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Abstract
In the glomeruli, mesangial cells produce mesangial matrix while podocytes wrap 
glomerular capillaries with cellular extensions named foot processes and tether 
the glomerular basement membrane (GBM). The turnover of the mature GBM and 
the ability of adult podocytes to repair injured GBM are unclear. The actin 
cytoskeleton is a major cytoplasmic component of podocyte foot processes and 
links the cell to the GBM. Predominant components of the normal glomerular 
extracellular matrix (ECM) include glycosaminoglycans, proteoglycans, laminins, 
fibronectin-1, and several types of collagen. In patients with diabetes, multiorgan 
composition of extracellular tissues is anomalous, including the kidney, so that 
the constitution and arrangement of glomerular ECM is profoundly altered. In 
patients with diabetic kidney disease (DKD), the global quantity of glomerular 
ECM is increased. The level of sulfated proteoglycans is reduced while hyaluronic 
acid is augmented, compared to control subjects. The concentration of mesangial 
fibronectin-1 varies depending on the stage of DKD. Mesangial type III collagen is 
abundant in patients with DKD, unlike normal kidneys. The amount of type V 
and type VI collagens is higher in DKD and increases with the progression of the 
disease. The GBM contains lower amount of type IV collagen in DKD compared to 
normal tissue. Further, genetic variants in the α3 chain of type IV collagen may 
modulate susceptibility to DKD and end-stage kidney disease. Human cellular 
models of glomerular cells, analyses of human glomerular proteome, and 
improved microscopy procedures have been developed to investigate the 
molecular composition and organization of the human glomerular ECM.

Key Words: Diabetes; Kidney disease; Glycosaminoglycans; Factor H; Sialic acid; 
Laminin; Collagen; Fibronectin-1; Extracellular matrix
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Core Tip: Diabetic kidney disease is associated with profound disturbance in glomerular extracellular 
matrix (ECM). Understanding the mechanisms that regulate glomerular ECM synthesis and repair may 
contribute to design therapeutic strategies that improve clinical outcomes. The cytoskeleton inside the foot 
processes of podocytes is connected to the glomerular basement membrane (GBM) via associated proteins. 
There is a reciprocal interaction between the cellular cytoskeleton and the extracellular tissue that 
contribute to regulate ECM composition. Loss of anchor points in the GBM may lead to podocyte 
detachment. Likewise, alterations in the podocyte cytoskeleton may unfasten the cell and impair the 
filtration barrier.

Citation: Adeva-Andany MM, Carneiro-Freire N. Biochemical composition of the glomerular extracellular matrix 
in patients with diabetic kidney disease. World J Diabetes 2022; 13(7): 498-520
URL: https://www.wjgnet.com/1948-9358/full/v13/i7/498.htm
DOI: https://dx.doi.org/10.4239/wjd.v13.i7.498

INTRODUCTION
In human glomeruli, mesangial cells (which are thought to be akin to vascular smooth muscle cells) 
produce mesangial matrix while podocytes wrap glomerular capillaries with cellular extensions named 
foot processes and tether underneath glomerular basement membrane (GBM) (Figure 1). The turnover 
of the GBM present at birth and the ability of adult podocytes to restore damaged GBM are unclear. 
These cells have limited proliferation capacity, but they can undergo hypertrophy to compensate for the 
detachment and loss of contiguous podocytes, thus avoiding uncovered GBM areas to preserve the 
filtration barrier. Podocyte detachment may be caused by an altered composition of the GBM with 
deficiency of anchor points or by anomalies in the connection apparatus that links the foot processes to 
the GBM. The actin cytoskeleton is a major cytoplasmic component of the podocyte foot processes and 
connects the cell to the GBM. Actin-associated proteins such as α-actinin-4 and inverted formin-2 attach 
the actin cytoskeleton to plasma membrane components (such as integrins, syndecans and 
dystroglycans), which in turn bind to their ligands in the GBM, including laminin and fibronectin-1[1-
4]. The integrity of the GBM is crucial to maintain the filtration barrier, as highlighted by the clinical 
consequences of disorders that alter GBM components, such as laminin or collagen. Diabetes and other 
conditions associated with insulin resistance (such as Alström syndrome) are associated with a systemic 
and pronounced alteration in the composition of extracellular matrix (ECM), including the kidney and 
the blood vessels, that leads to multi-organ interstitial fibrosis[5]. Pathogenic mechanisms underlying 
this disturbance are unclear. Understanding the pathways of ECM assembly and remodeling and the 
cell-ECM interactions is crucial for designing therapeutic strategies and tissue engineering. A growing 
number of procedures have been improved and developed to investigate the biochemical composition 
and architecture of the ECM and its mutual interaction with the contiguous cells. Among them are 
biochemical assays to identify and quantify ECM components, genetic methods to investigate gene 
expression, imaging procedures, human cell cultures, and in vitro pharmacological evaluations to assess 
metabolic pathways.

Nuclear magnetic resonance spectroscopy and soft-ionization mass spectrometry represent compli-
mentary techniques for ECM research. Mass spectrometry techniques (such as matrix-assisted laser 
desorption and ionization) are useful for compositional analysis whereas nuclear magnetic resonance 
spectroscopy evaluates the molecular architecture of the ECM and its dynamics[6]. Raman spectroscopy 
is a label-free vibrational technique that contributes to characterize the molecular ECM structure and 
composition[7,8].

Histological methods for ECM analysis with conventional microscopy include immunohistochemistry 
and zymography. The former can be utilized to determine the localization of various ECM proteins 
while the latter may be used to evaluate proteinase activity in the ECM. In addition, imaging methods 
have been designed to characterize the human ECM and the adjacent cells at the molecular and cellular 
level. Scanning electron microscopy and multi-harmonic generation microscopy can be used to visualize 
ECM components and assess their structural properties[9]. Multiphoton imaging has been described to 
analyze the human structural organization of elastin and collagen during mechanical loading[10].

The construction of flat and tubular collagen gel-based scaffolds cellularized with vascular smooth 
muscle cells have enriched vascular tissue engineering[11]. Microgel assembly, a macroscopic aggregate 
formed by assembly of microgels, can be applied to tissue engineering and cell cultures[12].

A variety of genetic techniques are useful on ECM research. MicroRNAs are noncoding RNAs that 
regulate gene expression and participate in ECM pathophysiology. Microarrays can be used to 
determine microRNA profiles[13]. Weighted gene co-expression network analysis enables the identi-
fication of clusters of related genes that can be associated with specific clinical phenotypes. This 
technique has been used to assess differentially expressed ECM genes in patients with diabetic kidney 

https://www.wjgnet.com/1948-9358/full/v13/i7/498.htm
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Figure 1 Glomerular capillaries and glomerular basement membrane.

disease (DKD) and other glomerular diseases[14,15]. The Matrisome Project has been developed to 
characterize genes encoding structural and associated ECM proteins (http://matrisomeproject.mit.edu).

Human cell culture technology and pharmacological investigations on cultured cells are instrumental 
tools on ECM research. Human pluripotent stem cells in culture have been used to generate models of 
various tissues. The presence of ECM in the cultures provides cues to the cells that modify their 
behavior and improves similarity to the native human tissue, including the kidney[16]. Stem cells reside 
in “niches” within the ECM and the composition of the ECM contributes to define the degree of 
quiescence and turnover of these cells[17]. Manufacture of a suitable ECM is crucial to alter growth, 
differentiation, and proliferation of stem cells and use them for tissue engineering[18]. Three-
dimensional decellularized ECM derived from mesenchymal stem cell cultures has been attained by 
application of macromolecular crowding[19]. Three-dimensional tissue constructs that recapitulate 
human fibrous connective tissue have been achieved by using cultures of primary human fibroblasts, 
enabling the quantification of cell-derived changes in ECM synthesis in response to several stimuli, such 
as nutrient composition or pharmacological compounds[20]. Treatment of human bone marrow-derived 
mesenchymal cells with high molecular weight hyaluronic acid increases fibronectin production and 
ECM deposition, suggesting that hyaluronic acid-based biomaterials may be useful to promote ECM 
formation[21]. A pulsatile perfusion culture of progenitor cells has been developed as an in vitro system 
to construct vascular tissue[22]. Cell-matrix interactions may be investigated by micro-electro-
mechanical systems and Organ-on-a-Chip technology[23].

In the kidney, human cellular models of glomerular epithelial cells have been developed that can be 
used to evaluate podocyte pathophysiology and investigate therapeutic strategies[24]. Investigations of 
the glomerular proteome have provided information on the proteins expressed in the glomerular ECM 
of adult normal human kidney. A database has been created that may be used for clinical research on 
the pathophysiology of kidney diseases[25-27]. Proteomic analysis of human glomerular ECM may be 
conducted from sections retrieved by kidney biopsy samples[28]. The sub-diffraction resolution 
stochastic optical reconstruction microscopy (STORM) facilitates the investigation of the molecular 
organization within the human GBM[29].

NORMAL COMPOSITION OF THE HUMAN GBM AND MESANGIAL MATRIX
The analysis of the specific composition of the GBM and mesangial matrix is hindered by the technical 
obstacle of adequately separate these two compartments of glomerular ECM, as procedures that isolate 
glomerular ECM achieve samples that contain both GBM and mesangial matrix. However, immunohis-
tochemical analyses contribute to determine the differential constitution of the two structures (Table 1)
[27,30-32]. Major components of the normal glomerular ECM are laminin and collagen. In addition, 
glycosaminoglycans, proteoglycans, sialic acid, and fibronectin-1 are important constituents of the 
kidney ECM in humans.

http://matrisomeproject.mit.edu
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Table 1 Major components of the glomerular basement membrane and the mesangial matrix in normal human glomeruli

Glomerular basement membrane Mesangial matrix
Heparan sulfate proteoglycan Abundant Abundant

Laminin Major component Minor component

Fibronectin Minor component Major component

Type I collagen Absent in most studies Absent in most studies

Type III collagen Absent in most studies Absent in most studies

Type IV collagen Major component Present (inconsistent amounts)

Type V collagen Present Present

Type VI collagen Present Present

Type XVII collagen Present Unknown

Type XVIII collagen Present Present

Tubulointerstitial nephritis antigen-like-1 Low abundance High abundance

Nidogen / Entactin Present Low abundance

Fibulin-1 Present Present 

Fibrillin-1 Present Present 

Nephronectin Present Present 

Vitronectin Absent Present 

Microfibril-associated proteins Absent Present 

Glycosaminoglycans, proteoglycans, and sialic acid in the normal glomerulus
Proteoglycans consist of a core protein attached to one or more glycosaminoglycan chains, which are 
formed by linear polysaccharides. Sulfate groups are usually bound to the unbranched polysaccharide 
chains, creating a high negative charge[33,34].

In kidney specimens from healthy humans, heparan sulfate is the predominant glycosaminoglycan 
present in the glomerular ECM, followed by hyaluronate, dermatan sulfate, and chondroitin sulfate 
isomers 4-sulfate and 6-sulfate[35-37].

Immunohistochemical studies show that both GBM and mesangial matrix contain heparan sulfate 
proteoglycans[33,38-40]. Among them, mass spectrometry-based analyses of normal human kidney 
samples reveal that agrin and perlecan are present in the glomerular proteome[27]. Agrin is a major 
heparan sulfate proteoglycan present in human GBM. Immunoelectron microscopy shows a linear 
distribution of agrin throughout the width of the normal GBM. In addition to the GBM, agrin mRNA 
and protein are detected in normal lungs[34,41]. Localization of agrin to the human GBM has been 
confirmed by STORM. Using this procedure, agrin is predominantly detected at the epithelial surface 
compared to the endothelial aspect of the GBM[29]. The precise function of agrin in the human kidney 
has not been defined, but it may contribute to the adhesion of the GBM to the podocyte by tethering 
laminins to cell surface receptors such as integrins or α-dystroglycan[34,41]. In normal human kidney 
specimens, perlecan stained the GBM only slightly, in contrast to the strong staining of the mesangium, 
the Bowman’s capsule, and the tubular basement membrane. The function of this heparan sulfate 
proteoglycan in the normal kidney remains to be clarified[34,42,43]. Unlike agrin, immunoelectron 
microscopy shows that perlecan is distributed only on the endothelial side of the GBM[34].

Sialic acid (neuraminic acid) is a nine-carbon carbohydrate that may exist as several derivatives. In 
humans, the most common sialic acid byproduct is the acetylated compound N-acetyl-neuraminic acid. 
Sialic acid typically occupies the terminal domain of oligosaccharide chains of some glycolipids and 
glycoproteins and usually protrudes from the cell surface. Sialidases (neuraminidases) are enzymes that 
remove sialic acid residues from glycosaminoglycans attached to proteins or lipids on the cell surface 
(desialylation). Sialyltransferases catalyze the addition of sialic acid residues to glycosaminoglycans 
(sialylation). Sialylated conjugates are identified by specific binding to lectins or by cationic dyes such as 
alcian blue[44,45]. In normal human kidney specimens, sialic acid stains strongly the podocytes, unlike 
glomerular capillaries and Bowman’s capsule[44].

Both sulfated glycosaminoglycans and sialic acid are polyanions that have an essential role in the 
identification of “self” structures to avoid complement activation and subsequent complement-
mediated injury in host tissues[46-49]. Sulfation can occur at various positions within the glycosa-
minoglycan structure creating the potential for high molecular variability. The unique position of sulfate 
groups in the glycosaminoglycan molecule is named sulfation code and defines functional character-



Adeva-Andany MM et al. Glomerular matrix extracellular

WJD https://www.wjgnet.com 502 July 15, 2022 Volume 13 Issue 7

istics of the sulfated glycosaminoglycan, such as its interaction with proteins. Hyaluronic acid is a 
glycosaminoglycan that lacks sulfate groups and is not attached to a protein core to form proteoglycans
[50]. Factor H is a glycoprotein that inhibits the alternative pathway of complement in “self” structures 
(as opposed to foreign elements such as pathogens), by recognizing sialic acid or sulfated glycosa-
minoglycans present on “self” biological surfaces. The interaction between factor H and sulfated 
glycosaminoglycans is highly specific and depends upon the sulfation code. Little or no binding occurs 
with hyaluronic acid. The binding of factor H to sialic acid or sulfated glycosaminoglycans on biological 
surfaces protects the host from autolytic complement attack (Figure 2). Deficit of binding sites for factor 
H due to loss of sulfated glycosaminoglycans or sialic acid (or alteration of the sulfation code or the 
sialylation pattern) impairs factor H binding to “self” structures and may result in complement-
mediated damage due to unrestrained activation of the alternative pathway of complement[46,48,49,51-
54].

Laminin in the normal glomerulus
Protein quantification of the glomerular ECM proteome by mass spectrometry reveals that laminin 
isoforms and type IV collagen are the most abundant proteins in the glomerular ECM[27]. Laminins are 
heterotrimeric proteins composed of α, β, and γ glycoprotein chains. Different α, β, and γ chains create 
diverse isoforms of laminin heterotrimers, such as laminin α5/β2/γ1 (laminin 521). Laminin hetero-
trimers polymerize in the extracellular space to form a network. Laminin polymerization is required for 
initiation of basement membrane formation. The actin cytoskeleton plays an important role in 
extracellular laminin polymerization. In vitro studies using myotubes reveal that the organization of 
extracellular laminin into networks is abnormal when the actin cytoskeleton is disrupted with 
cytochalasin (an agent that prevents actin polymerization) compared to control myotubes free of this 
compound. Cytochalasin-treated myotubes show no arrangement of surface laminin into complex 
networks, unlike control myotubes that show normal laminin array. However, no detrimental effect on 
laminin network formation was observed with wortmannin, an inhibitor of phosphatidylinositol 3-
kinase[55].

Laminin isoforms has been identified in the mesangial matrix of normal human kidneys, although 
this protein is predominantly detected in the GBM. Immunohistochemical studies show a continuous 
staining for laminin in the normal GBM. Immunogold electron microscopy reveals that laminin is 
distributed throughout the entire thickness of the GBM[37-40,56]. The organization of laminin 521 in 
normal human GBM has been investigated with STORM. Laminin 521 (and agrin) have their N-terminal 
domains facing the interior of the GBM while their C-terminal domains are oriented towards the surface 
of endothelial cells and podocytes[29].

The important functional role of laminin in the glomeruli is underlined by the clinical consequences 
of genetic mutations that alter the protein. Mutations in the gene that codes the β2 chain of laminin 
cause an autosomal recessive clinical spectrum of disorders that ranges from isolated congenital 
nephrotic syndrome (type 5) to Pierson syndrome, which consists of a combination of ocular 
abnormalities, neurological manifestations due to defects of the neuromuscular junction, and congenital 
nephrotic syndrome with diffuse mesangial sclerosis progressing rapidly to end-stage kidney disease 
(ESKD)[57,58].

Fibronectin-1 in the normal glomerulus
Fibronectin-1 is a dimeric glycoprotein circulating in normal plasma and present in the healthy human 
kidney. Immunohistochemical studies show that fibronectin-1 is mainly present in the mesangium and 
to a far less degree in the GBM. Staining for fibronectin-1 also occurs in the Bowman’s capsule and the 
peritubular interstitium[27,37,39,40,59,60]. The function of fibronectin-1 in the kidney is largely 
unknown. In vitro studies using cultured fibronectin-null cell lines find that fibronectin-1 polymer-
ization in the ECM is involved in the deposition of other ECM components, such fibulin, type III 
collagen, and type I collagen[61]. Fibronectin-1 possesses several domains that may function as binding 
sites for other molecules, including collagen and cell surface proteins such as integrins. Fibronectin-1 
may connect to plasma membrane proteins which in turn are linked to the intracellular actin 
cytoskeleton. There is a reciprocal relationship between fibronectin-1 and the actin cytoskeleton. Agents 
that disrupt actin polymerization block the extracellular organization of fibronectin-1 into a network. In 
turn, inhibition of fibronectin-1 polymerization in the ECM induces changes in the actin cytoskeleton
[62]. In vitro studies using cultured human podocytes show that fibronectin-1 is essential for the 
attachment of podocytes to the GBM during mechanical stress. Mechanical stretch induces a marked 
upregulation of fibronectin-1 in normal podocytes. Accordingly, in podocyte cell lines lacking 
fibronectin-1, a loss of podocytes greater than 80% is observed following mechanical stress[4].

An abnormal glomerular accumulation of fibronectin-1 may occur in acquired disorders, such as 
DKD and other diseases that feature mesangial expansion, such as lupus nephritis, IgA nephropathy, 
and membranoproliferative glomerulonephritis[62-65]. In addition, glomerulopathy with fibronectin-1 
deposits (fibronectin nephropathy) is an autosomal dominant disease characterized by deposits of 
fibronectin-1 in the mesangial matrix and subendothelial space. Mutations in the FN1 locus (that 
encodes fibronectin-1) at 2q32 have been identified as the genetic cause of the disease[63]. Clinical 
manifestations include proteinuria, hematuria, hypertension, and kidney failure that may progress to 
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Figure 2 Binding of complement factor H to components of the alternative pathway of complement (C3b) and heparan sulfate/sialic acid 
on “self” structures (cell membranes or basement membranes).

ESKD. Asymptomatic patients harboring FN1 mutations have been documented. Light microscopy 
reveals enlarged glomeruli with deposits of eosinophilic material in the mesangium and subendothelial 
space that shows reactivity with periodic acid Schiff (PAS) and trichrome stains while methenamine 
silver and Congo red stain negative. No immunoglobulin or complement factors are detectable by 
immunofluorescence studies. Electron microscopy reveals a normal GBM and large electron-dense 
deposits in the mesangium extending to the subendothelial space. Diagnosis can be established by 
specific immunohistochemical analysis, as the glomerular deposits stain intensely with anti-fibronectin-
1 antibodies (Table 2)[62-65].

Collagen in the normal glomerulus
Initial studies suggested the presence of collagen in normal human glomerular ECM by the high 
amount of glycine, hydroxyproline, and hydroxylysine in glomerular extracts[30,66-68]. Relative protein 
quantification confirms an abundant amount of type I, type IV, and type VI collagen in human 
glomerular ECM. As mentioned, type IV collagen and laminin are the most abundant proteins in the 
normal glomerular ECM[27].

Type I collagen in the normal glomerulus: Some studies fail to find type I collagen in normal human 
glomerular ECM, either the GBM or the mesangium[39,40,69]. However, mass spectrometry performed 
in adult kidney samples identifies abundant type I collagen in the glomerular ECM, although its 
localization to a specific glomerular ECM sector (GBM, mesangial matrix, or other) is undefined[27].

Type III collagen in the normal glomerulus: Type III collagen mRNA or protein have not been detected 
in healthy human glomeruli. Neither the mesangial matrix nor the GBM normally possess type III 
collagen[33,38-40,69-71]. However, type III collagen has been observed in sclerotic glomeruli, suggesting 
that production of this collagen type is linked to the progression of glomerular sclerosis[69]. In addition, 
glomerular type III collagen has been demonstrated in human kidney diseases, such as DKD, LIM 
homeodomain transcription factor-1β (LMX1β)-associated nephropathy (LAN) and type III collagen 
glomerulopathy.

Heterozygous loss of function mutations in the LMXIβ gene (located on chromosome 9q34) cause 
LAN. Patients with LAN may present with isolated nephropathy or may exhibit additional extrarenal 
clinical manifestations composing the nail-patella syndrome[72,73]. The LMXIβ protein is a transcription 
factor that possesses two LIM domains (cysteine rich sequences that usually mediate protein-protein 
interactions) and a homeodomain that regulates target gene transcription. The precise role of the LIM-
homeodomain protein LMXIβ in humans remains unknown[74,75]. Nail-patella syndrome or onycho-
osteodysplasia is characterized by the association of nail hypoplasia or dysplasia, bone abnormalities 
that affect the knees, elbows, and pelvis, glaucoma, sensorineural hearing impairment, and 
nephropathy. Renal manifestations include hematuria, proteinuria, and kidney failure that may evolve 
to ESKD. LMX1β mutations may also cause isolated autosomal dominant kidney involvement with no 
extrarenal manifestations[72,73,75-78]. LAN is characterized by deposition of type III collagen within 
the GBM on electron microscopy examination. Fibrillar type III collagen bundles may be seen 
occasionally in the mesangial matrix as well. The GBM may demonstrate focal irregular thickening, 
thinning, splitting, or wrinkling and may contain patchy electron-lucent (“moth-eaten”) areas. 
Hyperplasia and effacement of podocyte foot processes is usually observed. The basement membrane of 
kidney tubules appears markedly thickened and demonstrates type III collagen deposition[78,79]. Light 
microscopy examination may reveal focal segmental glomerulosclerosis (FSGS) or unremarkable 
findings, such as mild interstitial fibrosis or mesangial proliferation. Immunofluorescence microscopy 
yields negative or non-specific findings, such as slight granular deposits of C3 in the mesangium. 
Specific immunohistochemical analyses show that the fibrillar material present within the GBM (and 
occasionally the mesangial matrix) is type III collagen[78-82]. The histological phenotype of LAN is 
expanding, as heterozygous mutations in the LMXIβ gene have been reported in patients with 
autosomal dominant FSGS without ultrastructural abnormalities of the GBM and in families with FSGS 
and myelin figures and zebra bodies (electron-dense multilamellar inclusions) in podocytes, mesangial 
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Table 2 Staining characteristics of the mesangial deposits in diabetic kidney diseases, fibronectin-1 nephropathy, and type III collagen 
glomerulopathy

Periodic acid Schiff Methenamine silver Congo red Specific analysis

Diabetic kidney disease Positive Positive Negative Unknown material

Fibronectin-1 nephropathy Positive Negative Negative Fibronectin-1

Type III collagen nephropathy Negative Negative Negative Type III collagen

cells, and tubular epithelium. Patients affected with LAN and myelin figures and zebra bodies are free 
of Fabry’s disease, which is the typical cause of these inclusions. Therefore, LMX1β pathogenic variants 
should be ruled out as a potential cause of autosomal dominant kidney disease, sporadic and hereditary 
forms of FSGS, and steroid-resistant nephrotic syndrome, regardless of extrarenal manifestations. In 
addition, the presence of myelin figures or zebra bodies may hint toward LAN diagnosis in patients free 
of lysosomal storage disorders or drug-induced phospholipidosis, although the mechanism underlying 
the appearance of these structures in LAN is unclear[80,82,83].

Type III collagen glomerulopathy (collagenofibrotic glomerulopathy) is characterized by deposition 
of type III collagen fibrils within the mesangial matrix and along the subendothelial aspect of a normal 
GBM. The cause of the excessive production and deposition of type III collagen in the glomeruli is 
unknown. The diagnosis of the disease is confirmed by electron microscopy and specific immunohisto-
chemistry demonstrating the presence of mesangial type III collagen. Light microscopy reveals diffuse 
mesangial expansion that cause glomerular enlargement. In the advanced stage, the expanded 
mesangium shows a lobular appearance reminiscent of Kimmelstiel-Wilson nodules of DKD. In 
addition, the subendothelial accumulation of this material causes double contour or “reduplication” of 
the GBM. Unlike DKD, the amorphous material present in the mesangium stains negative with PAS. 
Masson’s trichrome stain identifies the blue-colored collagen within the mesangium. Immunofluor-
escence microscopy studies are negative for immunoglobulins and complement components. Immuno-
histochemistry reveals strong staining for antibodies to type III collagen in the widened mesangial and 
subendothelial areas. Electron microscopy reveals a normal GBM and confirms the accumulation of 
electron-dense fibrillar material consistent with dense collagen bundles in mesangial and subendothelial 
zones. The fibrils exhibit a transverse band structure with distinctive periodicity suggesting type III 
collagen fibers. The mesangium and subendothelium acquire a mottled appearance due to the presence 
of collagen fibrils[84-86]. Accumulation of mesangial type III collagen has been reported in one patient 
with inherited factor H deficiency[87].

Type IV collagen in the normal glomerulus: Type IV collagen is an abundant protein of the glomerular 
ECM and may be observed in the GBM and the mesangium. In the normal GBM, a distinct continuous 
staining for type IV collagen indicates that this collagen type is a predominant component[27,31,37,39,
71,88].

The molecule of type IV collagen consists of three α chains. Six genes (COL4A1-6) encode six different 
α chains that create several isoforms of type IV collagen. The α3, α4, and α5 chains of type IV collagen 
contain more cysteine than the chains α1 and α2. Therefore, α1α1α2 (α112) trimers possess fewer 
disulfide bonds than α3α4α5 (α345) heterotrimers. The relative protein abundance of the α1 and α2 
chains in normal adult glomerular ECM has been reported higher compared to the richness of the α3, α4, 
and α5 chains[27].

Ultrastructural examination with immunogold technique reveals that type IV collagen is concentrated 
in the endothelial zone and decreases towards the epithelial third of the GBM in normal human 
glomeruli. In addition, the α1 chain is distributed primarily along the endothelial side of GBM whereas 
the α3 and α4 chains are seen throughout the thickness of the GBM[56,89]. Kidney assessment with 
STORM reveals that type IV collagen α345 trimers are localized at the center of the GBM while type IV 
collagen α112 trimers are located to the endothelial side. Co-labeling for both trimers of type IV collagen 
(α345 and α112) suggest the α112 network occupies the space between the central α345 Layer and the 
endothelial surface of the GBM[29].

In addition to the GBM, type IV collagen is detectable in the mesangial matrix of normal human 
glomeruli[38-40,43,71]. Investigations using quantitative immunogold electron microscopy show that 
mesangial type IV collagen labeling appears uniform throughout the mesangial matrix and extends to 
the subendothelial side of the GBM[56,89]. Electron microscopy examination with immunogold 
technique shows that the α1 chain of type IV collagen is distributed primarily along the mesangial 
matrix and the endothelial side of GBM whereas the α3 chain of type IV collagen is not detected in 
normal human mesangial matrix[32].

The relevance of type IV collagen to kidney structure and function is highlighted by the clinical 
consequences of mutations in genes that code the α chains of this collagen type. Mutations in the 
COL4A3-5 genes cause type IV collagen-related kidney disease (Table 3). The COL4A5 gene encodes the 
α5 chain and maps to the X chromosome. Mutations in this gene account for X-linked Alport syndrome. 



Adeva-Andany MM et al. Glomerular matrix extracellular

WJD https://www.wjgnet.com 505 July 15, 2022 Volume 13 Issue 7

Table 3 Type IV collagen-related kidney disease

Gene/location Protein Mutation Risk of progression to end-
stage kidney disease

X-linked Alport 
syndrome

COL4A5/X 
chromosome

α5 chain of type IV 
collagen

Hemizygous (males) or heterozygous 
(females) mutations

Hemizygous: 100%; Heterozygous: 
25%

Autosomal recessive 
Alport syndrome

COL4A4 or COL4A3
/2q36-37

α4 and α3 chains of 
type IV collagen

Biallelic (homozygous or compound 
heterozygous) mutations

100%

Autosomal dominant 
Alport syndrome

COL4A4 or/COL4A3
2q36-37

α4 and α3 chains of 
type IV collagen

Heterozygous mutations in the α4 or α
3 chains

20% in patients with risk factors for 
progression

Digenic Alport syndrome Two of the COL4A3-5 
genes

Two of the α3-5 chains

Males harbor hemizygous mutations whereas females carry heterozygous mutations. The COL4A4 and 
COL4A3 genes encode respectively the α4 and α3 chains of type IV collagen and are located on 
chromosome locus 2q36-37. Mutations in these genes cause autosomal Alport syndrome. Biallelic 
(homozygous or compound heterozygous) mutations in either one of them result in autosomal recessive 
Alport syndrome whereas autosomal dominant Alport syndrome is due to heterozygous mutations in 
either the COL4A4 or COL4A3 genes. Mutations in two of the COL4A5, COL4A4, or COL4A3 genes cause 
digenic Alport syndrome[90-94].

Mutations in type IV collagen are highly prevalent. Genome-wide association studies show that 1 in 
600 subjects from the Icelandic population carry a variant in the COL4A3 gene associated with 
hematuria and albuminuria. In the UK population, the COL4A4 variant rs35138315 (Ser969X) has a 
carrier frequency of 0.13% and is also associated with hematuria and albuminuria[95]. Among 24 Greek 
families with familial microscopic hematuria, next generation sequencing identifies pathogenic 
mutations in the COL4A3-5 genes in 17 (71%) of them[96]. Mutations in the COL4A3-5 genes are also 
frequently found in patients with sporadic and familial FSGS[94,95,97-99]. Pathogenic variants in any of 
the COL4A3-5 genes are found in up to 10% of patients with renal failure of unknown cause and in some 
families with IgA nephropathy[94]. Therefore, indications for screening for pathogenic variants in the 
COL4A5, COL4A4, or COL4A3 genes have been extended beyond the classical Alport syndrome 
phenotype (hematuria, renal failure, family history of hematuria or renal failure) to include FSGS, 
persistent proteinuria, steroid-resistant nephrotic syndrome, familial IgA nephropathy, and ESKD 
without an obvious cause[94].

The phenotypical expression of mutations in type IV collagen (COL4A3-5 genes) is heterogeneous. 
Patients with type IV collagen-related nephropathy may exhibit isolated microscopic hematuria, 
proteinuria, or kidney failure that evolves to ESKD. In addition, patients with type IV collagen 
mutations may experience extrarenal manifestations such as sensorineural hearing loss, lenticonus, and 
retinopathy[90-93,97]. In patients with mutations in the COL4A5 gene (X-linked Alport syndrome), 
hemizygous males have a 100% risk of progression to ESKD while heterozygous females (formerly 
called carriers) have substantial risk associated with proteinuria, progressive renal disease, and 
sensorineural hearing loss. Their lifetime risk of progression to ESKD is approximately 25%. Patients 
with autosomal recessive Alport syndrome (due to biallelic mutations in COL4A4 or COL4A3 genes) 
have a 100% risk of ESKD. Patients with heterozygous mutations in COL4A4 or COL4A3 genes 
(autosomal dominant Alport syndrome) may be asymptomatic or may exhibit hematuria or proteinuria 
and include patients previously diagnosed with thin basement membrane nephropathy. Risk factors for 
progression to ESKD in these subjects include proteinuria, sensorineural deafness, family history of 
progression to ESKD and renal biopsy findings of FSGS or GBM thickening and disarray. The risk of 
ESKD is up to 20% among those with risk factors. Patients with heterozygous mutations in COL4A4 or 
COL4A3 genes without kidney manifestations (hematuria or proteinuria) generally have a good 
prognosis but should be screened in a yearly basis[93].

The kidney histological phenotype of mutations in type IV collagen is characterized by GBM 
alterations, effacement of podocyte foot processes, and FSGS. Light microscopy examination of kidney 
samples from patients with Alport syndrome may reveal normal glomeruli or only minor mesangial 
widening. Immunofluorescent staining generally renders negative or nonspecific results. Electron 
microscopy usually provides the diagnosis, revealing changes in the GBM that may include areas of 
thinning, thickening, lamellation, and splitting. Initially, the GBM exhibits segmental thinning followed 
by progressive thickening and disorganization. In addition, diffuse podocyte foot process effacement 
occurs very frequently[74,97,99-101]. Patients with pathogenic variants affecting the α chains of type IV 
collagen may display FSGS with or without GBM changes[91,97-99,102,103].

Type V collagen in the normal glomerulus: In normal human glomeruli, type V collagen shows a 
distribution similar to type IV, being detectable in the GBM and the mesangium[38-40].
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Type VI collagen in the normal glomerulus: In human adult glomerular tissue, mass spectrometry 
quantitative analyses show that type VI collagen is highly abundant[27]. In normal kidney samples, 
immunogold electron microscopy and immunohistochemical analyses show that the glomerular distri-
bution of type VI collagen is comparable to that of the α1 chain of type IV collagen, namely along the 
mesangial matrix and the endothelial aspect of the GBM mainly[27,31,32,38,40].

Other types of collagen (type XV, type XVII and type XVIII collagen) in the normal glomerulus: Type 
XV collagen (α1 chain) has been found among ECM proteins in the glomerular proteome although its 
biological significance is uncertain[27].

Type XVII collagen is a transmembrane molecule involved in epithelial adhesion that has been 
identified as an autoantigen in bullous pemphigoid, a blistering skin disease of autoimmune origin. The 
association of bullous pemphigoid and a glomerular disease with characteristics of anti-GBM disease 
and membranous nephropathy has been reported in a 75-year-old man that also had circulating IgG 
against BP180, the 180-kDa bullous pemphigoid antigen (type XVII collagen). The kidney biopsy 
exhibited endocapillary inflammation without crescents. Direct immunofluorescence showed strong IgG 
and C3 staining in a combined granular and linear pattern along the GBM. Electron microscopy 
revealed subepithelial deposits[104]. In a kidney biopsy sample collected from a 4-year-old girl with 
hematuria, immunoelectron microscopy reveals that type XVII collagen is expressed in the foot 
processes of podocytes. In addition, type XVII collagen can be seen in the adjacent lamina rara externa 
of the GBM[105].

Type XVIII collagen has been identified among the ECM proteins in the glomerular proteome, being 
present in the GBM and the mesangium. Its expression pattern is similar to that of the α1 and α2 chains 
of type IV collagen[27,106].

Other components and factors that may modulate the normal composition of the glomerular ECM
The tubulointerstitial nephritis antigen-like-1 (TINAGL1) is highly abundant in normal glomerular 
ECM, being predominantly localized to the mesangial matrix. TINAGL1 is a glycoprotein structurally 
related to the tubulointerstitial nephritis antigen, a protein of the tubular basement membrane that is the 
antigenic target in autoimmune anti-tubular basement membrane disease. Nephronectin, vitronectin, 
fibulin-1, and fibrillin-1 have been identified as components of glomerular proteome using mass 
spectrometry. Nephronectin is present both in the GBM and mesangial matrix while vitronectin is 
localized in the mesangial matrix alone[27].

Matrix metalloproteinases and their inhibitors: Matrix metalloproteinases (MMPs) and their inhibitors 
are present in the ECM, but the particular isoforms distributed to the human kidney and their specific 
pathophysiologic role remain largely unknown. Disruption of the balance between MMPs and their 
inhibitors in the extracellular space has been implicated in the development of kidney fibrosis. Plasma 
concentration of MMPs and their inhibitors have been correlated with insulin resistance and kidney 
disease in clinical studies, suggesting that the composition of the ECM is altered in these conditions[107-
109]. In the Renal Iohexol Clearance Survey, higher MMP-7 Levels were independently associated with 
increased risk of accelerated glomerular filtration rate (GFR) decline and incident chronic kidney disease 
among 1324 adults from the general population free of baseline diabetes, kidney disease or 
cardiovascular disease, over a median observation period of 5.6 years. In contrast, MMP2 and tissue 
inhibitor of metalloproteinase-1 (TIMP-1) showed no association with kidney disease[107]. Patients with 
insulin resistance display increased plasma TIMP-1 Level compared with healthy subjects. Accordingly, 
elevated plasma TIMP-1 concentration may be a marker of interstitial fibrosis due to excessive collagen 
deposition[108,109].

In vitro studies show that the expression of MMPs in the kidney ECM may be regulated at least in 
part by growth factors and ECM components[110,111]. In human kidney tubular cells, transforming 
growth factor-β1 (TGF-β1) induces MMP-2 expression via up-regulation of integrin-linked kinase[110], 
while elevated glucose concentration decreases MMP-9 and MMP-2 expression and increases TIMP-1 
expression[112]. In cultured human glomerular epithelial cells, the expression of MMP-2 and MMP-9 is 
down-regulated by the presence of the α3 chain of type IV collagen[111], while high glucose concen-
tration reduces MMP-2 expression and up-regulates TIMP-2[113].

Growth factors: The ECM composition is modulated by growth factors such as TGF-β1, platelet-derived 
growth factor (PDGF), and vascular endothelial growth factor (VEGF). TGF-β1 and PDGFs may promote 
ECM fibrosis in the kidney at least in part via integrins and integrin-associated proteins[114,115]. In vitro 
investigations using human mesangial cells show that TGF-β1 induces mesangial matrix expansion
[116]. Accordingly, up-regulation of TGF-β1 is observed in the areas of interstitial and fibrosis in human 
fibrotic kidneys, compared with control kidneys[117]. Likewise, the expression of TGF-β1 and type IV 
collagen is increased in kidney allografts with interstitial fibrosis compared to normal kidney tissue
[118]. VEGF and its receptors are expressed in normal human kidney, particularly in podocytes and 
mesangial cells. In normal podocytes, transmission electron microscopy examination reveals that VEGF 
may be detected in the intracellular compartment (36%) and associated with the cell membrane (63%)
[119]. In vitro studies show that VEGF induces a proliferative effect on human mesangial cells[120,121]. 
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The role of VEGF in glomerular pathophysiology is largely unknown, but neutralizing VEGF activity 
may increase the risk of kidney disease, as bevacizumab (a monoclonal antibody against human VEGF-
A) therapy has been associated with elevated risk of proteinuria and hypertension among cancer 
patients in a systematic review and meta-analysis of clinical trials[122]. Rapamycin therapy has been 
associated with reduced VEGF expression in the human kidney that might contribute to explain the 
renal side-effects of this drug[123].

Integrins and integrin-associated proteins: Growth factors may interact with integrins to initiate 
signaling cascades. Integrins are plasma membrane proteins that link structurally and functionally the 
cell cytoskeleton with the extracellular space (Figure 3). Inside the cell, the cytoplasmic domain of 
integrins connects with the cytoskeleton via integrin-associated proteins, including integrin-linked 
kinase, particularly interesting new cysteine-histidine-rich protein (PINCH1), parvin proteins, and 
calponin homology domain-containing integrin-linked kinase-binding protein (CH-ILKBP)[114,124-
128]. PINCH1 is an adaptor protein that comprises five LIM domains and interacts with integrin-linked 
kinase[129]. The parvins are partner proteins to integrin-linked kinase and PINCH1[130]. CH-ILKBP 
interacts with integrin-linked kinase, PINCH1, and the cytoskeleton. The interaction with integrin-
linked kinase mediates the plasma membrane localization of CH-ILKBP. Northern blot analyses show 
widespread CH-ILKBP expression in human tissues, particularly in the heart, skeletal muscle, and 
kidney[131]. In vitro studies using human cell lines (HeLa cells) show that depletion of CH-ILKBP 
prevents the membrane translocation and the phosphorylation of protein kinase B (AKT), suggesting 
that CH-ILKBP facilitates the activation of this kinase in response to extracellular signals[132]. Integrins 
and integrin-associated proteins convey cues from growth factors and ECM components to intracellular 
pathways, although specific signaling cascades are not fully elucidated in humans[110,117,118]. Integrin 
signaling via integrin-associated proteins has been implicated in the regulation of ECM deposition and 
may be involved in the development of kidney fibrosis, both in native kidneys and kidney allografts, 
although underlying mechanisms remain largely unsolved[118]. An up-regulation of β1 integrin and 
integrin-linked kinase has been observed in areas of interstitial fibrosis in human fibrotic kidneys, 
compared with control kidneys[117]. In vitro experiments using cultured human proximal tubular cells 
reveal that overexpression of integrin-linked kinase and PINCH1 increases fibronectin-1 expression and 
its extracellular assembly, whereas PINCH1 knockdown reduces TGFβ1-mediated fibronectin-1 
expression[110,124]. In vitro studies show that α3β1 integrin largely mediates the adhesion of human 
glomerular epithelial cells to type IV collagen[133]. Glucose concentration in the medium may alter 
integrin expression and the binding to type IV collagen in human glomerular epithelial cells[113], and 
human proximal tubular epithelial cells[112].

COMPOSITION OF THE GLOMERULAR ECM IN DKD
Diabetes is associated with a profound alteration in the composition of extracellular tissues throughout 
the body, including the kidney and the blood vessels. Patients with diabetes demonstrate increased 
interstitial collagen production and deposition that leads to fibrosis. Alström syndrome is an autosomal 
recessive disease due to mutations in the ALMS1 protein, characterized by the presence of early 
childhood insulin resistance. Like diabetes, patients with Alström syndrome typically show systemic 
fibrosis of extracellular tissues[5,36,134-136]. In patients with DKD, the amount and biochemical 
composition of the GBM and mesangial matrix are markedly anomalous. The global amount of 
glomerular ECM is increased, the level of heparan sulfate proteoglycans is reduced, and the collagen 
content is augmented compared to normal kidneys (Table 4)[36,134]. Furthermore, the abnormal 
composition of the glomerular ECM becomes more pronounced with the progression of DKD. 
Advanced sclerotic lesions show increased type III collagen and reduced amount of heparan sulfate 
proteoglycan and fibronectin-1 compared to earlier stages of DKD (Figure 4)[39,137,138].

Glomerular glycosaminoglycans, proteoglycans, and sialic acid in DKD
In patients with diabetes, the content of heparan sulfate in the glomerular ECM is prominently reduced 
while the global amount of extracellular tissue is increased. A quantitative assessment conducted by 
immunochemical procedures reveals that the abundance of heparan sulfate proteoglycan in the GBM of 
patients with diabetes is 30% lower than that of control subjects. The decrease in glomerular heparan 
sulfate has been also observed in other diseases, such as C3 glomerulopathy, membranous nephropathy, 
minimal change disease, and lupus nephritis[33,36,37,139].

The reduction in glomerular heparan sulfate proteoglycan associated with DKD starts to occur early 
and becomes more severe with the advance of the disorder. In patients with mild diffuse glomerulo-
sclerosis, the staining pattern of heparan sulfate proteoglycan is reduced in the thickened mesangial 
matrix while in more pronounced diffuse glomerulosclerosis and mesangial nodules the enlarged 
matrix lacks heparan sulfate proteoglycan completely[33,39]. In contrast, the amount of hyaluronic acid 
is increased in the glomerular ECM of patients with DKD compared to control subjects[140]. As 
mentioned, heparan sulfate is a major ligand for factor H, an inhibitor of the alternative pathway of 
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Table 4 Different composition of glomerular extracellular matrix (glomerular basement membrane and mesangial matrix) in normal 
subjects and patients with diabetes

Normal glomeruli Diabetic kidney disease
Heparan sulfate proteoglycans GBM and mesangial matrix Decreased amount

Laminin Predominantly in the GBM Inconsistent 

Fibronectin-1 Mainly in the mesangial matrix It varies according to DKD stage

Type I collagen Inconsistent No detectable

Type III collagen Absent Abundant 

Type IV collagen Abundant in the GBM Reduced GBM amount

Type V collagen Similar to type IV collagen Increased mesangial amount

Type VI collagen GBM and mesangial matrix Increased mesangial amount

GBM: Glomerular basement membrane; DKD: Diabetic kidney disease.

Figure 3 Integrins and integrin-associated proteins.

complement on “self” biological surfaces. Loss of heparan sulfate (or altered sulfation pattern) may 
result in reduced factor H attachment to “self” structures, subsequent activation of the alternative 
pathway and complement-mediated injury, like occurs in the presence of mutated factor H (C3 glomer-
ulopathy). Complement activation via the alternative pathway may contribute to the progression of 
renal and vascular complications in human diabetes. In patients with biopsy-proven DKD, a higher 
level of factor H in the urine has been independently associated with worse kidney outcomes, including 
onset of ESKD and faster kidney function decline, compared to control subjects[141]. Further, clinical 
studies have shown an association between single nucleotide polymorphisms in factor H and adverse 
clinical outcomes in different population groups of non-diabetic and diabetic patients[142,143]. In 
African American patients, genetic changes in factor H gene, such as the intronic variant rs379489, have 
been associated with ESKD in both non-diabetic and type 2 diabetes (T2D), compared to controls[142]. 
In 1158 T2D patients prospectively followed in the randomized controlled trial Bergamo Nephrologic 
Complications of T2D (BENEDICT), the single nucleotide polymorphism in the factor H gene c.2808G>T 
(p.Glu936Asp) is independently associated with increased risk of microalbuminuria and cardiovascular 
complications (Asp/Asp homozygotes, recessive model). T2D patients Asp/Asp homozygotes are at 
increased risk of microalbuminuria and cardiovascular events compared to carriers of one or two wild 
type Glu alleles[143].

Among patients with diabetes, the reported amount of glomerular sialic acid has been inconsistent. A 
decline in the content of sialic acid has been detected in the glomerular ECM of patients with diabetes, 
compared to normal kidney samples[68,144]. However, an increased expression of sialic acid on 
podocytes has been observed in patients with DKD and other kidney diseases without differences 
among them[44].
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Figure 4 Schematic variation in some components of the glomerular extracellular matrix according to the progression of diabetic kidney 
disease. GBM: Glomerular basement membrane.

A study that applied weighted gene co-expression network analysis to 179 human glomeruli reveals 
that two small leucine-rich proteoglycans (lumican and fibromodulin) are more abundant in the ECM of 
patients with DKD compared to controls and other glomerular diseases, such as IgA nephropathy or 
membranous nephropathy. Further, the expression level of lumican and fibromodulin is negatively 
correlated with kidney function. The specificity of lumican and fibromodulin in kidney samples from 
patients with DKD in comparison to normal specimens and patients with other glomerular diseases 
suggests that these ECM components may become potential diagnostic biomarkers for DKD[14].

Glomerular laminin in DKD
The laminin content of the glomerular ECM in patients with diabetes has been barely reported and the 
values are variable[37,39]. In human kidneys obtained at autopsy, there is a marked reduction in 
laminin content in the diabetic GBM compared to non-diabetic control subjects. Radioimmunoassays 
indicated that GBM from patients with diabetes contains average values of laminin that were 60% of 
control subjects[37]. However, immunohistochemical studies show an increased glomerular deposition 
of laminin in kidney biopsy samples from type 1 diabetes (T1D) and T2D patients with diffuse and 
nodular glomerulosclerosis[39].

Glomerular fibronectin-1 in DKD
Immunohistochemical studies reveal that the amount of mesangial fibronectin-1 is abnormal in patients 
with diabetes and varies with the advance of DKD. Antibodies to fibronectin-1 normally stain the 
mesangium and the subendothelial aspect of the GBM. Early lesions of mesangial expansion are 
associated with increased staining for fibronectin-1. However, a marked diminution in fluorescent 
intensity for fibronectin-1 is documented in more advanced mesangial enlargement (nodular lesions). 
Compared with normal tissues and early lesions of DKD, the progression of the disease is associated 
with a noticeable reduction in the amount of glomerular fibronectin-1[39,40,137]. The increase in 
mesangial fibronectin-1 that occurs in the early stage of DKD also takes place in other glomerular 
diseases characterized by mesangial expansion, such as mesangiocapillary glomerulonephritis[59,60]. 
An up-regulation of fibronectin-1 expression in the glomeruli has been also observed in patients with 
hypertension compared to normal kidneys[4]. Likewise, the amount of fibronectin-1 in vascular tissue is 
increased in patients with diabetes before the development of atherosclerosis lesions[59,145]. The 
content of fibronectin-1 in the intima-media of normal aorta specimens is more elevated in patients with 
diabetes (T1D and T2D) compared to control subjects, suggesting that diabetic patients develop 
structural alterations in the connective tissue of their arteries before the appearance of vascular disease
[145]. In patients with DKD, the thickened capillary walls also contain a markedly elevated amount of 
fibronectin-1[59].

Glomerular collagen in DKD
Earlier studies found elevated glomerular ECM levels of glycine, hydroxyproline, hydroxylysine, and 
hexoses in patients with diabetes compared to normal kidney samples, suggesting an increase in the 
amount of collagen in the glomerular ECM from diabetic patients[30,36,66-68]. Radioimmunoassays 
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confirmed collagen enrichment in the glomerular ECM of patients with diabetes[37]. Accordingly, 
electron microscopy examination shows accumulation of collagen fibrils in the mesangium of patients 
with DKD[146].

Glomerular type I collagen in DKD: No glomerular type I collagen has been detected in DKD at any 
stage of the disorder[33,39,40,137,147].

Glomerular type III collagen in DKD: Unlike normal glomeruli, type III collagen is identified in the 
mesangium of patients with DKD and its amount increases gradually with the progression of the 
disease. Early DKD lesions (diffuse glomerulosclerosis) show positive staining for type III collagen that 
increases in more advanced mesangial nodular lesions. In the late stage of global sclerosis, type III 
collagen is diffusely present in the sclerotic mesangial matrix. Therefore, de novo synthesis of type III 
collagen in glomeruli occurs in patients with DKD[33,39,40,70,71]. A patient with T1D and collagen-
ofibrotic glomerulopathy has been reported[148].

Glomerular type IV collagen in DKD: In patients with diabetes, immunohistochemical estimates of 
type IV collagen in the GBM reveal reduced staining compared to normal tissue. Accordingly, the 
density of gold particles for type IV collagen is decreased in the GBM of T1D patients on quantitative 
immunogold electron microscopy examination. Like in normal subjects, the labeling of antibody against 
type IV collagen in the GBM is concentrated in the endothelial zone and decreases towards the epithelial 
aspect of the GMB in diabetic patients[33,89].

In the mesangial matrix, immunohistochemical studies show that the amount of type IV collagen 
changes according to the stage of DKD. In earlier lesions of diffuse glomerulosclerosis, mesangial 
staining for type IV collagen is increased while more advanced nodular glomerulosclerosis showed 
marked reduction in the mesangial staining for type IV collagen, suggesting that type IV collagen is 
progressively substituted for other collagen types such as type VI and type III during the transition from 
diffuse to nodular glomerulosclerosis[39,40,89]. However, an elevated mesangial staining for type IV 
collagen has been observed in specific nodular lesions, called non-mesangiolytic nodules, compared to 
normal kidney[33,71]. The amount of type IV collagen in nodular lesions may depend on the type of the 
lesion, mesangiolytic or non-mesangiolytic. In a study aimed to investigate collagen staining of 
mesangial nodules from 67 patients with DKD, type IV collagen staining was only robust in nodular 
lesions with strong PAS/periodic acid methenamine silver (PAMS) staining (non-mesangiolytic nodular 
lesions). In contrast, nodular lesions with faint PAS/PAMS staining (mesangiolytic nodular lesions) did 
not show type IV collagen. The amount of type IV collagen correlates with the PAS and PAMS staining 
pattern. Non-mesangiolytic nodules (with prominent PAS/PAMS staining) are strongly positive for 
type IV collagen whereas mesangiolytic nodules (with weak or negative PAS/PAMS staining) show 
weak or negative staining for type IV collagen[147]. Immunofluorescence studies performed in 918 
kidney biopsy samples from patients with diabetes (T1D and T2D) show accumulation of α3 and α5 
chains of type IV collagen in diffuse mesangial sclerosis while minimal amounts of these α3 and α5 
chains were seen within the mesangium of control subjects[43].

In patients with diabetes, two large clinical investigations with different population groups (African 
American and European descent subjects) have shown that genetic variants in the gene that codes the α3 
chain of type IV collagen (COL4A3) may modulate susceptibility to DKD and ESKD[149]. In 4885 
African American patients with T2D, an association between the genetic variant R408H (rs34505188) in 
COL4A3 and ESKD has been observed, suggesting that genetic changes in the COL4A3 locus may 
contribute to ESKD susceptibility in patients with diabetes[149]. In 19406 T1D patients of European 
descent from 17 cohorts, a genome-wide association meta-analysis reveals that a single nucleotide 
polymorphism in the COL4A3 gene is associated with protection from DKD (proteinuria and ESKD)
[150].

Glomerular type V collagen in DKD: Immunohistochemical studies have documented an enrichment 
in mesangial type V collagen in diffuse glomerulosclerosis and nodular lesions in patients with DKD 
compared to control subjects. Increased staining for type V collagen is observed in advanced mesangial 
disease, compared to normal tissues and early mesangial disease.

Staining for type V collagen was strongly positive in all nodular lesions, mesangiolytic and non-
mesangiolytic[39,40,137,147].

Glomerular type VI collagen in DKD: In patients with DKD, the amount of mesangial type VI collagen 
is elevated. Quantitation by radioimmunoassay reveals that the level of type VI collagen is 2.8-fold 
higher in the diabetic preparations compared to control subjects. Furthermore, the amount of mesangial 
type VI collagen increases with the progression of DKD. In earlier lesions of diffuse glomerulosclerosis, 
the contribution of type VI collagen deposition to the overall matrix expansion is minor. However, type 
VI collagen is a major component in the expanded mesangial matrix of nodular glomerulosclerosis. A 
marked increase in type VI collagen deposition is observed in nodular lesions where the strong 
positivity for type VI collagen is evenly distributed throughout the entire nodules[31,39,40,147].
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Other factors that contribute to modulate the composition of kidney ECM in DKD
As kidney ECM remodeling is profoundly altered in patients with DKD, the expression of MMPs, 
TIMPs, integrins, integrin-associated proteins, and signaling pathways from growth factors have been 
reported abnormal among these patients. In addition, the nuclear factor-kappa-B (NF-κB) family of 
transcription factors and advanced glycation end-products (AGEs) have been proposed as potential 
contributors to the ECM disturbance present in patients with DKD.

MMPs and their inhibitors in patients with DKD: The expression of MMPs and their inhibitors is 
altered in patients with DKD. Clinical studies have suggested that these ECM components might be 
useful to evaluate the risk for cardiovascular disease, kidney disease, and all-cause mortality among 
patients with diabetes. In a cross-sectional study, T1D patients with cardiovascular disease showed 
higher levels of TIMP-1 compared to T1D patients without cardiovascular disease[151]. In a prospective 
study that followed 337 T1D patients for a median period of 12.3 years, elevated MMP-2 plasma levels 
were associated with higher incidence of cardiovascular events, but this relationship was attenuated 
after adjustment for estimated GFR, suggesting that kidney function may mediate the association[152]. 
In a cross-sectional pooled analysis of three groups of T1D patients, circulating MMP-1, MMP-2, and 
MMP-3 Levels were associated with arterial stiffening independent of confounding factors while no 
association with TIMPs was observed[153]. In a case-control study that evaluated 120 control women 
and 120 women with a history of gestational diabetes 3.7 years after delivery, both serum TIMP-1 Levels 
and arterial stiffness were higher in subjects with previous gestational diabetes compared to control 
individuals[154]. In T1D patients, MMPs and their inhibitors have been associated with albuminuria in a 
cross-sectional study[151], and with kidney function decline in a prospective study[152]. In a 
prospective observational cohort study, urinary excretion of MMP-7 was independently associated with 
higher mortality rate over a median follow-up period of 3.0 years, in T2D patients with DKD. In 
contrast, no association between serum MMP-7 Level and mortality was observed[155]. In T1D patients, 
the association of MMP-1, MMP-2 and MMP-3 with all-cause mortality was attenuated after adjustment 
for estimated GFR, suggesting that the known association between kidney function and mortality may 
mediate the relation between MMPs and death[152].

However, MMPs expression in glomeruli may be altered in other glomerular diseases, such as IgA 
nephropathy, which is associated with extensive changes of the glomerular ECM proteome, including 
higher abundance of MMP-9, MMP-2, α1 chain of type IV collagen, fibronectin, and β1-laminin[156].

Growth factors (TGF-β, PDGF, and VEGF) in patients with DKD: In T2D patients with albuminuria, 
serum TGF-β1 Level is higher compared to healthy controls and T2D patients with normal urinary 
albumin excretion rate, suggesting that serum TGF-β1 might be used to evaluate progression of DKD
[157,158]. Several meta-analyses indicate a potential value of serum TGF-β1 Levels to evaluate the risk of 
DKD and the advance of the disease[159-161]. However, the administration of a neutralizing 
monoclonal antibody against TGF-β1 to T1D and T2D patients with DKD failed to slow progression of 
the disease compared to placebo in a randomized controlled clinical trial, suggesting that TGF-β1 is not 
a major determinant of kidney function decline in patients with diabetes[162].

The glomerular expression of PDGF-B and its receptor (PDGFR-β) is higher in T2D patients with 
DKD compared to normal kidneys, particularly in samples with mild mesangial expansion. In contrast, 
the expression of PDGF-A and its receptor (PDGFR-α) is comparable in normal kidneys and patients 
with DKD[163].

In patients with DKD, VEGF-A expression is lower compared to normal kidney tissue[164]. VEGF 
signaling has been reported to be differentially regulated in patients with DKD in a study that examined 
gene-expression changes in human DKD[165]. However, in a prospective study that recruited 155 T1D 
patients with proteinuria, plasma VEGF failed to predict kidney function decline over 3-year follow-up
[166].

Integrins and integrin-associated proteins in patients with DKD: Glomerular integrin and integrin-
linked kinase signaling pathways have been found differentially regulated in patients with DKD[165]. 
In addition, the expression of integrin-linked kinase in the mesangium is increased in kidney specimens 
from patients with diabetes and diffuse mesangial expansion, compared to control samples. In contrast, 
integrin-linked kinase level is reduced in glomeruli with advanced nodular sclerosis and global 
sclerosis, suggesting that integrin-linked kinase expression increases during early stages of DKD[114].

NF-κB in patients with DKD: NF-κB is a transcription factor that regulates the expression of several 
genes. NF-κB-inducing kinase activates the NF-κB signaling pathway. Dysregulation of NF-κB signaling 
has been implicated in DKD, but its role remains uncertain. In vitro studies using human proximal 
tubular epithelial cells (HK-2 cells) suggest a role for NF-κB pathway in modulating diabetes-induced 
disease in renal tubular epithelium[167,168].

Advanced glycation products in patients with DKD: AGEs are molecules that result from 
nonenzymatic glycation of proteins and lipids. They may bind to cell surface receptors (RAGEs). AGEs 
have been hypothesized to be involved in the development of human DKD, but their participation 
remain undefined. In kidney biopsies from patients with DKD, AGEs are detected in the expanded 
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mesangial matrix while they are not identified in control samples[169,170]. In addition, AGEs are 
identified in areas of glomerulosclerosis and arteriosclerosis in other diseases, such as FSGS, 
hypertensive nephrosclerosis, and lupus nephritis[169]. RAGE expression was detected in mesangial 
cells and glomerular epithelial cells, in both patients with DKD and control subjects[170]. In a cross-
sectional study, the level of AGEs was positively associated with serum concentration of MMP-2, 
MMP3, and TIMP-1 while an inverse association with MMP-9 was observed in T1D patients[171].

CONCLUSION
Understanding mechanisms that regulate glomerular ECM injury and repair may contribute to develop 
therapeutic strategies for DKD and other kidney diseases. During adult life, mesangial cells produce 
mesangial matrix. The turnover of the GBM present at birth is unknown. Podocyte foot processes 
surround and attach entirely the GBM. Adult podocytes may sustain hypertrophy following the loss of 
adjacent cells to prevent bared GBM areas that compromise the filtration barrier. Glycosaminoglycans, 
such as heparan sulfate and hyaluronic acid, are major constituents of the glomerular ECM. The specific 
pattern of sulfation of glycosaminoglycans allows the identification of these molecules as “self” by 
complement components and avoid complement-mediated self-damage. Sialic acid is also present in 
glomerular ECM and may serve to a similar function. Fibronectin-1 is important for the normal 
deposition of other ECM components, such as collagen. Type IV, V, and VI collagens are predominant 
types of collagen normally present in the glomerular ECM while type III collagen appears in diseased 
states, such as diabetes and glomerulosclerosis. The composition and arrangement of the glomerular 
ECM is profoundly altered in patients with diabetes. The global quantity of glomerular ECM is 
increased while the amount of sulfated proteoglycans is reduced and hyaluronic acid is augmented, 
compared to control tissue. Fibronectin-1 is increased in early lesions of mesangial expansion. Likewise, 
the amount of fibronectin-1 in capillary walls and aorta is increased before the development of vascular 
disease in patients with diabetes. Mesangial type III, type V, and type VI collagen amount is elevated in 
patients with DKD and increases progressively with the advance of the disease. Genetic variants in the 
gene that codes the α3 chain of type IV collagen (COL4A3) may modulate susceptibility to DKD and 
ESKD.
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