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Abstract
BACKGROUND 
Large-scale functional connectivity (LSFC) patterns in the brain have unique 
intrinsic characteristics. Abnormal LSFC patterns have been found in patients 
with dementia, as well as in those with mild cognitive impairment (MCI), and 
these patterns predicted their cognitive performance. It has been reported that 
patients with type 2 diabetes mellitus (T2DM) may develop MCI that could 
progress to dementia. We investigated whether we could adopt LSFC patterns as 
discriminative features to predict the cognitive function of patients with T2DM, 
using connectome-based predictive modeling (CPM) and a support vector 
machine.

AIM 
To investigate the utility of LSFC for predicting cognitive impairment related to 
T2DM more accurately and reliably.

METHODS 
Resting-state functional magnetic resonance images were derived from 42 patients 
with T2DM and 24 healthy controls. Cognitive function was assessed using the 
Montreal Cognitive Assessment (MoCA). Patients with T2DM were divided into 
two groups, according to the presence (T2DM-C; n = 16) or absence (T2DM-NC; n 
= 26) of MCI. Brain regions were marked using Harvard Oxford (HOA-112), 
automated anatomical labeling (AAL-116), and 264-region functional (Power-264) 
atlases. LSFC biomarkers for predicting MoCA scores were identified using a new 
CPM technique. Subsequently, we used a support vector machine based on LSFC 
patterns for among-group differentiation. The area under the receiver operating 
characteristic curve determined the appearance of the classification.
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RESULTS 
CPM could predict the MoCA scores in patients with T2DM (Pearson’s correlation 
coefficient between predicted and actual MoCA scores, r = 0.32, P=0.0066 [HOA-
112 atlas]; r = 0.32, P=0.0078 [AAL-116 atlas]; r = 0.42, P=0.0038 [Power-264 atlas]), 
indicating that LSFC patterns represent cognition-level measures in these patients. 
Positive (anti-correlated) LSFC networks based on the Power-264 atlas showed the 
best predictive performance; moreover, we observed new brain regions of interest 
associated with T2DM-related cognition. The area under the receiver operating 
characteristic curve values (T2DM-NC group vs. T2DM-C group) were 0.65-0.70, 
with LSFC matrices based on HOA-112 and Power-264 atlases having the highest 
value (0.70). Most discriminative and attractive LSFCs were related to the default 
mode network, limbic system, and basal ganglia.

CONCLUSION 
LSFC provides neuroimaging-based information that may be useful in detecting 
MCI early and accurately in patients with T2DM.

Key Words: Connectome-based predictive modeling; Large-scale functional connectivity; 
Mild cognitive impairment; Resting-state functional magnetic resonance; Support vector 
machine; Type 2 diabetes mellitus

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Large-scale functional connectivity (LSFC) patterns show unique character-
istics. Abnormal LSFC patterns have been observed in patients with dementia or mild 
cognitive impairment. Patients with diabetes may develop mild cognitive impairment 
that could potentially progress to dementia. We assessed the applicability of LSFC-
related discriminative features to predict the cognitive level of patients with type 2 
diabetes mellitus using a connectome-based predictive modeling and support vector 
machine. We found that the application of these two techniques, based on LSFC 
patterns, to predict neurocognitive abilities, can complement conventional neurocog-
nitive assessments and aid the management of type 2 diabetes mellitus.

Citation: Shi AP, Yu Y, Hu B, Li YT, Wang W, Cui GB. Large-scale functional connectivity 
predicts cognitive impairment related to type 2 diabetes mellitus. World J Diabetes 2022; 13(2): 
110-125
URL: https://www.wjgnet.com/1948-9358/full/v13/i2/110.htm
DOI: https://dx.doi.org/10.4239/wjd.v13.i2.110

INTRODUCTION
Diabetes is a common and frequently occurring disease in clinical practice. It is a non-
communicable disease that has gradually attracted increased attention worldwide, and 
its incidence is increasing with each passing year[1]. Mild cognitive impairment (MCI) 
occurs in nearly a quarter of patients with type 2 diabetes mellitus (T2DM) and is 
related to a significantly increased risk of developing dementia[2-5]. Patients with 
T2DM may present with deteriorated memory, attention, reagency, and execution[5]. 
In a cross-sectional study, Biessels et al[2] indicated that cognitive function was up to 
0.3-0.5 SD lower than that of healthy controls (HC). T2DM leads to a variety of 
complications, as well as social health and economic problems[3]. In addition, 8.7% of 
patients with MCI rapidly progress to dementia each year[4]. In patients with T2DM 
who have a strong tendency to develop MCI and dementia, elucidating the neural 
mechanisms underlying cognitive dysfunction may assist in clinical identification and 
intervention, which can mitigate the progress of MCI. However, the mechanism 
underlying MCI in patients with T2DM warrants further exploration.

Previous studies using neuroimaging measures including the amplitude of low-
frequency fluctuation[6], regional homogeneity[7], and functional connectivity[8,9] 
have reported potential neurobiological underpinnings in patients with T2DM and 
MCI. However, most of these studies focused on predetermined regions or networks, 

https://creativecommons.org/Licenses/by-nc/4.0/
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including the default mode network (DMN), frontoparietal network (FPN), etc[9-12]. 
Additionally, most of these studies investigated group-wise differences among healthy 
participants, patients with T2DM with or without MCI, and patients with MCI alone, 
which limits the provided cognitive information.

Whole-brain functional connectivity, also known as large-scale functional 
connectivity (LSFC), presents vast functional interaction information between all pairs 
of brain nodes, which facilitates individual phenotypic prediction and the elucidation 
of individual differences in cognitive ability[13,14]. There are robust and reliable 
patterns of LSFC within several brain networks. Therefore, analyzing LSFC patterns 
may help elucidate the neural mechanisms underlying MCI. Abnormal LSFC patterns 
were reported in patients with Alzheimer’s disease or MCI[15,16]. Additionally, recent 
functional magnetic resonance imaging (fMRI) studies have used LSFC to successfully 
predict individual behavioral and cognitive phenotypes, including psychiatric 
disorders[17], attention ability[18,19], intelligence ability[13], and treatment outcomes
[20]. Zeng et al[17] used LSFC to discriminate patients with major depressive disorder 
from matched HC through machine learning (ML) based on LSFC. Similarly, Li et al
[21] used ML and LSFC to classify patients with schizophrenia and HC.

Similar to fingerprints, individual LSFC patterns are highly unique and reliable, and 
could be applicable to the recognition of individual characteristics and cognitive 
function[13,18]. Therefore, some LSFC patterns could be considered as potential 
biomarkers for evaluating or identifying T2DM-related MCI. However, few studies 
have used LSFC combined with ML for assessing T2DM[8]. Thus, this study aimed to 
predict T2DM-related MCI at an individual level using connectome-based predictive 
modeling (CPM) and a support vector machine (SVM) combined with LSFC.

MATERIALS AND METHODS
Participants
All participants' informed consent forms were signed before the experiment began. 
LSFC was examined using resting state (rs)-fMRI data obtained from 42 patients with 
T2DM and 24 HC at Tangdu Hospital, Xi'an, Shaanxi, China, between October 1, 2016, 
and December 30, 2018. All participants were native Chinese speakers. T2DM was 
diagnosed based on the fasting blood glucose test (FBG; ≥ 7.0 mmol/L) and oral 
glucose tolerance test (2 h blood glucose ≥ 11.1 mmol/L after the test)[22], with the 
diagnosis being confirmed by clinical endocrinologists. Additionally, we administered 
the Chinese version of the Montreal Cognitive Assessment (MoCA)[23] and Mini-
Mental State Examination (MMSE)[24] to classify the cognitive levels of all participants 
during this experiment. Trained physicians checked for MCI in patients with T2DM, 
who were divided into the T2DM-C (MoCA score ≤ 23 or MMSE score < 27, n = 16) 
and T2DM-NC (MoCA score ≥ 26 or MMSE score ≥ 27, n = 26) groups. A MoCA score 
≤ 23[25] or MMSE score < 27[24] is indicative of cognitive impairment, whereas a 
MoCA score ≥ 26[25] or MMSE score ≥ 27[24] is considered cognitively normal. The 
exclusion criteria were as follows: other types of diabetes (type 1 diabetes or 
gestational diabetes); a history of severe encephalopathy (injury, tumor, inflammation, 
hemiplegia, or infarction) or myocardial infarction; central nervous system 
dysfunction or medical diseases that considerably affect neurological function, 
including acquired immune deficiency syndrome; taking drugs within 3 mo, such as 
psychoactive and steroid drugs; alcohol or drug addiction; pregnancy; contraindic-
ations for MRI examination, including cardiac pacemakers, artificial heart valves, and 
claustrophobia; body mass index (BMI) >35 kg/m2 (because obesity impairs 
cognition); and unfavorable image quality or lack of coordination (head movement: 
translation >3.0 mm or rotation in any direction >3°). Similar exclusion criteria were 
adopted for the HC group.

MoCA scores
The MoCA is a quick evaluation scale for screening MCI[23,25]. Compared to the 
MMSE, the MoCA is more suitable for the screening and monitoring of MCI and 
dementia[23,25]. In our study, we used the Chinese version of the MoCA Basic 
(MoCA-BC) to assess the cognition level in patients with T2DM. MoCA-BC is 
recognized as a reliable test in cognitive screening, especially for milder forms of 
cognitive impairment across the education of all levels, especially in older Chinese 
adults, which has higher acceptance and better reliability[26]. It has good standard 
correlation validity (Pearson correlation coefficient MoCA-BC vs. MMSE = 0.787) and 
credible internal consistency (Cronbach alpha = 0.807)[26]. MoCA is scored on a 30-
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point scale and comprises 11 items assessing orientation, attention, calculation, recall, 
and language. A MoCA score ≤ 23 indicates cognitive impairment and one ≥ 26 is 
considered to indicate cognitively normal.

Image acquisition and preprocessing
MRI data were obtained using a GE Discovery MR750 3.0T scanner (GE Medical 
Systems) with a brand-new coil system and high scanning speed. Foam pads were 
used to minimize head movement and earplugs were used to silence the scanner noise. 
During the acquisition phase, the participants were asked to relax, including at rest, to 
close their eyes, not think about anything, not allow being disturbed by others, and not 
to sleep. We recorded the blood oxygen level-dependent signals of spontaneous fluctu-
ations during wakeful rest to assess brain activity. Three-dimensional brain volume 
(3D-BRAVO) and blood oxygen level-dependent sequences were used to obtain 
structural (including high-resolution T1-weighted images) and functional images, 
respectively. For details regarding the scanning parameters, see the Supplementary 
Material.

Data processing was conducted using DPABI (http://www.rfmri.org/)[27] and 
SPM (http://www.fil.ion.ucl.ac.uk/spm/), as well as homemade codes in MATLAB 
2018a (MathWorks, Inc., Natick, MA). For details regarding rs-fMRI data prepro-
cessing, see the Supplementary Material.

Functional connectivity network construction
Figure 1A shows the procedure for constructing functional brain networks. Brain 
regions were marked using three templates; namely, the Harvard Oxford (HOA-112) 
atlas[28], Automated Anatomical Labeling (AAL-116) atlas[29], and 264-region 
functional (Power-264) atlas introduced by Power et al[30]. We used the Pearson 
correlation analysis to calculate the mean time series of any two brain regions. Fisher’s 
r-to-z transformation was applied to convert correlation coefficients to z-values. For 
each participant, an N × N (HOA-112 atlas, n = 112; AAL-116 atlas, n = 116; Power-264 
atlas, n = 264) symmetric matrix was obtained.

We defined network nodes using the HOA -112, AAL-116, and Power-264 atlases. 
As previously described[31], 112 nodes were used to divide the brain into eight 
functional networks and the 116 nodes into nine macroscale brain regions. The eight 
functional networks included the visual (VN), sensory-motor (SMN), dorsal attention 
(DAN), ventral attention (VAN), limbic system, FPN, DMN, and basal ganglion (BG) 
networks. The nine macroscale brain regions included the VN, SMN, DAN, VAN, 
limbic system, FPN, DMN, BG, and cerebellar networks. Additionally, 264 nodes were 
divided into 14 Large-scale regions[30]. These nodes belonged to the DMN, salience, 
Cingulo-opercular Task Control (COTC), Fronto-parietal Task Control (FPTC), DAN, 
VAN, VN, auditory, Sensory/somatomotor Hand (SSH), Sensory/somatomotor 
Mouth (SSM) subcortical, Memory retrieval, cerebellar and uncertain networks. Details 
regarding the three templates can be found in Supplementary Tables 1, 2 and 3, as well 
as Supplementary Figure 1. Additionally, we calcula-ted the group mean functional 
connectivity matrices (FCMs) based on the three atlases for all three groups. Pairwise 
connectivity among the network nodes was described as a two-dimensional matrix 
using the functional connectivity matrix (FCM). In Supplementary Figure 2, the 
various regions of high (redder) and low (bluer) synchronization levels represent the 
FCM patterns of both patient groups, which were complex and similar. However, no 
evident between-group differences were found in the highlighted areas. Generally, the 
patient groups had fewer but stronger connections than the HC group.

Feature selection and connectome-based predictive modeling
Machine learning-based classification and prediction can allow the identification of 
clinically feasible neuroimaging biomarkers for cognitive decline in T2DM patients. 
We used CPM and SVM to obtain neuroimaging-based information potentially 
facilitating the clinical diagnosis of T2DM-C. Both analytical methods established links 
between the LSFC and several behavioral measures to generate a predictive model of 
behavioral data obtained from LSFC. However, SVM used the participants’ group 
labels (i.e., T2DM-C, T2DM-NC, and HC) as behavioral data while CPM used the 
MoCA scores in patients with T2DM.

Figure 1B illustrates the key CPM steps. Step 1: For each participant, CPM inputs 
comprised a set of M × M FCMs based on three atlases and a set of behavioral 
measures (here, MoCA scores). In the set of M × M FCMs, the number of brain regions 
or nodes is denoted by M; moreover, the between-node connection strength is 
associated with the matrix elements. Step 2 (feature selection): The Pearson’s 
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Figure 1 The prediction and classification flowchart. A: Relevant information from image preprocessing to feature identification; B: Detailed steps of 
connectome-based predictive modeling; C: Detailed steps of support vector machine. rs-fMRI: Resting state functional magnetic resonance imaging; HOA -112: 
Harvard Oxford atlas; AAL-116: Automated Anatomical Labeling; Power-264: 264-region functional atlas introduced by Power et al; FCM: Functional connectivity 
matrix; MoCA: Montreal Cognitive Assessment; T2DM: Type 2 diabetes mellitus; T2DM-C/T2DM-NC: Patients with T2DM with the presence/absence of mild cognitive 
impairment; HC: Healthy controls; LOOCV: Leave-one-out cross validation; FC: Functional connectivity.

correlation of each edge in the FCMs with the MoCA scores was computed. The most 
significant edges were pitched on by linear regression and subsequently merged into a 
single value for each participant. Based on the sign of the resultant r values with 
respect to a threshold of P < 0.01, they were separated into positive and negative tails 
(i.e., positive and negative correlations, respectively, between the edge strength and 
MoCA scores)[18,32]. Subsequently, the positive and negative network strengths were 
computed by summing the edge strengths (i.e., Z scores) for all edges in the positive 
and negative tails, respectively. Finally, we assessed the correlations of the positive 
and negative network strengths with the MoCA scores. Step 3 (line model building): 
Next, once the assumption of a linear relationship between the summary value of the 
connectivity data (independent variable) and the behavioral variable (dependent 
variable) was true, the predictive model was built; this was done separately for the 
positive and negative edge sets. Step 4 (prediction of novel participants): For each 
participant, the positive and negative edge sets were predicted by the behavioral 
measures. Given the limited sample size, leave-one-out cross validation (LOOCV) was 
applied separately to training and test data. The training and test datasets comprised 
N-1 and one participant, respectively. Step 5 (evaluation of predictive model): The 
comparison between the predicted and observed values can effectively evaluate the 
predictive model. Predictive accuracy was assessed using Pearson correlation analysis 
of the predicted and actual scores (r predicted-actual). Prediction performance was 
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assessed using permutation tests.

Feature selection and support vector machine 
An SVM model was used to identify LSFC biomarkers for differentiating between the 
T2DM-NC/T2DM-C, T2DM-NC/HC, and T2DM-C/HC groups. SVM is the most used 
classification algorithm in ML[33]. For instance, we trained an SVM model using the 
training dataset to map the set of features of respective labels when given a specific 
feature (e.g., LSFC) and label (e.g., T2DM and HC). Therefore, given a new dataset, the 
SVM can be used to predict its label (group). The performance of these models was 
estimated through LOOCV using measures of accuracy, sensitivity, the receiver 
operating characteristic (ROC) curve, and the area under the ROC curve (AUC). The 
use of SVM was dependent on the Statistics and Machine Learning Toolbox in 
MATLAB 2018a. Figure 1C illustrates the detailed steps of SVM. Step 1: For further 
selection, some lower triangle elements of each FCM were extracted. The feature space 
spanned (112 × 111)/2 = 6216, (116 × 115)/2 = 6670, and (264 × 263)/2 = 34716 
dimensional functional connections for the HOA-112 atlas, AAL-116 atlas, and Power-
264 atlas, respectively. Step 2 (feature selection): As reported previously[17,21], the 
analysis mentioned above was performed via two-sample t-tests and LOOCV. 
Specifically, 66 observations (FCMs with among-group differences) were subdivided 
into 66 folds. For each fold, the features were ranked in descending order based on the 
absolute between-group t values, followed by selection of the most discernible 
connections (from 1 to 375). Step 3 (input the classification features): We input the 375 
highest-ranked functional connections into the SVM classifier model trained by 
LOOCV using the training data. Step 4 (evaluate the appearance of the SVM model 
using ROC curves and AUC): Sensitivity and specificity refer to the proportion of true 
positive and negative samples, which are associated with the diagnostic values.

Statistical analysis
SPSS (version 20.0; SPSS, Chicago, IL, USA) was used for statistical analysis. P < 0.05 
indicated statistical significance. Grouped non-continuous data, including sex, were 
compared using chi-squared tests. We used one-way analysis of variance to evaluate 
normally distributed quantitative data, including education, HbA1c (%), BMI, self-
rating anxiety scale (SAS) scores, and self-rating depression scale (SDS) scores. The 
SDS is a simple, 20-question scale that reflects depressive mood, physical symptoms, 
psychomotor behavior, and psychological symptom experience based on how one 
feels over the course of a week. Since it is self-administered, the test is widely used and 
does not require others’ participation. The SAS is a self-rating scale containing 20 items 
(hoping to elicit 20 symptoms) divided into 4 grades. The main evaluation item is the 
frequency of the occurrence of the defined symptoms. The criteria are: “1” the 
symptoms occur a little or none of the time; “2” a small part of the time; “3” a lot of the 
time; “4” most or all the time. The SAS is intended for adults with symptoms of 
anxiety. At the same time, it has a wider applicability than the SDS. For values with 
significant among-group differences, the least significant difference was used to 
perform post hoc comparisons between each group pair. Non-normally distributed 
continuous quantitative data, including age, FBG, waist-to-hip ratio (WHR), systolic 
pressure, diastolic pressure, total cholesterol, high-density lipoprotein (HDL) 
cholesterol, triglycerides, urinary microalbumin, duration of diabetes, MMSE scores, 
and MoCA scores, are expressed as the median (minimum, maximum). Between-
group and among-group differences in non-normally distributed data were evaluated 
using the Mann-Whitney U test and Kruskal-Wallis non-parametric comparisons, 
respectively. However, the Kruskal-Wallis test could not perform pairwise 
comparisons among the three groups, which were performed directly through SPSS 
version 20.0.

P-values were corrected, and multiple comparison issues were addressed by 
permutation tests[34] performed by randomly assigning participants to two groups 
5,000 times. When regional volume and eigenvector centrality values did not belong to 
the 95% of the null distribution of permutation tests (P < 0.05, corrected), the 
differences were considered significant. All the analyses mentioned above were 
performed using MATLAB.
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RESULTS
Demographic and clinical characteristics
Table 1 summarizes the clinical and demographic characteristics of the T2DM-NC, 
T2DM-C, and HC groups. No significant between-group differences were found in 
age, sex distribution, BMI, blood pressure, total cholesterol, triglycerides, urinary 
microalbumin, duration of diabetes, SAS scores, and SDS scores. Compared with the 
T2DM-C group, the T2DM-NC and HC groups had higher levels of education (P = 
0.040 and P = 0.015, respectively), MMSE scores (P < 0.001 and P = 0.002, respectively), 
and MoCA scores (P < 0.001 and P = 0.001, respectively). No significant differences 
were found in education, MMSE scores, and MoCA scores between the T2DM-NC and 
HC groups. Furthermore, compared with the HC group, the T2DM-C/NC groups had 
higher levels of HbA1c (P < 0.001), HDL cholesterol (P = 0.005, P = 0.006), FBG (P = 
0.001, P < 0.001), and WHR (P = 0.017, P = 0.002, respectively). No significant 
differences were found in the levels of HbA1c, HDL cholesterol, FBG, and WHR 
between the T2DM-C/NC groups.

Individualized prediction of T2DM outcome
Based on the fMRI data, we found that the CPM, which was based on positive network 
strength, could significantly predict the participants’ MoCA scores (Pearson’s 
correlation of predicted and observed MoCA scores, r = 0.32, P = 0.0066 [HOA-112 
atlas]; r = 0.32, P = 0.0078 [AAL-116 atlas]; r = 0.42, P = 0.0038 [Power-264 atlas]; see 
Table 2 and Figure 2). However, the predictions were not significant in the negative 
network model. Compared to the random label (P < 0.01), permutation tests (repetition 
times: 5000) indicated the higher actual classification accuracy.

For the HOA-112 atlas, between-network connectivity in the VAN, DMN, and SMN 
was crucially involved in predicting the MoCA scores in patients with T2DM. For the 
AAL-116 atlas, significantly discriminative LSFCs were mainly located across the 
limbic system, DMN, VN, BG, and cerebellum. For the Power-264 atlas, the most 
significantly predictive LSFCs were those between the VN and SSH. Overall, highly 
discriminative LSFCs were mainly located in the DMN, limbic system, BG, and VN.

Network anatomy predicts MoCA scores
Next, we investigated the neuroanatomy of positive MoCA networks. Figure 3A-C 
show a circle plot visualization for edges, which comprises the positive MoCA 
networks. These figures present the general neurocognitive composition of positive 
MoCA networks, which are indicative of the advanced descriptions of the brain 
regions involved. Figure 3D-F show glass brain plots displaying the above LSFCs 
localized in the 3D brain space. These figures indicate that these LSFCs, which were 
used to predict the differences between MoCA scores, were not located in specific 
brain regions but distributed throughout the brain.

Individualized classification of T2DM outcomes
Table 3 and Figure 4 show the ROC curves and AUC values. We selected 375 
functional connections using the LOOCV after achieving the highest performance. 
Although the SVM model did not achieve good performance in three two-category 
classifications, the highest performance was achieved in discriminating between the 
T2DM-C/NC groups using the 375 highest-ranked functional connections (HOA-112 
atlas: AUC=0.70, specificity = 0.69, sensitivity = 0.73, P = 0.0144; AAL-116 atlas: AUC = 
0.65, specificity = 0.69, sensitivity = 0.65, P = 0.0556; Power -264 atlas: AUC = 0.70, 
specificity = 0.63, sensitivity = 0.77, P = 0.0160).

For the HOA-112 atlas, between-network connectivity in the BG, SMN, and FPN 
was crucially involved in discriminating between the T2DM-C/NC groups. For the 
AAL-116 atlas, the most discriminative and attractive LSFCs were located between the 
limbic system and the BG, as well as between the DMN and cerebellum. For the 
Power-264 atlas, the most significantly predictive functional connections were between 
the DMN and FPTC network. Overall, the DMN and BG were crucially involved in 
differentiating between the T2DM-C/NC groups.

Network anatomy in the classification of T2DM-C and T2DM-NC
Next, we visualized the neuroanatomical location of the network identified by classi-
fication (T2DM-C group vs. T2DM-NC group). Figure 5A-C demonstrate the network 
identified by classification after grouping the edges into macroscale brain regions. 
Figures 5D-F show glass brain plots displaying the same LSFCs localized in the 3D 
brain space; these figures indicate that these LSFCs, which were also used to predict 
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Table 1 Demographic and clinical characteristics of these three groups

Characteristics T2DM-NC (n = 26) T2DM-C (n = 16) HC (n = 24) P value

Age (yr)2 51 (34, 65) 54 (39, 67) 49 (26, 59) 0.227

Female/Male 4/22 6/10 9/15 0.153

Education  (yr) 1 12.88 ± 2.55 10.81 ± 2.76 13.38 ± 3.88 0.040

HbA1c  (%)1 8.13 ± 1.87 9.06 ± 1.77 5.66 ± 0.33 0.000

FBG  (mg/dL) 2 7.85 (4.20, 15.80) 7.60 (3.60, 11.70) 5.20 (4.80, 6.80) 0.000

BMI  (kg/m2) 1 25.26 ± 2.43 24.90 ± 2.97 23.80 ± 2.41 0.779

WHR2 0.91 (0.76, 0.96) 0.91 (0.86, 0.96) 0.87 (0.78, 0.93) 0.004

Blood pressure (mmHg)

SP2 128.00 (105.00, 150.00) 120.00 (101.00, 150.00) 128.00 (100.00, 181.00) 0.836

DP2 80.00 (60.00, 90.00) 80.00 (60.00, 90.00) 80.00 (67.00, 118.00) 0.432

Total cholesterol2 4.04 (2.76, 6.69) 4.21 (2.63, 5.71) 4.43 (3.69, 5.39) 0.407

HDL cholesterol2 1.35 (0.43, 6.60) 1.26 (0.53, 8.08) 0.94 (0.71, 1.64) 0.001

Triglycerides (mg/dL)2 1.75 (0.43, 6.60) 1.26 (0.53, 8.08) 2.06 (0.87, 6.41) 0.457

UMA (μg/min)2 12.45 (1.00, 342.70) 15.95 (7.00, 299.00) 13.65 (0.40, 58.60) 0.706

Duration of diabetes  (mo)2 96.00 (0.25, 180.00) 24.00 (0.25, 228.00) 0.515

MMSE2 29.00 (27.00, 30.00) 26.00 (23.00, 29.00) 28.00 (27.00, 30.00) 0.000

MoCA2 27.00 (25.00, 30.00) 24.00 (18.00, 30.00) 27.00 (24.00, 30.00) 0.000

SAS1 41.62 ± 7.12 43.75 ± 7.26 39.54 ± 7.00 0.190

SDS1 46.12 ± 6.87 45.31 ± 8.46 41.71 ± 10.07 0.172

1Data are presented as mean  ±  SD.
2Data are presented as median  (minimum, maximum).
P < 0.05 was considered significant. T2DM: Type 2 diabetes mellitus; T2DM-C/T2DM-NC: Patients with T2DM with the presence/absence of mild 
cognitive impairment; HC: Healthy controls; HbA1c: Glycosylated hemoglobin A1c; FBG: Fasting blood glucose; BMI: Body mass index; WHR: Waist-to-
Hip Ratio; SP: Systolic pressure; DP: Diastolic pressure; HDL: High density lipoprotein; UMA: Urinary microalbumin; MMSE: Mini-mental state 
examination; MoCA: Montreal cognitive assessment; SAS: Self-rating anxiety scale; SDS: Self-rating depression scale.

Table 2 Prediction outcome

Brain atlas Correlation coefficient P value

HOA-112 atlas 0.32 0.0066

AAL-116 atlas 0.32 0.0078

Power-264 atlas 0.42 0.0038

HOA-112: Harvard Oxford atlas; AAL-116: Automated Anatomical Labeling; Power-264: 264-region functional atlas introduced by Power et al.

the differences between MoCA scores, were not located in specific brain regions but 
distributed throughout the brain.

DISCUSSION
The present study examined whether we could adopt LSFC patterns as discriminative 
features to classify and predict cognitive impairment related to T2DM with a high 
degree of accuracy. Compared to neuropsychological scales, which may be unreliable 
and subjective, it is evident from our results that LSFC is useful in the early detection 
of MCI related to T2DM. Our results indicate that functional networks contain 
clinically relevant cognition-related information, which is defined in a data-driven 
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Table 3 Classification outcome

Group Brain atlas AUC Specificity Sensitivity P value

HOA-112 atlas 0.70 0.69 0.73 0.0144

AAL-116 atlas 0.65 0.69 0.65 0.0556

T2DM-NC vs T2DM-C 

Power-264 atlas 0.70 0.63 0.77 0.0160

HOA-112 atlas 0.54 0.75 0.42 0.3122

AAL-116 atlas 0.53 0.58 0.54 0.3804

T2DM-NC vs HC 

Power-264 atlas 0.56 0.58 0.58 0.2478

HOA-112 atlas 0.54 0.63 0.56 0.3152

AAL-116 atlas 0.72 0.67 0.75 0.0096

T2DM-C vs HC 

Power-264 atlas 0.70 0.79 0.63 0.0184

HOA-112 atlas 0.67 0.63 0.69 0.0144

AAL-116 atlas 0.63 0.58 0.64 0.0444

T2DM vs HC 

Power-264 atlas 0.50 0.50 0.67 0.4898

T2DM: Type 2 diabetes mellitus; T2DM-C/T2DM-NC: Patients with T2DM with the presence/absence of mild cognitive impairment; HC: Healthy controls; 
AUC: The area under the receiver operating characteristic curve; HOA-112: Harvard Oxford atlas; AAL-116: Automated Anatomical Labeling; Power-264: 
264-region functional atlas introduced by Power et al.

Figure 2 The connectome-based predictive modeling predicted the Montreal Cognitive Assessment scores. Scatterplot of predicted the Montreal 
Cognitive Assessment (MoCA) scores vs. actual MoCA scores. Predicted scores were derived from edges positively correlated with prediction (positive network). r: 
The r value of Pearson's correlation of predicted the MoCA scores and actual MoCA scores; P: P values from permutation tests (5000 times); T2DM: Type 2 diabetes 
mellitus; T2DM-C/ T2DM-NC: Patients with T2DM with the presence/absence of mild cognitive impairment; HOA -112: Harvard Oxford atlas; AAL-116: Automated 
Anatomical Labeling; Power-264: 264-region functional atlas introduced by Power et al.

manner and has the potential to be a biomarker to assess the degree of cognitive 
decline related to T2DM.

T2DM is often associated with cognitive impairment and a higher dementia risk. 
Patients with T2DM may present with deteriorated memory, attention, reagency, and 
execution[2-5]. However, the exact pathophysiological mechanisms underlying T2DM-
related cognitive dysfunction remain unclear, which impedes the development of 
preventive treatments. We analyzed resting-state fMRI data using the CPM and SVM. 
We computed the LSFC patterns using three types of functional brain atlases that 
separately comprised 112, 116, and 264 nodes covering the whole brain. The SVM-
based classification results were not as expected; the exact reasons for which remain 
unclear. However, the CPM-based prediction results were positive, with exciting 
prospects. There have been no previous CPM studies on patients with T2DM; 
moreover, this is the first study to identify LSFC as an imaging biomarker for 
predicting T2DM-related MCI using CPM. CPM can reliably predict the participants’ 
MoCA scores, which was based on positive network strength (r = 0.32, P = 0.0066 
[HOA-112 atlas]; r = 0.32, P = 0.0078 [AAL-116 atlas]; r = 0.42, P = 0.0038 [Power-264 
atlas]). Highly discriminative and attractive LSFCs were mainly located within the 
DMN, limbic system, BG, VN, or across these regions. Our findings suggest that the 
resting-state LSFC can reveal T2DM-related MCI, which could be more reliable than 
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Figure 3 Functional connections predicting individual Montreal Cognitive Assessment scores based on three atlases. A-C: On the far left of 
the image above, edges were classified as macroscale brain regions, and visualized by circle plots, in which nodes are grouped based on their anatomic location. The 
resting-state network (RSN) of the brain based on three templates is represented by a rectangle on the circumference of the big circle. The lines connecting two 
rectangles represent the connections between the corresponding one or two RSNs, including inter-network connections and intra-network connections. The thickness 
of the line represents the weight (i.e., connectome-based predictive modeling weight) of the connection. The thicker the line, the larger the weight. This visualization 
was created using Circos (http://circos.ca/). D-F: On the right of the image above, the same edges are visualized in the brain. The lines represent edges connecting 
the spheres, which in turn represent nodes. A legend indicating the approximate anatomic ‘lobe’ is shown in the far right side of the figure. HOA -112: Harvard Oxford 
atlas; AAL-116: Automated Anatomical Labeling; Power-264: 264-region functional atlas introduced by Power et al; VN: Visual Network; SMN: Sensory-motor 
Network; DAN: Dorsal Attention Network; VAN: Ventral Attention Network; Limbic: Limbic System; FPN: Fronto-parietal network; DMN: Default mode network; BG: 
Basal ganglia; SSH: Sensory somatomotor hand; SSM: Sensory somatomotor mouth; COTC: Cingulo-opercular task control; Memory: Memory retrieval; FPTC: 
Fronto-parietal task control.

standardized neuropsychological scales. There is significant interest in using the LSFC 
to predict human behavior. We found that the LSFC-based CPM could effectively 
predict the MoCA scores in patients with T2DM. The prediction of neurocognitive 
abilities from CPM can complete the conventional assessments. The CPM-related 
positive network was used as a T2DM-related MCI connectivity measure and showed 
favorable results based on the Pearson correlation coefficient. CPM can predict 
individua behaviors or characteristics by LSFC, which is novel and data-driven[13,35]; 
moreover, it can successfully predict the number of psychiatric and psychological 
phenotypes[32,36]. CPM can isolate brain “fingerprints” that identify individual 
participants from a group[13], as well as predict personality traits[32], sustained 
attention[18,37], treatment outcomes[20], and cognitive dysfunction[8,38]. However, 
unlike previous studies on fluid intelligence[13] and attention[18], where the positive 
and negative networks showed comparable predictive performance, we found that the 
negative network showed an unfavorable predictive performance.

Regarding the functional anatomy of the edges, which is most relevant to individual 
differences in the degree of cognition, we paid more attention to the CPM-positive 
network. Moreover, lower MoCA scores were associated with higher network 
strength, indicating more severe cognitive dysfunction. This suggests that the 
cognitive decline in T2DM patients may involve abnormal connectivity among these 
different resting-state networks. For both prediction and classification, most 
significantly discriminative functional connections were related to the DMN, limbic 
system, and the BG.

http://circos.ca/)
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Figure 4 Classification efficiency of support vector machine based on three atlases. The classification effect was not very ideal. A: The area under 
curve (AUC) value of patients with type 2 diabetes mellitus (T2DM) with the absence of mild cognitive impairment (T2DM-NC) Verus healthy controls (HC) group was 
0.54 [Harvard Oxford (HOA-112) atlas], 0.53 [Automated Anatomical Labeling (AAL-116) atlas], 0.56 [264-region functional (Power-264) atlas]; B: the AUC value of 
patients with T2DM with the presence of mild cognitive impairment (T2DM-C) Verus HC group was 0.54 (HOA-112 atlas), 0.72 (AAL-116 atlas), 0.70 (Power-264 
atlas); C: the AUC value of T2DM Verus HC group was 0.67 (HOA-112 atlas), 0.63 (AAL-116 atlas), 0.50 (Power-264 atlas); D: the AUC value of T2DM-C Verus 
T2DM-NC group was 0.70 (HOA-112 atlas and Power-264 atlas), 0.65(AAL-116 atlas). ROC: receiver operating characteristic curve.

The DMN is activated during wakeful rest and deactivated during cognitive task 
execution; further, it is involved in cognitive processing[8,11]. The DMN comprises 
several brain regions, including the anterior cingulate cortex; medial prefrontal cortex; 
and the medial, lateral, and inferior parietal cortices[39], which are involved in 
constructing self-related mental simulations, including recalling the past, thinking 
about the future, and understanding others’ perspectives[8,11]. Cognitive impairment 
in T2DM is related to reduced connectivity in cognition-related networks, most 
prominently in the DMN[40]. Changes in brain structure and function are associated 
with the deterioration of cognition; moreover, blood glucose fluctuations (hypergly-
cemia or hypoglycemia) may be related to T2DM-related brain changes[41]. Repeated 
hyperglycemia and hypoglycemia can lead to a variety of metabolic and molecular 
changes that eventually lead to widespread changes in brain cells. However, the exact 
causes of T2DM-related changes in the DMN are unclear. Specific alterations in 
functional connectivity may contribute to cognitive decline in patients with T2DM and 
may represent a promising biomarker.

The cingulate/paracingulate gyrus and parahippocampal gyrus are indispensable 
to the functioning of the limbic system. They are crucially involved in learning, 
emotion, memory, and other processes. A recent meta-analysis, including 15 structural 
studies and 16 functional studies, reported decreased global and regional gray matter 
volume in the limbic system of patients with T2DM, which could be associated with 
poor cognitive performance[42]. The results from some studies indicate that the 
changes in limbic regions, especially in dendritic structures, inhibit the formation of 
the spinal cord due to the chronic hyperglycemia; moreover, they may also disrupt the 
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Figure 5 Functional connections classifying patients with type 2 diabetes mellitus with the present of mild cognitive impairment and 
patients with type 2 diabetes mellitus with the absence of mild cognitive impairment based on three different atlas. A-C: On the far left of the 
image above, edges were classified as macroscale brain regions and were visualized using circle plots, in which nodes are grouped based on anatomic location. The 
resting-state network (RSN) of brain based on three atlas is represented by a rectangle on the circumference of the big circle. The lines connecting two rectangles 
represent the connections between the corresponding one or two RSN, including inter-network connections and intra-network connections. The thickness of the line 
represents the weight (i.e., support vector classification weight) of the connection. The thicker the line, the larger the weight. This visualization was created using 
Circos (http://circos.ca/); D-F: On the right of the image above, the same edges are visualized on brains. The lines represent edges connecting the spheres, which 
represent nodes. A legend indicating the approximate anatomic ‘lobe’ is shown in the far right side of picture. VN: Visual network; SMN: Sensory-motor network; DAN: 
Dorsal attention network; VAN: Ventral attention network; Limbic: Limbic system; FPN: Fronto-parietal network; DMN: Default mode network; BG: Basal ganglia; SSH: 
Sensory Somatomotor hand; SSM: Sensory somatomotor mouth; COTC: Cingulo-opercular task control; Memory: Memory retrieval; FPTC: Fronto-parietal task 
control.

processes of memory and learning[43,44]. In addition, multi-timescale variability of 
abnormal glucose regulation may be associated with poor cognitive function in 
patients with T2DM, which may be attributed to the gray matter atrophy in the limbic 
region[45].

Different structures within the basal ganglia, which is involved in movement 
regulation, play different roles in various diseases. Lesions in the basal ganglia region 
mainly result in abnormal movement (increased or decreased movement) and changes 
in muscle tone (increased or decreased). The basal ganglia represent an important 
neural functional area, closely related to sensory, motor, visual, behavioral and other 
functions. This area has a high incidence of stroke. Parkinson's disease and 
Huntington's disease are among the most studied diseases in the area[46]. There is no 
adequate evidence regarding a relationship between the basal ganglia and T2DM; 
however, patients with T2DM-C have been shown to have severely impaired overall 
network efficiency, with decreased lymph node efficiency and connections in multiple 
regions, including the limbic system and BG[47]. Additionally, a meta-analysis 
reported reduced overall brain volume and BG atrophy in patients with T2DM[48]. 
Basal ganglia changes in diabetics typically occur in hyperglycemic osmotic states in 
older Asian women[49]. Attributable causes of dyskinesia in diabetic patients include 
hyperglycemia, high viscosity, changes in brain gamma aminobutyric acid meta-
bolism, diabetic angiopathy, and cytotoxic edema. High blood sugar and viscosity can 
break down the blood-brain barrier, leading to ischemia. Taken together, T2DM-
related cognitive impairment may involve abnormal connection patterns across the 
DMN, limbic system, and BG.

http://circos.ca/)
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Overall, our study has three main features. First, this is the first study to 
successfully apply CPM in patients with T2DM for identifying neuroimaging 
biomarkers associated with cognitive impairment. Second, unlike most previous 
studies that performed between-group comparisons using a priori defined brain 
regions/networks[8,9,11,40], we performed whole-brain bottom-up analyses. 
Therefore, our method could facilitate the identification of crucial features for 
predicting cognitive performance at an individual level. Third, we used three brain 
templates, namely the HOA-112, AAL-116, and Power-264 atlases, to demonstrate the 
predictive utility of CPM for determining T2DM-related cognitive impairment from 
different perspectives. Still, there are some limitations in this study. First, doubling our 
sample size might have increase the generalizability of our results. Second, we only 
used rs-fMRI data, whereas other modalities like structural MRI and diffusion-
weighted imaging might provide complementary information to improve the quanti-
fication of brain networks. Finally, according to our findings, the neurobiological 
changes of T2DM can be reflected by the resting-state brain network. More in-depth 
and longitudinal studies are required to elucidate the specific influence on T2DM 
pathogenesis, especially T2DM-related problems in thought processing.

CONCLUSION
This study used the CPM method to identify LSFC patterns, including connections 
across the DMN, limbic system, and BG, as potential biomarkers for overall cognitive 
status in patients with T2DM. LSFC provided neuroimaging-based information that 
could clinically predict the MoCA scores in patients with T2DM. Applying CPM based 
on LSFC for predicting neurocognitive abilities can complement conventional 
neurocognitive assessments and facilitate the management of patients with T2DM.

ARTICLE HIGHLIGHTS
Research background
Whole-brain functional connectivity patterns, or large-scale functional connectivity 
(LSFC) patterns, are both highly unique and reliable in each individual, and similar to 
a fingerprint, can identify individual differences in personality traits or cognitive 
functions. Abnormal LSFC patterns have been found in patients with dementia, as 
well as in those with mild cognitive impairment (MCI), which predicted their 
cognitive performance. It has been reported that patients with type 2 diabetes mellitus 
(T2DM) may develop MCI that could progress to dementia. We assessed the applic-
ability of LSFC-related discriminative features to predict the cognitive level of patients 
with T2DM using a connectome-based predictive modeling (CPM) and support vector 
machine (SVM).

Research motivation
Whether machine learning techniques like CPM and SVM could utilize LSFC patterns 
to predict T2DM-related MCI with a high degree of accuracy remains unclear.

Research objectives
To investigate the utility of LSFC for more accurately and reliably predicting the 
cognitive impairment related to T2DM.

Research methods
Resting-state functional magnetic resonance images were derived from 42 patients 
with T2DM and 24 healthy controls. Cognitive function was assessed using the 
Montreal Cognitive Assessment (MoCA). Patients with T2DM were divided into two 
groups, according to the presence (T2DM-C; n = 16) or absence (T2DM-NC; n = 26) of 
MCI. Brain regions were marked using the Harvard Oxford (HOA-112), automated 
anatomical labeling (AAL-116), and 264-region functional (Power-264) atlases. LSFC 
biomarkers for predicting MoCA scores were identified using a new CPM technique. 
Subsequently, we used the SVM based on LSFC patterns for among-group differen-
tiation. The area under the receiver operating characteristic curve determined the 
classification appearance.
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Research results
CPM could predict MoCA scores in patients with T2DM, indicating that LSFC patterns 
represent cognition-level measures in these patients. Positive (anti-correlated) LSFC 
networks based on the Power-264 atlas showed the best predictive performance 
(r=0.42, P=0.0038); moreover, we observed new brain regions of interest associated 
with T2DM-related cognition. The area under the receiver operating characteristic 
curve values (T2DM-NC group vs. T2DM-C group) were 0.65-0.70, with LSFC matrices 
based on HOA-112 and Power-264 atlases having the highest value (0.70). Most 
discriminative and attractive LSFCs were related to the default mode network, limbic 
system, and basal ganglia.

Research conclusions
LSFC provides neuroimaging-based information that may be useful in detecting MCI 
early and accurately in patients with T2DM and therefore assist with T2DM 
management.

Research perspectives
Our study provides promising evidence that LSFC can reveal cognitive impairment in 
patients with T2DM, although further development is needed for clinical application.
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