 10

Not effective and did not 
reduce the wound closure 
rate

1 Accelerated cutaneous 
wound healing

2 Reduced size of the scar

3 Increased epithelial 
thickness and re-epithel-
ization

4 Pomatto et al
[104], 2021

University of Turin(Italy)

Human adipose 
tissue

AMSC-EVs + carboxymethylcel-
lulose; applied on the wound; 1 
× 109 in 25 µL of vehicle; at Day 
0, 3, 7, 10 and 14

carboxymethylcellulose 
high viscosity 10 mg/mL 
(25 µL)

Mice (NSG) 6 mm × 8 mm

4 Promoted angiogenesis 
(the number of vessels)

—

1 Accelerated cutaneous 
wound healing

2 Reduced scar areas

3 Enhanced angiogenesis 

5 Shi et al[139], 
2020

Affiliated Hospital of 
Nantong 
university(China)

Human adipose 
tissue

1 mmu_circ_0000250-modified 
AMSC-Exos;injected 
subcutaneously at four sites 
around the wound;200 μg in 100 
μL PBS;at Day 0

PBS (100 μL) Mice (C57BL) 4 mm mmu_circ_0000250/miR-128-
3p/SIRT1-mediated 
autophagy
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(CD31, vessel density)

4 Suppressed apoptosis of 
skin tissue

5 Suppressed expression of 
miR-128-3p but promoted 
SIRT1 expression

2 AMSC-Exos; injected 
subcutaneously at four sites 
around the wound; 200 μg in 100 
μL PBS; at Day 0

6 Increased expression of 
autophagy-related gene 
(LC3)

1 Accelerated cutaneous 
wound healing

2 Enhanced re-epithel-
ization

3 Promoted collagen 
synthesis (Col I, Col III) 
and collagen deposition, 
indicating more superior 
ECM remodeling ability

1 Pioglitazone-treated BMSC-
Exos (PGZ-Exos); injected 
subcutaneously(at least six sites 
per wound); 100 μg in 100 μL 
PBS; at Day 0

6 Hu et al[138], 
2021

Union Hospital Affiliated 
to Tongji Medical 
College, Huazhong 
University of Science and 
Technology(China)

Rat bone marrow

2 BMSC-Exos; injected 
subcutaneously (at least six sites 
per wound); 100 μg in 100 μL 
PBS; at Day 0

PBS (100 μL) Rats (Sprague-
Dawley)

15 mm

4 Enhanced angiogenesis 
(VEGF, CD31) and blood 
flow of the wound

PTEN/PI3K/AKT/eNOS 
pathway

1 Accelerated cutaneous 
wound healing

1 Atorvastatin-pretreated BMSC-
Exos (ATV-Exos); injected 
subcutaneously (six points); 
dose not mentioned; at Day 0 2 Increased re-epithel-

ization (more epithelial 
structures and longer 
neuroepithelium)

3 Promoted collagen 
synthesis and deposition, 
indicating more superior 
ECM remodeling ability 
(thicker wavy collagen 
fibers and more extensive 
collagen deposition 
arranged neatly)

4 Superior biosafety of the 
therapy of exosomes

7 Yu et al[137], 
2020

Shanghai Sixth People’s 
Hospital affiliated to 
Shanghai Jiao Tong 
University; Second 
Military Medical 
University(China)

Human bone 
marrow

2 BMSC-Exos; injected 
subcutaneously (six points); 
dose not mentioned; at Day 0

PBS Rats (Sprague-
Dawley)

20 mm

5 Enhanced angiogenesis 
(CD31, α-SMA and Microfil 
perfusion)

miR-221-3p 
/PTEN/AKT/eNOS 
pathway
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1 Accelerated cutaneous 
wound healing

1. AMSC-Exos; smeared at the 
wound; 200 μg in 200 μL PBS; 3 
times/day, 2 wk

2 Exosomes entered the 
dermis of wounds after 
smearing

2 Recombinant human 
epidermal growth factor 
(rhEGF); smeared at the 
wound;3 times/day, 2 wk 3 Mild hyperkeratosis and 

typical fibrous structures 
with new glands and hair 
follicles, implying 
enhanced tissue 
remodeling

4 Enhanced collagen 
synthesis (Col I, Col III), 
deposition and remodeling 
(large amounts, large area, 
regular arrangement and 
dense distribution of new 
collagen)

5 Enhanced cell prolif-
eration and inhibited 
apoptosis

6 Increased blood vessel 
intensity and promoted 
angiogenesis (CD31, VEGF)

7 Repaired skin barrier 
functions (elevated 
expression levels Filaggrin, 
Loricrin, and AQP3)

8 Suppressed expression of 
inflammatory cytokines 
(IL-6, TNF-α, CD14, CD19 
and CD68)

8 Zhao et al[123], 
2021

Tongji University(China) Human adipose 
tissue

3 AMSC-CM; smeared at the 
wound; 3 times/day, 2 wk

PBS;Untreated Mice (db/db) 15 mm

9 Negatively regulated 
MMP1 and MMP3 
expression in promoting 
collagen synthesis

—

1 Accelerated cutaneous 
wound healing

2 Enhanced angiogenesis 
(microcomputed 
tomography, CD31, α-
SMA)

1 miR-126-3p overexpressed 
SMSC-Exos + chitosan wound 
dressings; placed on the wound 
bed with pressure dressing; at 
Day 0

2 Chitosan wound dressings; 3 Promoted re-epithelial-

9 Tao et al[150], 
2017

Shanghai Jiao Tong 
University Affiliated 
Sixth People’s 
Hospital(China)

Human synovial 
membrane

Untreated Rats (Sprague-
Dawley)

18 mm PI3K/AKT and MAPK/ERK 
signaling pathways
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ization, granulation tissue 
formation, collagen 
alignment and deposition, 
implying enhanced ECM 
remodeling

placed on the wound bed with 
pressure dressing; at Day 0

4 Accelerated development 
of hair follicles and 
sebaceous glands

1 Accelerated cutaneous 
wound healing

2 Decreased inflammatory 
cell infiltration

1 LPS-pretreated HUCMSC-
Exos; injected dispersively into 
the wound edge; 60 μg in 0.5 mL 
PBS; at Day 0

3 Regulate macrophage 
polarization to M2 
macrophages

10 Ti et al[126], 2015 Chinese PLA General 
Hospital(China)

Human umbilical 
cord 

2 HUCMSC-Exos; injected 
dispersively into the wound 
edge; 60 μg in 0.5 mL PBS; at 
Day 0

Untreated Rats 10 mm

4 Promoted the appearance 
of new small capillaries

let-7b/TLR4/NF-
κB/STAT3/AKT pathway

1 Accelerated cutaneous 
wound healing.

1 lncRNA H19 overexpressed 
BMSC-Exos; injected into the 
skin around the wound; at Day 0

2 Ameliorated inflam-
mation of the wound (IL-10 
↑, IL-1β↓, TNF-α↓ and 
fewer inflammatory cells 
around the wound)

3 Promoted granulation 
tissue formation

4 Enhanced angiogenesis 
(Increased expression of 
VEGF, TGF-β1, α-SMA, and 
Col I)

5 Suppressed cell apoptosis

11 Li et al[136], 2020 The Fourth Affiliated 
Hospital of Harbin 
Medical 
University(China)

Mouse bone 
marrow

2 BMSC-Exos; injected into the 
skin around the wound; at Day 0

Untreated Mice 
(C57BL/6)

10 mm

6 Interacted with miR-152-
3p via PTEN-mediated 
PI3K/AKT signaling 
pathway (diminished miR-
152-3p expression, elevated 
PTEN expression and 
decreased expression of 
PI3K, AKT and p-AKT)

lncRNA H19/miR-152-
3p/PTEN/ PI3K/AKT 
signaling pathway

1 Accelerated cutaneous 
wound healing

1 GMSC-Exos+ chitosan/silk 
hydrogel sponge; covered the 
wound with restraining 

12 Shi et al.(2017)
[142]

Chinese PLA General 
Hospital(China)

Human gingival 
tissue

1. PBS (100 μL);2. gauze (13 
mm× 13 mm) covered the 
wound

Rats (Sprague-
Dawley)

10 mm —
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bandage; 150 μg in 100 μl PBS; at 
Day 0, changed every 3 d

2 Promoted re-epithelial-
ization, deposition and 
remodeling of ECM (more 
collagen deposition and 
thick wavy collagen fibers, 
the collagen fibers arranged 
in an orderly fashion 
similar to that of normal 
skin)

3 Enhanced angiogenesis 
(CD34, microvessel 
density)

2 Chitosan/silk hydrogel 
sponge; covered the wound with 
restraining bandage; in 100 μL 
PBS; at Day 0, changed every 3 d

4 Enhanced neuronal 
ingrowth (nerve fiber 
density)

1 Accelerated cutaneous 
wound healing

1 AMSC-Exos + human acellular 
amniotic membrane (hAAM) 
scaffold; covered on the wound; 
100 μg in 100 μL PBS; at Day 0, 
every other day, 3 times in total

2 Suppressed wound 
inflammatory responses 
(fewer inflammatory cells 
around the wound and 
higher recruitment of M2 
macrophages to the wound 
sites)

3 Enhanced angiogenesis 
(CD31)

4 Enhanced extracellular 
matrix (ECM) deposition 
(Col III)

2 AMSC-Exos; covered on the 
wound;100 μg in 100 μL PBS; at 
Day 0, every other day, 3 times 
in total

5 Promoted re-epithelial-
ization (completed 
epithelial and dermal 
regenerated)

13 Xiao et al[151], 
2021

Nan Fang Hospital of 
Southern Medical 
University(China)

Human adipose 
tissue

3 hAAM patch; covered on the 
wound; at Day 0, every other 
day, 3 times in total

PBS (100 μL) Mice 
(BALB/c)

10 mm

6 Failed regenerated hair 
follicle and sebaceous 
glands

—

1 Accelerated cutaneous 
wound healing

2 Reduced oxidative stress 
(ROS)

1 HUCMSC-Exos injected locally 
to the wound site; 100 μL, 50 
μg/ml; at days 0, 3, 5, 7, 9, and 
11

3 Promoted granulation 
tissue formation

2 HUCMSC-Exos injected locally 
to the wound site; 100 μL, 100 
μg/mL; at days 0, 3, 5, 7, 9, and 

14 Yan et al[152], 
2022

Union Hospital, Tongji 
Medical College, 
Huazhong University of 
Science and 
Technology(China)

Human umbilical 
cord 

PBS (100 μL) Mice 
(C57BL/6J)

10 mm —
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11 4 Enhanced angiogenesis 
(CD31, mean perfusion unit 
ratio)

1 Accelerated cutaneous 
wound healing

1 BMSC-Exos + carboxyethyl 
chitosan-dialdehyde carboxy-
methyl cellulose hydrogel; 
covered the wound; twice a day, 
two weeks

2 Promoted collagen 
deposition and remodeling, 
and fibrin regeneration

VEGF-mediated PI3K/AKT 
signaling pathways

3 Enhanced antibacterial 
effects by significantly 
inhibiting bacterial growth

4 Skew macrophage 
functional polarity from 
M1 (iNOS) towards an anti-
inflammatory M2 
phenotype (CD206)

5 Decreased inflammatory 
factors (IL-1β, TNF-α)

15 Geng et al[128], 
2022

Jinzhou Medical 
University(China)

Rat bone marrow

2 Carboxyethyl chitosan-
dialdehyde carboxymethyl 
cellulose hydrogel; covered the 
wound; twice a day, two weeks

Untreated Rats (Sprague-
Dawley)

20 mm

6 Promoted proliferation of 
blood vessels and 
angiogenesis (CD31)

1 Accelerated cutaneous 
wound healing

1 BMSC-Exos loaded with miR-
155 inhibitor; injected 
subcutaneously; 0.1 μg/μL; 1 d 
after wound induction 2 Declined miR-155 levels 

with a concomitant 
increase in FGF-7

3 Downregulated 
expression of MMP-2 and 
MMP-9

2 BMSC-Exos; injected 
subcutaneously; 0.1 μg/μL; 1 d 
after wound induction

4 Declined expression of 
pro-inflammatory 
cytokines (TIMP-2, 
lymphotactin, sTNF RI, 
sTNF RII, and LIX); 
declined regulated upon 
activation, normal T cell 
expressed and secreted 
(RANTES) chemokine; 
downregulated pro-inflam-
matory cytokines (IL-1β, IL-
6, and TNF-α) and TGF-β1

5 Promoted re-epithelial-
ization, collagen synthesis 

16 Gondaliya et al
[153], 2022

National Institute of 
Pharmaceutical 
Educationand 
Research(India)

Bone marrow

3 BMSC-Exos loaded with 
negative control sequences; 
injected subcutaneously; 0.1 
μg/μL; 1 d after wound 
induction

Untreated Mice 
(C57BL/6)

4 mm —



Wu J et al. MSC-Exos for diabetic wounds

WJD https://www.wjgnet.com 1081 December 15, 2022 Volume 13 Issue 12

and deposition, 
angiogenesis (α-SMA) and 
vascularization (CAM)

1 Accelerated cutaneous 
wound healing

1 MenSC-Exos; injected 
intradermally; 10 μg in 100 μL of 
PBS; at Day 0

2 Promoted re-epithelial-
ization

3 Induced macrophage 
polarization from M1 
(iNOS) to M2 (Arg) 
phenotype

4 Enhanced angiogenesis 
(VEGF, microvessel 
density)

5 Improved collagen 
deposition (upregulated 
Col I/Col III ratio at Day 7, 
downregulated at Day 14)

6 Decreased size of scar 
tissues

7 Decreased cellularity in 
the granulation tissue

17 Dalirfardouei et 
al[125], 2019

Mashhad University of 
Medical Sciences(Iran)

Human menstrual 
blood

2 MenSCs; injected 
intradermally; 1 × 106 cells in 100 
μL of PBS; at Day 0

PBS (100 μL) Mice 
(C57BL/6)

8 mm

8 Decreased Rela gene 
expression at Day 4, 
enhanced at Day 7.

NF-κB signaling pathway 
(possible)

1 Accelerated cutaneous 
wound healing

2 Promoted re-epithelial-
ization and collagen 
deposition

3 Enhanced angiogenesis 
(CD31)

1 BMSC-Exos + 50 mg/kg 
intraperitoneal tertbutylhy-
droquinone (tBHQ); injected 
subcutaneously of 4 sites at the 
base and edge of the wound; 100 
μg/mL, 200 μL; at Day 0 and 7

2 BMSC-Exos + 200 μL 
intravenous Lenti-sh-NC; 
injected subcutaneously of 4 
sites at the base and edge of the 
wound; 100 μg/mL, 200 μL; at 
Day 0 and 7

3 BMSC-Exos; injected 
subcutaneously of 4 sites at the 
base and edge of the wound; 100 

18 Wang et al[124], 
2022

Affiliated Hospital of 
Nantong 
University(China)

Rat bone marrow PBS Rats (Sprague-
Dawley)

15 mm

4 Reduced inflammation 
(decreased inflammatory 
cytokines TNF-α, IL-1β and 
increased anti-inflam-
matory cytokines IL-4, IL-
10).

—



Wu J et al. MSC-Exos for diabetic wounds

WJD https://www.wjgnet.com 1082 December 15, 2022 Volume 13 Issue 12

μg/mL, 200 μL; at Day 0 and 7

4 BMSC-Exos + 200 μL 
intravenous Lenti-sh-Nrf2; 
injected subcutaneously of 4 
sites at the base and edge of the 
wound; 100 μg/mL, 200 μL; at 
Day 0 and 7

1 Accelerated cutaneous 
wound healing

1 Engineering TNF-α/hypoxia-
pretreated HUVMSC-Exos 
+PCOF; each subsequent day 
later, total 21 d 2 Reduced bacterial burden 

and suppressed bacterial 
colonization in the wound 
sites

2 Engineering TNF-α/hypoxia-
pretreated HUVMSC-Exos; each 
subsequent day later, total 21 d

3 Vancomycin; each subsequent 
day later, total 21 d

3 Reduced the inflam-
matory response (immune 
cells counting); decreased 
proinflammatory cytokines 
(TNF-α, IL-1β, IL-6); 
induced M2 (CD206) 
macrophages polarization

4 Promoted collagen 
deposition and remodeling, 
granulation formation, re-
epithelialization and 
enhanced proliferation of 
fibroblasts

5 Enhanced cell prolif-
eration (Ki67)

6 Suppressed oxidative 
stress induced by bacteria 
and peroxide substrates 
(reduced the content of 
oxidative biomarkers and 
(MDA) increased the 
antioxidant mediators 
(GSH-Px, SOD)

7 Promoted angiogenesis 
(upregulated miR-126, HIF-
1α, VEGF, CD31 and α-
SMA; increased neovascu-
larization)

19 Sun et al[127], 
2022

Nanjing Normal 
University; Nanjing 
University; Nanjing 
medical University; 
Nanjing Tech 
University(China)

Human umbilical 
vein

4 PCOF; each subsequent day 
later, total 21 d

PBS Mice 
(C57BL/6)

15 mm 
(S.aureus-
infected 
chronic 
wounds)

8 In vivo biosafety (blood 
system, heart, liver, kidney 
and other organs)

miR-126/ 
SPRED1/RAS/ERK pathway 
(possible)



Wu J et al. MSC-Exos for diabetic wounds

WJD https://www.wjgnet.com 1083 December 15, 2022 Volume 13 Issue 12

1 Accelerated cutaneous 
wound healing

2 Enhanced angiogenesis 
(μCT), formation and 
maturation of new vessels 
(CD31, α-SMA)

1 miR-126-3p overexpressed 
SMSC-Exos + 
hydroxyapatite/chitosan 
composite hydrogel; placed on 
the wound bed with pressure 
dressing

3 Promoted re-epithelial-
ization, granulation tissue 
maturation, collagen 
alignment and deposition 
that indicated improved 
ECM remodeling

20 Li et al[147], 2016 Shanghai Normal 
University; Shanghai Jiao 
Tong University 
Affiliated Sixth People's 
Hospital(China)

Human synovial 
tissue

2 Hydroxyapatite/chitosan 
composite hydrogel; placed on 
the wound bed with pressure 
dressing

Untreated Rats (Sprague-
Dawley)

18 mm

4 Accelerated growth of 
follicles and sebaceous 
glands

Activated MAPK/ERK and 
PI3K/AKT pathways

1 Accelerated cutaneous 
wound healing

2 Enhanced re-epithelial-
ization and hair follicles 
formation

1 HUCMSC-Exos + polyvinyl 
alcohol (PVA)/alginate (Alg) 
nanohydrogel; locally 
transplanted; 300 μL; once a day

2 HUCMSC-Exos; locally 
transplanted; 300 μL; once a day

3 Promoted collagen 
deposition and remodeling 
(increased and orderly 
arranged collagen fibers)

21 Zhang et al[148], 
2021

Jinzhou Medical 
University(China)

Human umbilical 
cord

3 PVA/Alg nanohydrogel; 
locally transplanted; 300 μL; 
once a day

Untreated Rats (Sprague-
Dawley)

15 mm × 2 
mm

4 Promoted angiogenesis 
(CD31, α-SMA, SR-B1, 
VEGF)

ERK1/2 pathway

1 Accelerated cutaneous 
wound healing

1 lncRNA KLF3-AS1 overex-
pressed BMSC-Exos; injected via 
tail vein; 100 µL; at Day 0

2 Minimized weight loss.

3 Reduced inflammation 
(decreased IL-6 and IL-1β)

2 Negative control silenced 
BMSC-Exos;injected via tail 
vein;100 µL;at Day 0

4 Promoted angiogenesis 
(CD31), collagen deposition 
and follicle regeneration

3 Negative control overex-
pressed BMSC-Exos; injected via 
tail vein; 100 µL; at Day 0

22 Han et al[154], 
2022

The First Affiliated 
Hospital of Zhengzhou 
University(China)

Human bone 
marrow

4 lncRNA KLF3-AS1 silenced 
BMSC-Exos; injected via tail 
vein; 100 µL; at Day 0

Untreated Mice 
(BALB/c)

Not 
mentioned

5 Decreased expression of 
miR-383 and increased 
VEGFA

lncRNA KLF3-AS1/miR-
383/VEGFA signaling 
pathway

1 Accelerated cutaneous 
wound healing

Shanghai Jiao Tong 
University Affiliated 

1 Deferoxamine-preconditioned 
BMSC-Exos (DFO-Exos); injected 

23 Ding et al[155], 
2019

Human bone 
marrow

PBS (100 μL) Rats (Sprague-
Dawley)

20 mm × 2 
mm

miR-126/PTEN/PI3K/AKT 
pathway
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2 Enhanced re-epithelial-
ization and lower scar 
formation

subcutaneously around the 
wounds at four sites; 100 μg in 
100 μL PBS; at Day 0

3 Promoted collagen 
deposition (increased wavy 
collagen fibers)

Sixth People's 
Hospital(China)

2 BMSC-Exos; injected 
subcutaneously around the 
wounds at four sites; 100μg in 
100μL PBS; at Day 0

4 Promoted angiogenesis 
(vessel density by micro-
CT, CD31, α-SMA)

1 Accelerated cutaneous 
wound healing

2 Reduced scar width

3 Accelerated collagen 
deposition (larger and 
better-organized collagen 
deposition)

4 Enhanced fibroblast 
proliferation (PCNA), 
migration (CXCR4), and 
differentiation abilities of 
fibroblast

5 Promoted angiogenesis (α
-SMA)

24 Bian et al[135], 
2020

Chinese PLA General 
Hospital(China)

Human decidua dMSC-sEVs; injected around the 
wounds at 4 sites (25 μL per 
site); 100 μL, 5.22 × 1011 
particles/mL; at Day 7, 14, 
21and 28

PBS (100 μL) Mice (BKS-db) 16 mm

6 Improved fibroblast 
senescent state (p21)

RAGE/RAS; Smad pathways 

1 Accelerated cutaneous 
wound healing

2 Enhanced re-epithelial-
ization

3 Promoted angiogenesis 
(CD34, VEGF)

4 Improved oxidative stress 
(MDA, T-AOC, SOD)

25 Zhang et al[156], 
2022

Xijing Hospital of Fourth 
Military Medical 
University(China)

Human adipose 
tissue

AMSC-Exos; injected 
subcutaneously; 200 μg; 3 d after 
wound induction, for three 
consecutive days

PBS (100 μL) Mice (db/db) 10 mm

5 Reduced inflammatory 
cytokines (IL-1β, IL-6, TNF-
α, MCP-1)

SIRT3/SOD2 pathway

1 Accelerated cutaneous 
wound healing

1 HOX transcript antisense RNA 
(HOTAIR) overexpressed 
BMSC-EVs; injected around the 
wound in a cross pattern of four 2 Promoted angiogenesis 

26 Born et al[157], 
2021

University of Maryland; 
Johns Hopkins 
University School of 
Medicine(USA)

Human bone 
marrow

PBS (50 μL) Mice (db/db) 8 mm —
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sites; 50 μg in 50 μL PBS; at Day 
3, four times

2 BMSC-EVs; injected around 
the wound in a cross pattern of 
four sites; 50 μg in 50 μL PBS; at 
Day 3, four times

(CD31, VEGFA)

1 Accelerated cutaneous 
wound healing

2 Inhibited chronic inflam-
mation: (decreased number 
of inflammatory cells); 
inhibited pro-inflammatory 
cytokines (TNF-α); induced 
M2 (CD206) macrophages 
polarization

3 Enhanced re-epithelial-
ization

4 Promoted angiogenesis 
(increased new blood 
vessels, CD31, VEGF)

27 Teng et al[158], 
2022

Jiangnan University 
(China)

Human umbilical 
cord

HUCMSC-Exos; injected 
subcutaneously around the 
wounds at four sites; 100 μL (100 
μg/mL); at Day 0

PBS (100 μL) Rats (Sprague-
Dawley)

10 mm

5 Promoted collagen 
synthesis and skin 
regeneration

—

HUCMSC-Exos: Human umbilical cord mesenchymal stem cell derived exosomes; PF-127: Pluronic F-127; PBS: Phosphate buffered saline; MVD: Microvascular density; Ki67: Nucleus related antigen; TGF-β: Transforming growth 
factor-β; VEGF: Vascular endothelial growth factor; F127: Pluronic F127; OHA: Oxidative hyaluronic acid; EPL: Poly-ε-L-lysine; Col I: Collagen I; Col III: Collagen III; α-SMA: Alpha smooth muscle actin; BMSC-Exos: Bone marrow 
mesenchymal stem cell derived exosomes; PTEN: Phosphatase and tensin homolog; BMSC-EVs: Bone marrow mesenchymal stem cell derived extracellular vesicles; AMSC-EVs: Adipose tissue mesenchymal stem cell derived 
extracellular vesicles; AMSC-Exos: Adipose tissue mesenchymal stem cell derived exosomes; SIRT1: Silent mating type information regulation 2 homolog-1; LG3: Light chain 3; ECM: Extracellular matrix; PI3K: Phophatidylinositol3-
kinase; eNOS: Endothelial nitric oxide synthase; AMSC-CM: Adipose tissue stem cell conditioned medium; AQP3: Recombinant aquaporin 3; IL-6: Interleukin 6; TNF-α: Tumor necrosis factor alpha; SMSC-Exos: Synovial membrane 
mesenchymal stem cell derived exosomes; MAPK: Mitogen-activated protein; ERK: Extracellular signal regulated kinase; let-7b: MicroRNA let-7b; TLR4: Toll like receptor 4; NF-κB: Nuclear factor kappa-B; STAT3: Signal transducer and 
activator of transcription 3; Il-10: Interleukin 10; IL-1β: Interleukin 1β; GMSC-Exos: Gingival tissue mesenchymal stem cell derived exosomes; iNOS: Inducible nitric oxide synthase; sTNF RI: Soluble tumor necrosis factor receptor I; 
sTNF RII: Soluble tumor necrosis factor receptor II; FGF-7: Fibroblast growth factor 7; LIX: Lipopolysaccharide-induced CXC chemokine; CAM: Chick chorioallantois membrane; MenSC-Exos: Menstrual blood mesenchymal stem cell 
derived exosomes; MenSCs: Menstrual blood-derived mesenchymal stem cells; Arg: Arginase; Lenti-sh-Nrf2: Lentiviral shRNA targeting Nrf2; Lenti-sh-NC: Lentiviral control shRNA; HUVMSC-Exos: Human umbilical vein 
mesenchymal stem cell derived exosomes; PCOF: Polydopamine modified reductive covalent organic frameworks; S.aureus: Staphylococcus aureus; MDA: Malondialdehyde; GSH-Px: Glutathione peroxidase; SOD: Superoxide dismutase; 
SR-B1: Scavenger receptor class B type I; dMSC-sEVs: Decidua mesenchymal stem cell derived extracellular vesicles; PCNA: Proliferating cell nuclear antigen; CXCR4: CXC-chemokine receptor 4; p21: Cyclin-dependent kinase inhibitor 
1A; RAGE: Receptor for advanced glycation end products; RAS: rat sarcoma; T-AOC: Total antioxidant capacity; ,MCP-1: Monocyte chemoattractant protein-1; SIRT3: Silent mating type information regulation 2 homolog 3.

Thus, efficient, stable, safe, and mass-producible stem cells and related products for the treatment of 
diabetic wounds are yet to be explored and developed. More research is required in future clinical trials 
and routine practice to determine the most effective cell sources for diabetic wounds; to establish 
optimal large-scale culture conditions of MSCs; to solve the preparation problem of huge heterogeneity 
of exosome components; to explore standardized isolation, quality control, purification, and character-
ization techniques of MSC-Exos; and to determine the best approach for long-term storage[162]. 
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Table 2 Clinical trials of exosomes in treating various wounds

Start 
year

Institution 
(Nation) Type of wounds Intervention Autologous/Allogeneic Administration, 

frequency
Patients 
number

Follow-up 
period

Outcome 
measures Phase Study design ClinicalTrials.gov 

identifier Status

2022 Shanghai Ninth 
People's 
Hospital 
Affiliated to 
Shanghai Jiao 
Tong 
University 
(China)

Full-layer skin 
wounds

Adipose tissue derived 
exosomes(200-300 mL of 
the subject adipose 
tissue)

Autologous Applied directly to the 
wound (mixed with sterile 
hydrogel), twice a week

5 4 wk Primary: 
Percentage 
of wound 
healing

Not 
Applicable

Non-
randomized, 
single group 
assignment, 
open label

NCT05475418 Not yet 
recruiting

Primary: 
Ulcer size 
(length, 
width, 
depth)

2015 Kumamoto 
University 
(Japan)

Intractable 
cutaneous ulcers (
e.g., rheumatic 
disease, peripheral 
arterial disease, 
chronic venous 
insufficiency, 
decubitus or 
burns)

Plasma-derived 
exosomes (Plasma 
samples will be filtered 
through 0.45 μm and 
0.20 μm filters. The 
samples will be filtered 
through 0.02 μm filter to 
trap exosomes with the 
filter. Saline solution 
will be loaded from the 
other side of the 0.02 μm 
filter to obtain exosome 
rich buffer.)

Autologous Applied to the ulcer, daily 5 28 d

Secondary: 
Pain of 
cutaneous 
wounds 
(VAS)

Early 
Phase 1

Non-
randomized, 
single group 
assignment, 
open label

NCT02565264 Unknown

Primary: 
Dose 
limiting 
toxicity

2023 Aegle 
Therapeutics 
(USA)

Dystrophic 
Epidermolysis 
Bullosa (DEB); 
chronic wounds (< 
20% closure of 
wound during 
observation 
period); 10-50 cm2

Bone marrow 
mesenchymal stem cells 
derived extracellular 
vesicle (AGLE-102)

Allogeneic Multiple administrations 
of 2 ascending dose levels 
of AGLE-102; (up to 6 
administrations); (each 
administration will occur 
14 ± 7 d but no less than 7 
d apart); (each adminis-
tration no more than 3 mo); 
(wound closes prior to 6 
administrations, no 
additional doses will be 
given)

10 8 mo; if the 
wound 
closes 
before 
receiving 
all 6 doses, 
for 4 mo 
after the 
wound 
closes

Secondary: 
Wound size

Phase 1/2 Non-
randomized, 
multicenter, 
ascending 
dose, single 
group 
assignment, 
open label

NCT04173650 Not yet 
recruiting

2019 Mayapada 
Hospital 
(Indonesia)

Chronic wounds Human Wharton's Jelly 
mesenchymal stem cells 
conditioned medium 
(WJ-MSC-CM)

Allogeneic Applied to the wound (the 
conditioned medium gel), 
every week

38 2 wk Primary: 
Success rate 
of chronic 
ulcer 
healing

Phase 1 Non-
randomized, 
single group 
assignment, 
open label

NCT04134676 Completed

Researchers also need to fully understand the abilities, loss, distribution, diffusion efficiency, and 
clearance efficiency of exosomes after transporting them to target areas. Physical, chemical, or biological 
methods for preconditioning, genetic engineering, and transfection are used to specifically enhance a 
certain therapeutic potential to achieve relatively better wound healing than native exosomes, thus 
becoming new treatment directions[163]. Additionally, combining exosomes with biomaterials is 
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Figure 1 Molecular mechanism of mesenchymal stem cell-derived exosomes in diabetic cutaneous wound healing. A: signaling pathways 
most frequently studied in diabetic wound models and may potentially confirmed in diabetic chronic wounds; B: microenvironmental changes in inflammatory stage of 
wound healing after using mesenchymal stem cell-derived exosomes; C: microenvironmental changes in proliferative stage of wound healing after using 
mesenchymal stem cell-derived exosomes. PTEN: Phosphatase and tensin homolog; PI3K: Phophatidylinositol3-kinase; Akt/PKB: Protein kinase B; RAS: Rat 
sarcoma; Raf: Rapidly accelerated fibrosarcoma; MAPK: Mitogen-activated protein; ERK: Extracellular signal regulated kinase; NF-κB: Nuclear factor kappa-B; TGF-β
: Transforming growth factor-β; Smad2/3/4: Drosophila mothers against decapentaplegic.

possible to create bioactive dressings to enhance or combine repair ability, provide local microenvir-
onment stability, and achieve sustained release of exosomes[74]. Additionally, starting clinical trials as 
soon as possible is necessary to verify the optimal dosages, administration methods, and efficacy 
evaluation of MSC-Exos in clinical patients, looking forward to its broad application prospects in 
promoting DCW healing in clinical practice[162].

CONCLUSION
DCWs, which are one of the most common chronic refractory wounds, pose a heavy burden to patients, 
families, and society. Current studies have suggested that MSC-Exos can play an important role in 
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various aspects of wound healing and hold sufficient promise for promoting diabetic wound healing. 
However, recent clinical applications of MSC-Exos in DCW repair are still limited. Moreover, clinical 
translational issues, such as exosome production, isolation, purification, and storage processes, the most 
effective route of administration and dose, and efficacy evaluation remain. Accurate and efficient 
exosome products need to be established, and experiments in animals that have a greater resemblance 
to human skin tissues and clinical trials need to be initiated as soon as possible to validate the optimal 
dosage and administration, and efficacy evaluation for using MSC-Exos to provide safety assurance for 
further clinical applications. Modification of MSC-Exos and integration with biomaterials to improve 
their efficacy and reduce their elimination rate may be a promising direction. We look forward to the 
clinical application of MSC-Exos for diabetic wound healing.
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