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Abstract
Maternal nutrition is found to be the key factor that determines fetal health in 
utero and metabolic health during adulthood. Metabolic diseases have been 
primarily attributed to impaired maternal nutrition during pregnancy, and 
impaired nutrition has been an immense issue across the globe. In recent years, 
type 2 diabetes (T2D) has reached epidemic proportion and is a severe public 
health problem in many countries. Although plenty of research has already been 
conducted to tackle T2D which is associated with obesity, little is known 
regarding the etiology and pathophysiology of lean T2D, a variant of T2D. Recent 
studies have focused on the effects of epigenetic variation on the contribution of in 
utero origins of lean T2D, although other mechanisms might also contribute to the 
pathology. Observational studies in humans and experiments in animals strongly 
suggest an association between maternal low protein diet and lean T2D pheno-
type. In addition, clear sex-specific disease prevalence was observed in different 
studies. Consequently, more research is essential for the understanding of the 
etiology and pathophysiology of lean T2D, which might help to develop better 
disease prevention and treatment strategies. This review examines the role of 
protein insufficiency in the maternal diet as the central driver of the develop-
mental programming of lean T2D.
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Core Tip: This is to review the role of maternal low protein diet and its metabolic impact on the offspring 
leading to lean type 2 diabetes.
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INTRODUCTION
Type 2 diabetes (T2D) is a metabolic disease, which is rapidly increasing among the human population 
both in developed as well as in developing countries. Diabetes is divided into four major categories: 
type1, type2, gestational, and other specific diabetes mellitus[1]. As per the national diabetes statistics 
reports in 2020, 10.5 % (34.2 million) of the United States population are diagnosed with some form of 
diabetes and 34.5% (88 million) of adults have pre-diabetes. T2D constitutes 90%-95% of all diabetes 
cases in the United States[2]. The hallmarks of T2D are insulin resistance and insulin deficiency. In most 
cases of T2D, the etiology of insulin resistance and insulin deficiency can be traced back to obesity and 
lifestyle aspects.

Scientists from all over the world have spent a great deal of time and effort to understand the causes 
and consequences of obesity-induced T2D. However, the number of non-obese/lean T2D cases has also 
dramatically increased globally and especially in Asia and other developing countries. Recent estimates 
show that 10%-20% of T2D patients are not obese[3]. Although the etiology is not clearly understood, 
lean T2D is clustered under the umbrella of T2D for patient care. Interestingly, clues from various 
studies indicate that lean T2D is often observed in the populations where the fetus is exposed to 
malnutrition during the intrauterine period or early childhood[3-7]. Adequate birth weight and size of 
the newborn are often considered as indicators of appropriate fetal growth rate and optimal in utero 
environment[8-10]. In contrast, deprivation of nutrition during fetal development is often marked by 
low birth weight and it is linked with adult-onset of metabolic diseases such as T2D[11].

Historically, observational studies from the different parts of the world firmly indicate that the 
individuals exposed to in utero malnutrition due to famine were more prone to the hyperglycemic 
condition in adult life compared to those who are not born during a famine[12]. For instance, the cohort 
exposed to Dutch famine (1944-45) in utero were more prone to glucose intolerance than the non-
exposure cohort[13]. Similarly, data associated with the Ukrainian famine of 1932–33 have exhibited a 
higher incidence of T2D among the people born in the famine-affected region than in the regions where 
no famine was reported[14]. The link between Australian famines and T2D was studied and analysis 
showed a positive correlation with three years of famine and an increased number of T2D among those 
who were born during the famine years[12]. Further, Li et al[15] reported that people who were exposed 
to the Chinese famine in the fetal stage during 1959-1961 were more prone to hyperglycemia and T2D in 
their adult life, compared to those who were born after this period.

Recent studies indicate that adverse in utero nutrition could cause lean T2D later in life among certain 
ethnic and socio-economical groups, and people with certain lifestyles. Studies from India[16] (up to 
26%) and Caribbean islands[17,18] (5%) report the predominance of lean T2D population. A study on 
American minorities showed that 13% of T2D patients are lean[4,16] with a fivefold higher incidence in 
Asians[4]. These observations clearly show that not all diabetics are obese and obesity does not 
necessarily cause T2D[3,16,19]. With > 42 million Americans experiencing food insecurity, it is a major 
problem even in the United States especially among the economically disadvantaged[20]. WHO 
estimates that 1.1 million children had ≤ 2 standard deviations for weight for height ratio (an index of 
protein-energy malnutrition) in the United States[21]. A recent German study shows that 38% of 
pregnant women did not consume enough protein[22]. With vegetarian and vegan diets gaining 
popularity worldwide, low protein intake is more prevalent as these diets are often low in protein[23,
24]. Vegetarian mothers consume low protein diet[25,26] and give birth to children with lower birth 
weights, thus making them susceptible to T2D[26-28].

This atypical diabetic phenotype is known by various names such as Jamaica type diabetes, metabol-
ically obese normal weight (MONW) diabetes, malnutrition-related diabetes mellitus, phasic insulin-
dependent diabetes, tropical diabetes, mixed onset type diabetes, J, Z, M or type 3 diabetes, and ketosis 
resistant growth onset type diabetes[3,17,18,29-33]. This concept of MONW individuals was first 
proposed in 1981[29] with subsequent validations in animal and human studies[34-37] and the existence 
of lean T2D has been observed for decades but the etiology and pathophysiology of lean T2D are poorly 
understood.

The most accepted and validated hypothesis that explains the link between early nutrition and 
metabolic diseases in adulthood was proposed by David Barker is called, ‘thrifty phenotype hypothesis’

https://www.wjgnet.com/1948-9358/full/v13/i3/185.htm
https://dx.doi.org/10.4239/wjd.v13.i3.185
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[11,38]. This hypothesis explains how impaired in utero nutrition availability results in compromised 
fetal growth and programs subcellular and metabolic effects in the developing fetus. Further, the 
hypothesis suggests that the metabolic fate of an individual predisposed to T2D is decided at the early 
developmental stage and thus attempts to explain why a sub-population of individuals born with low 
birth weight are more prone to lean T2D compare to normal birth weight individuals[11]. Various 
subsequent studies have confirmed the reproducibility and epidemiological evidence for the 'thrifty 
phenotype hypothesis'[39].

In addition, studies based on this hypothesis showed the importance of a sufficient amount of protein 
in the maternal diet for the development of the fetus and the risk of diseases in adulthood[40]. Although 
overall well-balanced nutrition is essential for a developing fetus and a healthy offspring, the role of 
protein is vital in the developmental programming paradigm[41]. A low protein diet is well known to 
cause various programming effects leading to metabolic disorders in adulthood. Low protein or 
vegetarian diets are consumed due to various reasons such as poverty, famine, lack of availability, 
cultural, religious, or moral reasons, personal preference, etc. Although these are common in the 
developing world, the recent popularity of vegetarian and vegan diets in the developed world is also an 
important paradigm to be considered. The emerging popularity of vegetarian and vegan diets among 
the maternal population might compromise growing fetuses, as the amount and bio-availability of 
proteins are found to be inadequate from plant sources[23,42]. A low protein diet during gestation is 
often connected with compromised renal function and impaired glucose metabolism[7]. However, the 
mechanistic basis and the exact patient phenotype of the maternal low protein associated with lean T2D 
are not well understood. Therefore, a clear understanding of the epidemiological and clinical features of 
lean T2D is essential to the prevention or treatment strategies.

PATHOPHYSIOLOGY OF LEAN T2D
T2D is a complex metabolic disease with a spectrum of presentations. It is therefore essential to 
understand the pathophysiology of the disease to offer appropriate prevention and treatment strategies. 
The pathophysiology of lean T2D is not well defined, although we and others have considered them as a 
separate subset of T2D[3,43,44] body mass index (BMI) is widely used as a tool to classify T2D patients. 
Patients with a BMI greater than 25 are considered to have obese T2D[45]. In contrast, the majority of 
lean T2D patients have a BMI of less than 25 but they have several metabolic characteristics associated 
with obesity[3]. Observational studies in humans and experiments in rodents suggested that the various 
environmental and genetic factors could contribute towards the lean T2D phenotype[3,46]. Poor in utero 
nutrition during fetal development is considered to be the main driver of lean T2D onset[44,46]. We 
have shown using a novel rat model that the maternal low protein diet is one of the critical causes of the 
lean T2D phenotype[43].

Although the genetic factors may vary among the different populations, genetic predisposition to 
fragile beta cells was found to be common in lean T2D patients. The rapid beta-cell apoptosis is the 
major pathophysiological characteristic of lean T2D compared to elevated insulin resistance in obese 
T2D[47]. Another interesting aspect that is noticed in this population is the prevalence of truncal 
obesity. Insulin sensitivity and insulin response are varied among the different ethnic groups (African, 
Caucasian, and East Asian), and East Asians have more vulnerable beta cells which make them more 
prone to T2D[48]. Several studies on the South East Asian population have shown that lean T2D patients 
have central obesity or elevated visceral fat deposits[49]. Even though lean T2D patients have lesser 
hyperglycemic values, their hemoglobin A1c levels are significantly higher than their obese 
counterparts[5,44]. Further, the onset of lean T2D is reported at an early age than the obesity-associated 
T2D[3]. Lean T2D patients showed a significantly lower incidence of hypertension and cardiovascular 
diseases compare to obese T2D patients but are more susceptible to peripheral neuropathy[3,5]. Apart 
from environmental and hereditary factors, socioeconomic background is found to be an important 
aspect of lean T2D prevalence[10,50]. Several studies have reported an inverse relationship between 
T2D and socioeconomic status[51]. The National Health and Nutrition Examination Survey data 
indicated this relationship of poverty and higher incidence of T2D among African and Mexican origins 
in the United States[52].  The Chicago cohort study further showed the prevalence of lean T2D among 
this minority community[4].

The two crucial characteristic features of developing countries, which make them more vulnerable to 
lean T2D, are a rapid shift in lifestyle and impaired nutrition. Studies from India have reported the 
escalating number of lean T2D cases across the country, especially, the urban population of India[53-
55]. Similarly, Alemu and the group reported the increased number of lean T2D like cases in the urban 
population of sub-Saharan Africa[56].
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GESTATIONAL LOW PROTEIN PROGRAMMING AND SEX DIFFERENCES IN LEAN T2D
Sex differences in fetal development can be observed as early as the pre-implantation phase[57]. There 
are major in utero differences between the sexes in growth and metabolic parameters leading to a faster 
fetal growth in males when compared to females. These differences are attributed to the genes 
expressed by sex-chromosomes and the actions of sex hormones[57-59]. In addition, differences in the 
incidence of T2D can also be attributed to the differences in the leptin and insulin sensitivity between 
sexes[59,60]. These metabolic hormones are influenced by the in utero nutritional environment[61]. 
Many studies have found a link between T2D and maternal low protein diet[43,59,62,63]. Further, as the 
nutritional environment often regulates the epigenetic machinery, any change in utero nutritional status 
may cause permanent alterations in the fetal gene expressions[64].

Our research using a lean T2D rat model indicates a clear sex difference in glucose homeostasis with 
females developing glucose intolerance earlier in life with faster disease progression than males[43,65]. 
These animals also showed differential regulation of gluconeogenesis and glycogenolysis as a result of 
gene expression changes in key genes involved in glucose metabolism[65-68]. Sex difference in hepatic 
genes associated with glucose homeostasis such as phosphoenolpyruvate carboxykinase (PEPCK) and 
11β-hydroxysteroid dehydrogenase type 1 were observed even in low protein programmed fetuses[69]. 
Similarly, low protein programmed mice offspring were found to have lower birth weight with more 
glucose intolerant than the controls[70]. In this study, maternal low protein diet activated the visceral 
adipose tissue neuropeptide Y-Y2 receptor system in female offspring but not in male offspring, which 
increased abdominal adiposity and insulin resistance in female offspring[70]. This study indicates the 
importance of neuropeptide Y-Y2 receptor as a potential sex-specific marker and mediator of metabolic 
programming[70].

In the last decade, various studies have shown the importance of mitochondrial health and its 
relationship with glucose homeostasis in low protein programming. Zambrano and group have found 
maternal low protein diet-induced insulin resistance in male Wistar rats; however, females were 
responsive to glucose[71]. This study, further, suggested that elevated mitochondrial dysfunction in the 
pancreatic islets of adult male rats might be the mechanism that leads to insulin resistance[71]. Likewise, 
male offspring of low protein diet-fed mothers showed higher ROS production and impaired electron 
transport chain function in the mitochondria of the pancreatic islets when compared to female offspring 
indicating mitochondrial incompetence in males could predispose them to T2D[72]. Similarly, the sex 
dependent fetal programming in glucose metabolism was also reported in utero low protein 
programmed piglets. In this study, hepatic gluconeogenesis in newborn male piglets was negatively 
affected by the maternal low protein diet during pregnancy[73]. Epigenetic changes in the promoter 
region of the glucose-6-phosphatase gene were sex-specific and resulted in T2D in adult male pigs[73]. 
In addition, maternal low protein diet diminished liver mtDNA copy number in males and altered the 
OXPHOS protein expression by the combined binding action of glucocorticoid receptor and methylation 
of on the hepatic mtDNA promoter, which effect the mtDNA replication and gene expression levels[73,
74].

Studies in humans suggest greater prevalence and impact of lean T2D in males than females. Many 
studies have indicated that women are physiologically inclined to have better insulin sensitivity than 
men[75-77]. Estrogen has a protective role in insulin sensitivity and glucose homeostasis by the 
inhibition of Foxo1 though activation of ERα-PI3K-Akt signaling[78]. Another crucial way estrogen 
protects women from insulin resistance is through mitochondrial biogenesis, as testosterone reduce 
mitochondrial proliferation[79]. The male preponderance of lean T2D was evident from the studies 
conducted in India, where more than 60% of lean T2D patients were men. Although the exact causes of 
sex differences are not clearly understood, it is suggested that the differences observed in this study may 
be due to predominant male exposure to oxidative stressors such as smoking and alcoholism[3,80].

Another interesting aspect to consider is the role of folate. Folate is routinely given to pregnant 
women throughout the world to prevent neural tube defect. Recent studies show that excessive folate 
can also have negative consequences at least in certain populations, ages and ethnicity/genetic 
background[81-83]. One study in Indian population shows that it can lead to insulin resistance[7]. The 
authors primarily attribute this to the deficiency of vitamin B12 which is primarily present in animal 
protein. Rat studies from our group showed that folate offered some protection in low protein 
programmed offspring by compensatory hyperinsulinemia but make insulin resistance worse in males
[84]. Although the mechanism of this sex dependent folate action in insulin resistance is not known and 
warrant further research, it is important to note how folate may have sex dependent effects and this may 
also hold a clue in the sex differences that are observed in the human population.

ANIMAL MODELS 
Considering the ethical and technical limitations in conducting impaired maternal nutrition and 
developmental programming studies in humans, various animal models that mimics several aspects of 
developmental programming have been developed. Due to the shorter lifetime and availability of 
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genetic tools, a substantial amount of research is presently focused on developing clinically reliable 
rodent models of developmental programming.

To achieve a low protein diet model, the majority of studies followed a diet that has around a 50% 
reduction of total protein in the diet formulation[43,63,85-87]. However, most of the investigations 
conserved the isocaloric nature of the diet by manipulating macronutrient proportions by various lipid 
and carbohydrate ratios[88-93]. Although preferred protein, carbohydrate, and lipid ratio are varied 
among different research groups; a single research group often stick to one specific diet regimen[67,91,
94-97]. The other central deviation apparent among the different low protein models is the timing and 
duration of the maternal diet management. Majority of the studies have started giving low protein diet 
from the first day of the pregnancy and continued throughout pregnancy or lactation, although some 
studies initiated the low protein diet before pregnancy or in some cases in a specific period of in utero 
growth[65,86,98-102]. The main aim of these refined diet manipulations is to develop a metabolically 
compromised adult offspring[103]. Moreover, many studies have succeeded in mirroring low 
birthweight and catch-up growth pattern, which is considered by many as a hallmark of the develop-
mental origin of metabolic disease[104-108]. Pups from maternal low protein mothers weigh less 
compared to those from control diet-fed mothers. The differences in birth weight disappeared once the 
mothers were fed with a normal diet or pups were cross-fostered with control mothers. However, the 
weight differences were permanent, when the maternal low protein diet was continued throughout the 
weaning[43,100,109]. In addition, due to the variation in macronutrients ratio and the time regime of the 
diet, the adult metabolic phenotypes reported by various groups are also varied. Insulin resistance, 
obesity, cardiovascular diseases, and dyslipidemia are the major clinical disorders observed in these 
models[104,110-113]. A comprehensive list of different low protein programming animal models used 
are summarized in Table 1.

PHYSIOLOGICAL EFFECTS AND MECHANISMS
Many animal models based on a low protein diet have been successful in capturing the phenotypic 
characteristics of fetal programming of adult metabolic diseases. However, the exact mechanism that 
leads to these metabolic diseases is not well studied. The dominant hypothesis in the field of develop-
mental programming of adult diseases attribute that the fetal epigenome play a central role. This 
hypothesis postulates that epigenome is reprogrammed as an adaptation in response to a low protein 
diet, the associated low birth weight, and the catch-up growth. A recent study in Japanese adults 
indicates that the reduced beta cell mass in low-birth-weight individuals is directly associated with the 
future development of T2D[114]. Although the epigenome is prone to modification throughout the 
lifetime, in utero developmental period was found to be the most vulnerable time to be dysregulated by 
stressors[115].

Several studies have reported various key genes that are epigenetically modified as a result of 
developmental programming. For instance, the transcription factor Hnf4a was found to be epigenet-
ically regulated during gestation, and the maternal diet-induced changes in the expression of this gene 
can cause T2D in adulthood[116]. Similarly, glucose transporter 4 (GLUT4) expression in skeletal is 
epigenetically controlled by maternal diet during early development and the impaired gene expression 
often resulted in peripheral insulin resistance[117]. Even though different biological mechanisms might 
contribute to fetal programming of lean T2D, many recent studies are indicating epigenetic changes as a 
potential single important driver of the fetal programming effects[118]. Low protein diet exposure 
during pregnancy in animals exhibited changes in methylation in promoter regions of genes involved in 
the glucose homeostasis pathway thereby, affecting the gene expression either directly or indirectly
[119]. In recent years, many experimental studies in animals and observational studies in humans show 
that the epigenetic changes associated with gestational low protein are the main regulatory forces 
mediating the T2D phenotype[118,120]. Changes in the fetal epigenome often mirror the unique in utero 
environment of the fetus. Epigenetic changes due to gestational low protein arise through the 
methylation of cytosine in CpG Island present in the promoter region of particular genes, histone 
protein modification by acetylation, and regulation microRNAs by post-transcriptional modification. 
The chromatin structure and expression of a specific gene are regulated through DNA methylation in 
association with histone modifications[121].

A study in pigs found a significant decrease in glucocorticoid receptor binding to the glucose-6-
phosphatase (G6PC) promoter which was accompanied by hypomethylation of the G6PC promoter in 
association with gestational low protein diet[74]. As G6PC is one of the crucial enzymes in glucose 
homeostasis that catalyzes gluconeogenesis and glycogenolysis, epigenetic changes in the promoter 
region might contribute to the onset of hyperglycemia[74]. Further, this impaired maternal diet-induced 
reduction of mtDNA copy number and methylation of mtDNA promoter often leads to changes in 
OXPHOS gene expression. This may predispose to insulin resistance in adult offspring considering the 
importance of hepatic mitochondrial OXPHOS activity in glucose homeostasis[73].

Similarly, using maternal low protein programmed rats, Lillycrop et al[8] established that the hepatic 
PPARα promoter and glucocorticoid receptors were hypomethylated in utero and these epigenetic 
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Table 1 Summary of key animal models used to investigate the maternal low protein associated insulin resistance and glucose 
intolerance

Animals Diet regimen Age of pups Sex Observations Ref.

Sprague-Dawley rats 6% protein, -12 to 43 d 12 wk Females Sirt3 dysfunction in skeletal muscle [138]

Sprague-Dawley rats 10% protein, 2 to 21 d Newborn Males Increased Igf gene expression [148]

Sprague-Dawley rats 8% protein, 1 to 43 d 17 wk Males Lower fasting insulin and HOMA [85]

Wistar rats 6% protein, 1 to 21 d 11 wk Females Insulin resistance and glucose Intolerance [103]

Wistar rats 6% protein, 1 to 43 d 3 wk Both Compromised β-cell structure and function [163]

Wistar rats 7% protein, 1 to 120 d 16 wk Females Higher glucose tolerance and insulin responsiveness [98]

Wistar rats 8% protein, 1 to 43 d 12 wk Both Impaired gluconeogenesis, glucose handling and liver structure [141]

Wistar rats 8% protein, 1 to 43 d 11 wk Females Insulin resistance and glucose Intolerance [190]

Wistar rats 8% protein, 1 to 21 d 12 wk Males Epigenetic regulation of Hnf4a in islets [116]

Wistar rats 8% protein, 1 to 21 d 12 wk Both Altered mitochondrial function in islets [72]

Wistar rats 8% protein, 1 to 21 d 12 wk Both Structural alterations and changes in glucokinase expression in 
liver 

[141]

Wistar rats 8% protein, 1 to 21 d Fetal Day 21.5 Both Altered IGF axis and proliferative capacity of liver [140]

Wistar rats 9% protein, 1 to 20 d Fetal Day 20 Both Defective hepatic glucose homeostasis [69]

Wistar rats 10% protein, 1 to 21 d 4 wk Both Impaired hepatic gene expression [8,122]

Wistar rats 10% protein, 1 to 43 d 15 wk Both Modified glucose metabolism and insulin resistance [71]

C57BL/6J mice 9% protein, 1 to 39 d 8 wk Both Impaired glucose metabolism, miR-15b up-regulation [63]

C57BL/6J mice 8% protein, 1 to 21 d 3 wk Both Altered PPAR signaling, insulin resistance and glucose Intolerance [87]

C57BL/6J mice 8% protein, 1 to 19 d Newborn Both Altered mitochondrial genes expression in liver and skeletal muscle [89]

Mice 8% protein, 1 to 40 d 21 wk Both Increases abdominal adiposity and glucose intolerance [70]

Pig 6% protein, -18 to 113 d Newborn Both Affected mitochondrial OXPHOS and glucose-6-phosphatase in 
liver

[73,74]

changes were persistent in adulthood. Further studies demonstrated reduced Dnmt-1 expression and its 
role in epigenetic changes of glucocorticoid receptors[73,95,96,122]. Moreover, epigenetic changes in the 
promoter region of PEPCK were found to be the drawing force for impaired glucose homeostasis in 
animals[123,124]. Anandwardhan and colleagues reported a decreased number of (pro) insulin 2 gene 
transcripts in the pancreas of low protein in utero programmed rats, due to the histone modification in 
the promoter region of the insulin 2 gene[125]. Moreover, these epigenetic changes are potentially 
engaged in the trans-generational transmission of the induced phenotype[122,124,125].

Recently, Goyal and group demonstrated that the epigenetic modifications by miRNA, small non-
coding RNAs consists of 20–22 nucleotides, is one of the molecular mechanisms of maternal low 
protein-induced T2D[119]. Results from maternal low protein programmed mice found reduced beta-
cell mass and insulin levels in the pancreatic islets of the programmed offspring due to the increased 
expression of miR-15b. As the activities of cyclins are negatively regulated by the presence of miR-15b, 
the up-regulation of this miRNA may inhibit pancreatic beta-cell proliferation, consequently, stem to 
T2D phenotype[63]. A microarray study also demonstrated elevated expression of miR-615, miR-124, 
miR-376b, and decreased expression of miR-708 and miR-879 in maternal low protein programmed 
mice, which were associated with degenerated metabolic health of the offspring from the weaning age
[126].

Apart from the epigenetic changes, maternal malnutrition is the major reason for low birth weight in 
newborns. Children who are small for gestation age and showed catch-up growth during the early age 
of development appeared to be more insulin resistant compared with normal-weight children[127]. 
Moreover, several studies have shown epigenetic changes due to gestational diet-induced fetal 
programming adult diseases in these offspring[108,128,129].

Even though little is known about the mechanism of programming, the secondary effects of fetal 
programming and their mechanisms are well studied. For example, various organ systems that play 
vital roles in the metabolism, and how they are affected by the developmental programming of T2D are 
well characterized. In utero low protein exposure causes long-lasting structural and functional changes 
in metabolically active organs includes skeletal muscle, liver, pancreas, gonads, and brain.
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The in utero environment is crucial in the development of skeletal muscles, and the muscles growth is 
determined by the number, size, and type of muscle fibers formed during fetal development[130,131]. 
Maternal undernutrition affects the quality and quantity of skeletal muscles and stem cell activity[132-
134]. A maternal low protein diet during gestation affects the normal proliferation and differentiation of 
bone marrow stem cells and satellite cell function[134,135]. Therefore, imperfections of skeletal muscles 
development during fetal development are often deleterious to normal muscle functions in adulthood
[133]. Studies using maternal low protein diet-based animal models have reported lower expression of 
GLUT4 and mitochondrial dysfunction in skeletal muscles of low protein offspring[66,67,136-138]. As 
skeletal muscle functions as one of the main sites for peripheral glucose disposal, functional or 
structural changes of the myofibrils leads to insulin resistance and glucose intolerance[139].

Similarly, low protein-induced developmental programming caused functional and structural 
changes in the liver[140,141]. The expression of genes associated with oxidative phosphorylation and 
glucose metabolism were altered in the liver. Further, in utero low protein exposed rat fetuses showed 
the altered structure of the liver with decreased proliferation of hepatocytes[142-146]. These animals 
also had altered hepatic lipid metabolism and hepatic desaturase activities, which may account for fetal 
growth retardation and insulin resistance[94,147]. In addition, a maternal low protein diet also induces 
epigenetic changes in methyltransferase machinery resulting in altered epigenetic regulation in the liver
[148]. Although further studies are warranted, it is clear from the existing studies that developmental 
programming induced by a low protein diet affects hepatic structure and function and this may, in turn, 
make them susceptible to impaired glucose metabolism[141,145,149].

The ability of the pancreatic β-cell to secret insulin is dependent on its structural and functional 
integrity along with the nutritional availability[150]. Consequently, protein deficiency in the maternal 
diet is a definite contributor to reduced insulin secretion and decreased β-cell proliferation in low 
protein programmed animals[151]. The reduced islets area and β cell number are mainly due to the 
downregulation of genes FoxO1 and Pdx1 genes, or altered expression of Reg1 pathway genes[151-155]. 
Epigenetic regulation of Hnf4a expression and expression of microRNAs such as miR-15b, miR-199a-3p, 
and miR 342, and signaling of mTOR in islets of the progeny also found to be associated with low 
protein-induced beta-cell dysfunction[62,63,156]. Further, a maternal low protein diet demonstrated 
greater β-cell apoptosis rates and deviates the equilibrium of islet’s apoptosis and replication in the 
offspring[157-159]. The pancreatic islet cells of these offspring exhibited greater oxidative stress and 
mitochondrial dysfunction[72,160]. Consequently, lower β-cell reserve, β-cell dysfunction and impaired 
mitochondrial function in islets may drive towards T2D later in life[62,72,86,155]. With the multiple 
pathways controlling β-cell functions are modulated by maternal low protein, it is reasonable to 
hypothesize that the low protein exposure predisposed the offspring to lean T2D[127]. A list of key 
genes involved in low protein programming is compiled in Figure 1.

A balanced in utero nutrition is essential for the normal development of the reproductive system. 
Epidemiological studies in humans and experimental in studies animals show the low protein/ 
unbalanced diet in utero severely impacts the development of reproductive organs, sexual maturation, 
and reproductive function in the offspring[161-164], resulting in decreased testis weight, reduced Sertoli 
cell numbers, and late-onset of spermatogenesis in males[164-166]. Moreover, the classical male fertility 
markers, sperm count, and serum testosterone were also diminished in the offspring of low protein 
exposed mothers[163,164,167]. Similarly, the low protein programmed female offspring were found to 
be with compromised follicle development and follicle health[168,169]. The numbers of primordial, 
primary, and secondary follicles were significantly reduced along with abnormal estrous cycle and 
redox homeostasis[170-172]. The thyroid hormone production and hypothalamic-pituitary-gonadal axis 
are also found to be affected by maternal low protein diet[173,174]. The impaired reproductive function 
of offspring may be due to the altered expression of genes associated with steroidogenesis, folliculo-
genesis, and steroid hormone receptors in gonads[175-178]. In addition, changes in the hypothalamic-
pituitary-gonadal axis to low protein may have adverse effects on the normal development and function 
of gonads[168,179].

The hypothalamus of the brain plays a critical role in glucose homeostasis by controlling hepatic 
glucose production and peripheral glucose utilization. Therefore, functional, or structural alteration of 
hypothalamic neurons may often lead to the onset of T2D[180,181]. The low protein programmed 
progenies have exhibited structural and functional changes in the neuronal centers, hypothalamic nuclei 
which regulate metabolism and body weight[102,181]. In addition, maternal low protein can also differ-
entially affect the hypothalamic-pituitary-gonadal axis depending on the timing of the impaired 
nutrition. Early gestational nutrition impairment has been shown to make the pituitary more sensitive 
to GnRH, resulting in reduced reproductive function[182]. Further, it also alters hypothalamic-pituitary-
adrenal axis function by deregulating corticosterone-inducible enzymes and associated enzyme 
receptors[183]. Other reports also show that brain sparing may not be as effective during in utero low 
protein exposure leading to compromised brain development in the offspring along with long-lasting 
deterioration in cognitive and motor functions[184,185].
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Figure 1 Key gene expression and epigenetic changes observed in different maternal low protein studies.

PREVENTION AND TREATMENT 
Insulin resistance and glucose intolerance are the cardinal signs of T2D, and if not prevented, they may 
lead to severe diabetes complications later in life. Hepatocytes, skeletal muscles, and adipocytes are the 
major insulin-dependent tissues that participate in the disposal of peripheral glucose. Thus, improving 
the muscle sensitivity towards insulin and enhancing hepatic glucose homeostasis, along with 
managing body weight are the central focus of T2D treatment strategies. Among the different drugs that 
have been prescribed for leanT2D management, metformin is a widely used drug for treating lean T2D 
along with nutritional and lifestyle modification[186]. Over the past two decades, various randomized 
control trials conducted in many ethnic groups showed unambiguously that the prevention is feasible 
by drugs or lifestyle modification[187-190].

Most of the research on treatment or prevention of T2D has been done with obese individuals or 
animal models, even though 10%-16% of all T2D people have normal BMI. In addition, majority of the 
studies on the molecular mechanisms of prevention and reversal of T2D were performed in Caucasians. 
Consequently, it is essential to include other ethnic groups such as Southeast Asian and Chinese 
populations, which are more prone to diabetes at lower average BMIs or lean T2D compared with white 
Europeans[191]. Regulating body weight is critical in the management of T2D associated with 
overweight or obese patients. However, in the case of leanT2D, it seems that leaner patients have severe 
beta-cell failure than normal-weight patients[4]. Presently, it is not clear that the achievement of lower 
body weight will help to prevent or reverse the special variants of T2D such as lean T2D[3].

The first trial associated with lifestyle modification and/drug therapy was started in China with a 
follow-up period of 23 years[192] and many other studies have followed since. Other studies include: 
the American diabetes prevention program outcome study[193]; the Finnish diabetes prevention study
[194]; and the Indian short message service study[195] revealed the influence of lifestyle modification 
can persist long after the termination of the active phase of the trial. Although lifestyle modifications 
have been recognized to be very effective, safe, and ideal strategy for prevention, the effectiveness of 
relative risk reduction through these strategies exhibited some variations among different ethnic 
populations[192-196]. A study conducted among the impaired insulin tolerant lean Indian population 
found that lifestyle modification alone prevented the diabetes onset, regardless of relatively low BMI 
and highly insulin-resistant characteristics of the population[197].

Although the underlying pathophysiology of lean T2D is not completely understood, many studies 
using the maternal low protein model have shown potential prevention approaches[157]. The most 
promising approach among them is associated with one-carbon metabolism and the molecules involved 
in it. Some studies have reported the effectiveness of folic acid supplementation as a preventive 
treatment against the adverse effects of fetal programming[198-200]. Similarly, Burdge and team 
reported that the folic acid supplementation reversed the maternal low protein-induced phenotype 
epigenetically in the offspring when treated during the juvenile-pubertal period[201]. In contrast, our 
study reported a partial inhibition of gestational low protein-induced glucose intolerance only in female 
rats, when the maternal low protein diet was supplemented with folic acid from day 4 of the pregnancy 
until delivery[65]. Similar to our data, Lillycrop and colleagues also reported the inefficiency of folic 
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Figure 2 Proposed mechanism of maternal low protein associated lean type 2 diabetes.

acid supplementation for the inhibition of gestational low protein-induced change in gene profile, 
although they found changes in the expression of genes associated with redox homeostasis[8]. An 
observational study from Pune, India (Pune Maternal Nutrition Study), noticed that when the mother 
was vitamin B12 deficient, high amount of folic acid intake was not enough to prevent the insulin 
resistance in the offspring[7]. However, the high protein to carbohydrate ratio in maternal diet was 
found to be effective in maintaining glucose homeostasis in the offspring[137]. Thus ensuring sufficient 
protein in the maternal diet is essential to prevent lean T2D.

CONCLUSION
In summary, lean T2D is a discrete subgroup of T2D with a set of specific clinical profiles. Atypical 
characteristics of leanness associated with insulin resistance needed to be dissected further for a better 
understanding of the etiology of the disease. As the progression of T2D may take many years in 
humans, the assessment and prevention studies with human subjects may also warrant many years. 
Therefore, the development of a well-defined animal model, which mirrors not only the patho-
physiology of lean T2D but also the etiology of the disease, might be the most important step in this area 
of research. Nevertheless, there is a lack of a single animal model that can constitute all patho-
physiological and etiological changes similar to humans. In addition, the severity of lean T2D is 
different between sexes, due to sex hormones and sex dependent expression of genes. Among different 
molecular mechanisms involved in the onset of lean T2D, the epigenetic underpinning of metabolism 
appears to be the most promising lead. Although the mechanism of developmental programming is 
currently not well characterized. With the current literature, it may be summarized that maternal low 
protein diet leads to diminished essential amino acids levels in the maternal circulation and 
consequently to the fetus. In such low protein environment, fetus is acclimatized and revises its growth 
and metabolic set points. This adaptation is thought to be due to the overall alteration of epigenetic and 
metabolic attributes of fetal energy homeostasis. Although these adaptations may be beneficial for the 
fetus, a nutritional mismatch with protein abundance in the adulthood often leads to metabolic 
derangements leading to diseases such as lean T2D.  This concept is summarized in Figure 2. A better 
understanding of the molecular mechanisms of the disease may pave the way for more effective 
preventive and treatment strategies.

Obesity associated T2D is a serious public health problem throughout the developing and developed 
countries whereas nutritional deficiency especially protein deficiency is a major concern in under 
developed and developing countries. With studies showing a link between maternal protein 
consumption and T2D in offspring, it is essential to probe further and take action to avert a global crisis. 
Public health measures to alleviate poverty and access to nutritious and protein rich diet during 
pregnancy is essential to prevent lean T2D. Scientific understanding of the disease to prevent and treat 
T2D, along with effective health education and public policies can mitigate this growing global 
epidemic.
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