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Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of many lethal and debilitating 
conditions. Among them, foot ulceration due to neuropathy, vascular disease, or 
trauma affects the quality of life of millions in the United States and around the 
world. Physiological wound healing is stalled in the inflammatory phase by the 
chronicity of inflammation without proceeding to the resolution phase. Despite 
advanced treatment, diabetic foot ulcers (DFUs) are associated with a risk of 
amputation. Thus, there is a need for novel therapies to address chronic inflam-
mation, decreased angiogenesis, and impaired granulation tissue formation 
contributing to the non-healing of DFUs. Studies have shown promising results 
with resolvins (Rv) and anti-inflammatory therapies that resolve inflammation 
and enhance tissue healing. But many of these studies have encountered difficulty 
in the delivery of Rv in terms of efficiency, tissue targetability, and immuno-
genicity. This review summarized the perspective of optimizing the therapeutic 
application of Rv and cytokines by pairing them with exosomes as a novel 
strategy for targeted tissue delivery to treat non-healing chronic DFUs. The 
articles discussing the T2DM disease state, current research on Rv for treating 
inflammation, the role of Rv in enhancing wound healing, and exosomes as a 
delivery vehicle were critically reviewed to find support for the proposition of 
using Rv and exosomes in combination for DFUs therapy. The literature reviewed 
suggests the beneficial role of Rv and exosomes and exosomes loaded with anti-
inflammatory agents as promising therapeutic agents in ulcer healing.

Key Words: Diabetic foot ulcer; Chronic inflammation; Amputation; Exosomes; 
Cytokines; Resolvins
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Core Tip: Nonhealing diabetic foot ulcers (DFUs) are a debilitating condition with the risk of amputation 
despite the advanced treatment strategies. Chronic inflammation, decreased granulation tissue formation, 
and decreased angiogenesis underlies the pathogenesis of nonhealing. Targeted delivery of therapeutics 
targeting immune cell infiltration and chronic inflammation with loaded exosomes may increase the 
efficacy of treatment. We herein discuss the potential of exosomes loaded with resolvins and drugs 
targeting inflammatory cytokines to promote DFUs healing.

Citation: Littig JPB, Moellmer R, Agrawal DK, Rai V. Future applications of exosomes delivering resolvins and 
cytokines in facilitating diabetic foot ulcer healing. World J Diabetes 2023; 14(1): 35-47
URL: https://www.wjgnet.com/1948-9358/full/v14/i1/35.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i1.35

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is an acquired metabolic disease characterized by insufficient insulin 
release from pancreatic β-cells and the reduced inability of tissues to respond to insulin stemming from 
increased insulin resistance. Blood glucose homeostasis is mediated by insulin release from pancreatic 
beta islet cells which facilitate the storage of glucose in muscles and adipose tissue. However, impaired 
insulin secretion and insulin sensitivity and increased insulin resistance cause increased blood glucose 
persistently leading to diabetes mellitus. Type I diabetes is due to the destruction of insulin-secreting β-
cells resulting in insulin deficiency while T2DM is due to decreased insulin sensitivity, insulin 
resistance, or decreased insulin receptors[1,2]. Insulin resistance is defined as the inability of a known 
quantity of insulin to increase glucose uptake in diabetics compared to control subjects[3]. The 
metabolic dysfunction in diabetes leads to a plethora of complications, including retinopathy, neu-
ropathy, heart disease, peripheral vasculopathy, tissue inflammation, and ulceration[4]. Diabetes causes 
severe disruption to the patient’s quality of life and burdens the healthcare system. According to the 
2022 National Diabetes Statistic Report from the Centers for Disease Control, more than 130 million 
adults in the United States live with diabetes or prediabetes[5]. There is an ever-present need to treat 
and manage diabetes and its related complications.

Diabetic foot ulceration is a debilitating complication that stems from chronic inflammation 
interfering with the process of tissue healing. Diabetic foot ulcers (DFUs) increase morbidity and 
mortality in diabetic patients. The lifetime incidence of ulceration for diabetic patients is estimated to be 
between 15%-25% and has a 30%-40% reoccurrence rate in prior patients. With ulceration, severe 
infections may develop which eventually lead to amputation[6,7]. Amputations in diabetic patients are 
preceded by DFUs in approximately 85% of cases[8]. In a study of diabetic foot infections and 
amputations, major amputations drastically reduced the 5-year survival rate to 8.3%[9]. Despite the 
advancement in DFU care with wound debridement, off-loading, applications of medication, and 
bandaging to prevent infection, there is a risk of lower limb amputation with a worldwide prevalence of 
8.8%, with over half of the major leg amputations performed every year in the United States attributable 
to diabetes mellitus and peripheral artery disease[10-12]. Thus, an utmost need to develop better 
treatment strategies for nonhealing DFUs. Along with the local treatment, attenuating systemic inflam-
mation or administering a therapeutic agent systemically to target a specific protein of interest should 
be considered while treating complicated non-healing DFUs. Exosomes, administered systemically, 
have been examined in numerous immunomodulatory studies and have been proposed as a treatment 
for the inflammatory dysregulation and delayed wound healing witnessed in T2DM[13,14]. Add-
itionally, due to exosomes’ immune privilege, specific tissue binding, and targetability, they have been 
widely studied as carriers for therapeutic compounds to enhance drug applications[15]. A potential 
candidate for exosomal delivery may be resolvins (Rv) and mediators targeting inflammation. Studies 
have shown promising results with Rv and anti-inflammatory cytokines that resolve inflammation and 
enhance tissue healing. Many of these studies, however, have encountered difficulty in the delivery of 
Rv in terms of efficiency, tissue targetability, and immunogenicity[16]. This article seeks to critically 
review the perspective of optimizing the therapeutic application of Rv and anti-inflammatory mediators 
by pairing them with exosomes as a method for targeted tissue delivery to treat non-healing chronic 
DFUs.

DIABETES AND INFLAMMATION
Chronic inflammation is a related complication in T2DM. Obesity is a risk factor for T2DM and obesity 
along with diabetes makes this worse in inducing chronic inflammation[17,18]. Adipose tissue 
hypertrophy and hyperplasia result in increased secretion of leptins and inflammatory cytokines 
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including interleukin (IL)-6, IL-1, and tumor necrosis factor (TNF)-α from adipocytes with a concurrent 
decrease in adiponectin. The secreted cytokines induce the recruitment of inflammatory immune cells 
which secrete chemokines and further enhance the recruitment of immune cells[19-21]. These changes 
induce inflammation in diabetes (Figure 1). However, inflammation is not an exclusively detrimental 
process and in normal physiologic functions, it plays an important role in wound healing. With the 
initial injury and damage to tissues, healing is conducted in a series of distinct phases. Acute damage is 
addressed in an inflammatory phase, followed by a resolution phase, and lastly with a phase of tissue 
remodeling and regeneration and then the return to homeostasis. Healing from acute tissue damage 
begins with activation of inflammatory factors leading to inflammation, hemostatic accumulation of 
lymphatic fluid, immune cells like macrophages and neutrophils infiltration into tissues, accumulation 
of blood and platelets at the site of damage, and constriction of arteries, and thrombosis at the damage 
site. In the inflammatory phase, the infiltration of neutrophils, monocytes, and macrophages activates 
targeted apoptosis of damaged cells and the clearance of cellular debris. A resolution phase follows with 
the release of growth factors, anti-inflammatory cytokines, and a return to homeostasis. The resolution 
of the inflammatory phase is an active process that involves the clearance of pro-inflammatory signals 
and a return to homeostasis[16,22,23] (Figure 1). But in diabetes, hyperglycemia, persistent recruitment 
of inflammatory immune cells, and increased expression of inflammatory cytokines like IL-6, IL-1, IL-8, 
and TNF-α produce a chronic inflammatory environment and prevent the progression of the inflam-
matory phase to the resolution phase[16,24]. Persistent inflammation not only holds the ulcer in the 
inflammatory phase but also negatively affects angiogenesis and granulation tissue formation, the 
requisite for proper healing[25,26]. Diabetic microangiopathy and abnormal response to hypoxia in 
diabetes cause hypoxia-related cell death and increased secretion of monocyte chemoattractant protein-
1, chemokines from keratinocytes, and IL-6, IL-1, and TNF-α from infiltrating immune cells. This 
ultimately leads to increased secretion of inflammatory cytokines mediating chronic inflammation, 
decreased angiogenesis, and decreased extracellular matrix remodeling ultimately mediating impaired 
healing. Activated fibroblasts acquiring myofibroblasts phenotype actively contribute to granulation 
tissue formation and angiogenesis, however, persistent inflammation and altered fibroblast function 
impairs wound healing through attenuated angiogenesis and granulation tissue formation[27,28].

Hyperglycemia and inflammation have a multifactorial etiology which may lead to non-healing 
DFUs in an estimated 25% of diabetic patients with an increased risk for lower limb amputation. There 
is a disruption to cytoskeletal keratin proteins (K2, K6, and K10) which hinders keratinocyte 
development and negatively impacts re-epithelialization[29]. Reduction of laminin-5 α3 chain precursor 
protein hampers the binding of epithelial cells to basement membranes. Reduced activity of antioxidant 
enzymes, glutathione peroxidase, and super-oxidase dismutase, leads to free radical-associated damage. 
Further, diabetes-related atherosclerosis and reduced angiogenesis and revascularization result in 
decreased nutrients and oxygen reaching the wound site[29]. Epidemiological studies have 
demonstrated a correlation between T2DM-associated chronic inflammation and the presence of 
numerous inflammatory biomarkers. Inflammation is a likely contributor to the insulin resistance 
witnessed in T2DM and may be intensified by the hyperglycemia that it contributes to. With prolonged 
hyperglycemia, adipose tissue will increase insulin resistance through inflammatory mechanisms such 
as releasing free fatty acids and adipokine deregulation[1,30]. Inflammation can be recognized by an 
increase in circulating pro-inflammatory cytokines such as IL-6, IL-8, TNF-α, and leptin, which 
modulate the insulin signaling pathway and alters immune response[1,30]. These molecules activate 
different intracellular Ser/Thr kinases which catalyze serine phosphorylation of insulin receptor 
substrate 1, inhibiting its ability to recruit phosphatidylinositol-3-kinase and Akt, interfering with the 
metabolic pathway of insulin[31].

The presence of pro-inflammatory molecules can also cause the degradation of the insulin-producing 
β-cells of the pancreas[4]. In test settings, the induction of hypothalamic inflammation is sufficient to 
trigger diabetes-like features, demonstrating that inflammation is a key contributing factor to the 
pathophysiology seen in T2DM[31]. Increased leptin production is associated with immune system 
dysfunction in T2DM. It modulates both innate and adaptive immune responses, including promoting 
T-cell responses, activation of monocytes and neutrophils, and increasing the induction of pro-inflam-
matory mediators[30]. Evidence suggests that heightened immune cell infiltration in intermyocellular 
and perimuscular adipose tissue contributes to myocyte inflammation and increased insulin resistance
[1].

The chronicity of inflammation contributes to the non-healing pattern of DFUs (Figure 1) and 
targeting this positive feedback of chronic inflammation may be a viable strategy for treating DFU[1,
30]. Resolving chronic inflammation offers a therapeutic avenue to treat diabetes-associated ulceration
[16,24] to improve the quality of life and diminish the economic burden on patients. Therapeutics that 
attenuate chronic inflammation may force the progression of inflammatory phase towards resolution 
and tissue remodeling and regeneration phase and E and D series Rv including RvE1, RvE2, RvE3, 
RvD1, and RvD2 have been proven beneficial[16]. This makes Rv attractive therapeutics in DFUs.
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Figure 1 Inflammation-mediated pathogenesis of diabetic foot ulcer, the role of resolvins, and phases of wound healing. Resolvins 
[specialized pro-resolving mediators (SPMs)] facilitate the resolution of inflammation and progression of the wound to the resolution phase followed by remodeling 
and healing (SPMs shown in green). However, persistent infiltration of immune cells and increased secretion of cytokines mediate chronic inflammation and hold the 
wound in the inflammation phase without progressing to resolution or proliferative phase (red arrow). This leads to the chronicity of inflammation and nonhealing of 
diabetic foot ulcers. ILV: Intraluminal vesicle.

INFLAMMATION-RESOLVING MEDIATORS
Rv, along with protectins, maresins, and lipoxins, are a class of specialized pro-inflammation-resolving 
mediators (SPMs). Rv are a class of small lipid molecules that are endogenously derived from Ω-3 
essential fatty acids: Eicosapentaenoic acid and docosahexaenoic acid[16]. The role of Rv in the 
treatment of inflammation in T2DM and DFU via inhibition of neutrophil and macrophage infiltration, 
decreased secretion of inflammatory cytokines IL-6, IL-1, IL-8, and TNF-α, promoting apoptosis of 
activated immune cells and clearance of cellular debris, and downregulating platelet activation[16,22,
24]. The application of Rv and other SPMs has become a recognized therapeutic avenue to suppress pro-
inflammatory disease states and offers promise in treating inflammation associated with T2DM and 
other diseases. The beneficial effects of Rv in attenuating inflammation in various chronic inflammatory 
conditions are suggestive of their potential in enhancing wound healing in DFUs[32-34], a chronic 
inflammatory condition, by suppressing inflammation and mediating progression to resolution phase of 
healing[16]. SPMs address several factors involved with the inflammation of T2DM. It inhibits 
polynuclear neutrophil infiltration of tissues, inhibits the production of pro-inflammatory mediators like 
chemokines and cytokines, promotes apoptosis in activated immune cells, promotes the uptake of 
cellular debris and chemokines by macrophages, downregulates platelet activation, suppresses nuclear 
factor-кβ activation, and improves insulin sensitivity[16,22].

In diabetes, the healing process is chronically arrested at the inflammation phase, delayed, and 
associated with decreased tissue regeneration. Applications of Rv offer attractive means of resolving the 
inflammatory phase and initiation of the resolution and regenerative phase for promoting tissue healing 
(Figure 1). Currently, animal models have supported the benefits of SPMs in the management of 
numerous chronic inflammatory conditions including arthritis, periodontitis, colitis, allergy airway 
infections, skin infections, neurodegenerative vascular disease, cardiovascular disease, T2DM, and more
[16,22,35]. Numerous laboratory studies have demonstrated the benefit of the exogenous application of 
Rv, including inhibiting neutrophil migration, the clearance of apoptotic cells and wound debris, 
accelerating wound healing in cutaneous and intestinal tissue, and healing diabetes-associated wounds
[22]. Animal and tissue models have supported the application of SPMs or Rv in the treatment of 
diabetic ulcers. Unfortunately, Rv are oxidatively unstable due to their 1,4-diene (skipped diene) 
structures and so clinical utility would require more stable Rv to be produced[36]. Other means of 
improving resolvin stability may be in better transport systems. Exosomes or microvesicles have been 
proposed as transporting systems for drug delivery in the treatment of DFUs[37]. However, below the 
adequate levels of circulating Rv, bioavailability, and stability are common limitations and issues while 
using Rv and biopolymers[35,38]. Thus, there is a need to improve the delivery techniques to enhance 
the bioavailability and stability of Rv as well as their therapeutic efficacy. In the next section, we will 
discuss exosomes and their role in enhancing the efficacy of Rv.
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Figure 2 Exosome formation through the endosomal pathway. Endocytosis produces endocytic vesicles which will fuse to form early endosomes. 
Endosomes mature into multivesicular bodies (MVBs) and parts of their membranes endocytose to form intraluminal vesicles (ILVs) within themselves. With 2 stages 
of endocytosis, the orientation of the bilaminar membrane of the ILVs will possess the same orientation as the cell’s membrane. The MVBs fuse to the cellular 
membrane to release the ILVs now referred to as exosomes. IL: Interleukin; TNF: Tumor necrosis factor.

EXOSOMES
Exosomes are a type of extracellular vesicle (EV) that carries many functions as carriers of many 
biological pathway factors. They are 40-150 nm-sized membrane-derived microvesicles that are 
produced by most of the body’s cell types and have been detected in all fluids produced by the human 
body. The formation of exosomes differs from other EVs in that they are not direct buds of the parent 
cells’ plasma membranes. Exosomes are formed through the endosomal pathway[39,40] (Figure 2).

Endocytosis produces endocytic vesicles which will fuse to form early endosomes. Endosomes 
mature into multivesicular bodies (MVBs) and parts of their membranes endocytose to form 
intraluminal vesicles (ILVs) within themselves. With 2 stages of endocytosis, the orientation of the 
bilaminar membrane of the ILVs will possess the same orientation as the cell’s membrane. The MVBs 
fuse to the cellular membrane to release the ILVs now referred to as exosomes.

Exosome formation begins as endocytic vesicles which are invaginations of the cellular membrane. 
These endocytic vesicles fuse to form early endosomes. As the endosomes mature and grow, their 
membranes can invaginate further, forming ILVs within the maturing endosome, now referred to as a 
MVB[39]. This additional invagination within the cytoplasm of the cell allows the MVB to intersect with 
other EVs and organelles, adding to the diversity of its constituents. The MVB may fuse with a lysosome 
to degrade its contents or fuse with the cell’s plasma membrane to release the ILVs, now called 
exosomes. Through this 2-step invagination process, the membrane of the exosome more closely 
resembles the orientation of the parent cell, whereas direct buds of the plasma membrane would be 
oriented inside-out in comparison. The cargo that exosomes carry includes transcription factors, 
cytosolic and nuclear proteins, RNA, microRNA (miRNA), mRNA, metabolites, and cytosolic and 
plasma membrane surface proteins[40]. The physiological role of exosomes is an ongoing topic of 
research. Among its proposed roles, it is speculated that exosomes assist in maintaining homeostasis by 
removing unnecessary cellular constituents, regulating intercellular communication modulating the 
immune response, altering disease progression, and more. Clinically, exosomes have recognized utility 
as diagnostic carriers of biomarkers and are being explored as therapeutics and vehicles for therapeutics
[39,40].

Therapeutic uses of exosomes
Exosomes may have beneficial effects in disease states and have therapeutic implications in various 
diseases including the role in DFU wound healing[37,41-43]. Because of the ability of exosomes to 
modulate complex intercellular pathways, exosomes are thought to have therapeutic utility in treating 
many diseases. For instance, mesenchymal stem cell (MSC) derived exosomes have been demonstrated 
to be agents for the immunomodulation of inflammation[44] (Table 1).

The effect of exosomes depends on the cargo that it carries and the systems that the cargo modulates. 
For example, exosomes containing high concentrations of the circular RNA mmu-circ-0000250 have 
been demonstrated to enhance wound repair in diabetic ulcers while those transporting the miRNA 
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Table 1 Exosomes have therapeutic potential in inflammatory diseases and enhance wound healing

Pathology Source of exosome Outcome

Inflammatory diseases[44] Adipose-derived mesenchymal 
stem cells

Exosomes displayed an inhibitory effect in the activation, differentiation, and prolif-
eration of T-cells and inhibit IFN-γ release

Impaired wound healing in 
diabetes[45]

Whole blood serum Serum-derived exosomes promoted angiogenesis and extracellular matrix formation

Diabetic wound healing[46] Bone marrow and adipose tissue In mice models, adipose tissue-derived EVs promoted wound healing while those 
that were bone-derived did not

Diabetic wound healing[47] Macrophages Macrophage-derived exosomes inhibited the secretion of pro-inflammatory enzymes 
and cytokines in a rat model

Diabetic wounds[48] Human umbilical cord 
mesenchymal stem cells

Exosomes accelerated cutaneous wound healing and reduced the effects of oxidative 
stress and promoted angiogenesis

Diabetic wounds[49] Human amniotic epithelial cells Exosomes promoted angiogenesis and fibroblast function via activation of the PI3K-
Akt-mTOR pathway

IFN: Interferon; EVs: Extracellular vesicles; PI3K: Phosphatidylinositol-3-kinase; mTOR: Mechanistic target of rapamycin.

miR-20b-5p slow wound healing and angiogenesis[13,50]. Adipocyte stem cell-derived exosomes have 
been shown to promote angiogenesis and proliferation of cells in hyperglycemic environments[15]. 
Studies have shown a myriad of physiological benefits that exosomes provide, including improving 
immune responses in both infectious diseases and anti-tumor responses[40]. Exosomes from cardio-
sphere-derived cells possess anti-inflammatory, anti-oxidative, anti-apoptotic, anti-fibrotic, and 
cardiomyogenic effects[51,52]. MSC-derived exosomes provide neuroprotective effects in stroke and 
exosomes from endothelial cells have been suggested as a method to treat atherosclerosis[40]. Exosomes 
may also play a role in disease pathogenesis. In studies of atherosclerosis, exosomes of patients 
contributed to endothelial cell dysfunction and vascular calcification while exosomes of healthy patients 
conferred atheroprotective effects. Thus, clinical use of exosomes will benefit from a greater 
understanding of how the exosomal cargo contributes to their effects and how modifications to that 
cargo can augment their therapeutic utility[53,54].

However, the perspective is that the diseases may also influence the cargo carried by exosomes 
compared to non-afflicted populations. This suggests that deficiencies in endogenous production and 
transportation of anti-inflammatory factors can be addressed by supplementing such factors through 
the application of anti-inflammatory-loaded exosomes (Table 2). The tissue and cell sources of the 
exosomes appear to play a role in their morphology, stability, and immunomodulatory ability[37] and 
thus, these aspects should be considered while modifying or pretreating exosomes to enhance their 
efficacy, stability, and bioavailability.

Exosomes in drug delivery and loaded exosomes
Exosomes loaded with therapeutic drugs, or loaded exosomes, have been shown to have improved 
performance over free drugs. Studies have examined the effect and potential benefit of modifying 
exosomal cargo to treat diseases and the results suggest the beneficial effects of loading exosomes with 
therapeutic agents. The contents of exosomes, either modified or natively expressed, have a great 
influence on disease progression[59-65]. Additionally, that pre-treatment or lading exosomes with the 
desired drug enhance efficacy of exosomes[53,54] and this strategy may be of significance in enhancing 
wound healing in chronic nonhealing DFUs by loading exosomes with anti-inflammatory agents of 
small molecules or drugs targeting a specific factor. The literature on using loaded exosomes for DFU 
healing is scarce and thus, need more focused research.

There are endogenous and exogenous methods that have been proposed and used to load 
therapeutics into exosomes to enhance efficacy and precision. Exogenous routes manipulate exosomes 
after collection and endogenous routes affect the parent cell’s content and thus the content of the 
exosome during its biogenesis. An exogenous strategy is to incubate naïve exosomes with lipophilic 
small molecules. One limitation is that incubation is likely only a viable method for small hydrophobic 
molecules, which can spontaneously diffuse across the exosome membrane[14]. Another strategy is to 
manipulate the parent cells which will then produce exosomes containing the therapeutics. The drug 
can be directly loaded with the therapeutic agent, or the parent cell may be transfected with DNA 
encoding for the therapeutic and subsequent exosomes will then be carriers[14]. Commercially available 
transfecting kits using transfection agents such as lipofectamine have been shown to effectively 
incorporate small interfering RNAs (siRNAs) into exosomes. Electroporation or electro-permeabilization 
is another method to load siRNA, miRNA, DNA, drugs, etc. into exosomes. Electroporation is the 
process of applying an external electric field which increases cell membrane permeability. Electro-
poration would be an advantageous method for loading hydrophilic agents which would otherwise not 
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Table 2 Strategies to enhance stability and bioavailability of exosomes

Pathology Exosomes 
modification Source of exosomes Strategy and outcomes

Impaired diabetic 
wound healing[13]

MiR-20b-5p-upregulated 
exosomes

Isolated from diabetic and 
non-diabetic patient blood

Exosomes derived from diabetics delayed wound healing and 
angiogenesis compared to exosomes sourced from non-diabetic patients 
in mice wounds

Diabetic foot ulcer
[15]

Nrf2-rich exosomes ADSCs (human and rat) Increased granulation tissue formation, angiogenesis, and growth factor 
levels and reduced levels of inflammation and oxidative stress with 
exosomes in a rat model

Diabetic wound[55] Pioglitazone pre-treated 
exosomes

MSCs PGZ-treated exosomes promoted angiogenesis and enhanced wound 
healing in a rat model

Diabetic foot ulcers
[56]

LncRNA H19-overex-
pressed exosomes

MSCs LncRNA h19-rich exosomes prevented apoptosis and inflammation of 
fibroblasts and stimulated wound healing in the mice model

Diabetic wounds[57] Deferoxamine precondi-
tioned exosomes

Human bone marrow The preconditioned exosomes promoted angiogenesis and wound healing 
in diabetic rats

Diabetic wounds[58] Exosomes with a 
bioactive nano-dressing

Adipose stromal cells The nanodressing-conjugated exosomes significantly enhanced tissue 
remodeling and re-epithelialization

miRNA: MicroRNA; Nrf2: Nuclear factor E2-related factor 2; lncRNA: Long non-coding RNA; ADSC: Adipose-derived stem cell; MSC: Mesenchymal stem 
cell.

readily cross the exosomal membranes. Tests with exosomes loaded with siRNAs are highly efficient 
and specific carriers for delivering to neuronal cell lines, microglia, and oligodendrocytes. In similar 
tests with other, non-exosomal, EVs, there was limited effective loading potential with nucleic acid 
cargos larger than miRNA or siRNA[66-68]. Understanding the influence of binding proteins in the 
physiological loading of EVs may provide a method for improved loading methods. Sonication, the 
application of low-frequency ultrasound to produce pores, has been used in loading siRNA into EVs 
and so may be a viable method for exosome loading[69]. However, sonication, along with extrusion and 
freeze-thawing has been shown to cause aggregation with EVs and their cargo, limiting their success
[70].

Advantages and limitations of exosomes
Compared to exosomes, other types of EVs, and nanoparticles possess limitations in clinical use. For 
instance, synthetic nanoparticles have been developed as a means of drug delivery but administering 
synthetic drug-loaded nanoparticles into the bloodstream has unearthed two vexing issues: Toxicity and 
rapid phagocytic clearance. Compared to drug delivery with PEGylated nanoparticles, allogenic 
exosomes collected from patients’ tissues and blood seem to have immune privilege, decreasing the 
chances of toxicity and immune reactions while decreasing the rate at which exosomes and their cargo 
are cleared by the mononuclear phagocyte system[14]. Liposomes are another EV that have been used 
for drug delivery. They are derived from cholesterol and formed from hydrated phospholipids and hold 
drawbacks that exosomes do not. Liposomes have limited clinical capacity due to their higher risk of 
toxicity, low target specificity, short half-life, low solubility, and risk of aggregation during storage[71-
73]. Exosomes hold many advantages over other kinds of nanoparticles and even their parent cells in 
terms of immunoreactivity and targetability. Based on their tissue origin, exosomes possess surface 
adhesion proteins, vector ligands, and specific cell tropisms that can be utilized for highly specific 
targeting of the tissues of interest. Exosomes address the issues faced by other nanoparticle alternatives 
as they are immunologically inert and can pass through the blood-brain barrier and mucosal barriers 
and decrease the incidence of drug resistance development[14,54,59]. Additionally, exosomes are highly 
stable due to their rigid lipid membrane that is resistant to bursting in freeze-thawing cycles in the 
hypotonic environment[74].

While the advantages of using exosomes for drug delivery are many, some limitations need to be 
considered. The loading capacity of exosomes has been presented as a potential issue with exosome 
drug delivery. As exosomes naturally possess proteins and nucleic acids, they may hold lower capacity 
relative to other nanoparticle drug delivery methods. Studies have observed a low range of roughly 3% 
to highs of 26%, involving factors such as the drug in question, the methods of loading drugs into the 
exosomes, and the types of tissues that the exosomes were sourced from[14,71]. EVs have been shown to 
have a limited ability to carry nucleic acid cargo larger than siRNAs or miRNAs[66]. This limitation may 
potentially apply to exosomes. The potential for exosomes as a drug delivery method is promising. 
However, the information on loaded exosomes to treat nonhealing DFUs is limited and insight from 
other fields to explore the best effective strategy for effective delivery of a therapeutic molecules will be 
helpful.
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Site-specific targetability of exosomes
The therapeutic efficacy and efficiency of an agent are decreased by lower bioavailability and off-target 
effects and have been a major hurdle while developing novel therapies and site-specific delivery of a 
therapeutic agent may be an answer[75]. Site-specific or organ-specific delivery of a therapeutic agent 
can be used by using a linker enhancing attachment of the agent with its ligand as in the case of 
protease-targeted chimeras (PROTACs) but the large size of PROTACs is a concern[76]. While exosomes 
due to their small size have an advantage for site- or organ-specific delivery because of their low 
molecular weight[75]. Low molecular weight, small size, and ease of manufacturability bolster the use 
of exosomes as a suitable agent to enhance drug efficacy by site-specific delivery. The cellular origin and 
membrane composition of the exosomes and the pathological condition of the host determine the 
biodistribution of exosomes. Along with this, the rapid clearance of exosomes from circulation and 
internalization of exosomes in a high cell type-specific manner are issues while administering exosomes 
systemically. Thus, site-specific delivery of exosomes will enhance therapeutic efficacy. The modific-
ations to increase site-specificity of exosomes may be passive using natural tropism of exosomes or 
active via surface engineering of exosome membrane. Biological or chemical modification of the 
exosome’s membrane proteins composition, covalent and non-covalent modification of the surface of 
exosomes, presenting the targeting peptides conjugated with exosome membrane-associated domains 
such as lysosome-associated membrane glycoprotein 2b, C1C2 domain of lactadherin, CD63, and CD47 
improves site-specific targeting. Exosome-liposome hybridization, genetically modifying the exosome-
producing cells, loading exosomes miRNA, short-interfering RNA, and therapeutic agent targeting 
desired proteins, PEGylation, mixing exosomes with micelles, and use of click chemistry are other 
strategies to enhance exosome targetability[77-79]. Therapeutic specificity and sensitivity of exosomes 
can also be enhanced by fine-tuning the isolation methods as discussed for NanoPoms[80]. Increasing 
the site-specificity of exosomes may have implications to target a specific protein of interest to promote 
wound healing of non-healing DFU. Recent reports suggesting increased expression of C-X-C motif 
chemokine 8, hypoxia-inducible factor 1 alpha, Chitinase-3 like-protein-1, TNF stimulated gene-6, 
matrix metallopeptidase (MMP)1, MMP3, and MMP11 in association with nonhealing diabetic ulcers[81,
82] suggest that these proteins might be novel therapeutic targets to promote wound healing in chronic 
DFUs using armed exosomes for targeted delivery to regulate their expression[83].

Exosomes and pro-Rv for diabetic ulcers
Exosomes have been demonstrated to be effective carriers of a myriad of bioactive factors including 
growth factors, nucleic acids, proteins, and antibiotics. Loading exosomes with therapeutic agents have 
been shown to benefit healing in diabetic skin diseases. One such study demonstrated that exosomes 
pre-treated with a statin, atorvastatin, or all-terrain vehicle (ATV), accelerated wound healing and 
angiogenesis in diabetic rats via the upregulation of the AKT/eNOS signaling pathway[84]. The wound-
healing ability of these ATV-treated exosomes was compared to exosomes derived from bone marrow 
MSCs. In terms of cell proliferation and vascularization, the pretreated exosomes resulted in 
significantly accelerated healing compared to their non-treated counterparts. The usage of exosomes 
offers the possibility of enhancing the effect of a multitude of therapeutic agents, with many studies 
demonstrating that this method outperforms the benefits of non-loaded exosomes and exosome-free 
drug applications. Rvs have likewise gained attention in treating a myriad of inflammatory conditions 
and diseases. Though there has been some recognition that Rvs are unstable due to their vulnerability to 
oxidation[85]. Exosomes have been shown to be stable and efficient in targeting specific tissues while 
protecting their cargo from degradation[14,59]. So, exosomes may have great potential in transporting 
Rv and other SPMs and addressing the weaknesses in the clinical utility of SPMs on their own. Loaded 
exosomes may have great potential in enhancing healing in chronic nonhealing DFUs but there are only 
a few published studies (Table 3) that translate the potential of loaded exosomes warranting further 
research.

FUTURE PERSPECTIVES
Prolonged immune cell infiltration is an established factor in the disease process of nonhealing diabetic 
wounds. Pro-inflammatory cytokines including IL-6, IL-8, IL-1, and TNF-α promote the infiltration of 
CD8 T cells, neutrophils, and macrophages to the ulcer. Increased secretion of IL-8 in DFUs is further 
facilitated by an increased expression of toll-like receptor 9. A persistently increased infiltration of 
immune cells and secretion of pro-inflammatory cytokines characterizing nonhealing DFUs indicate that 
targeting the inflammatory pathway may offer a promising avenue to enhance healing in DFUs[24]. The 
beneficial results with the use of loading exosomes with anti-inflammatory miRNAs and cytokines, and 
exosomes-mediated increased stability to the anti-inflammatory mediator vulnerable to endogenous 
degradation[54,86] support the notion of using exosomes to enhance loaded exosomes in promoting 
healing in DFUs. Of note, the association of increased expression of inflammatory cytokine IL-8 in 
nonhealing DFU suggests that loading exosomes targeting IL-8 and its downstream signaling will have 
therapeutic significance[24,81,82]. Targeting inflammatory cytokines and the downstream signaling in 
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Table 3 Loaded exosomes in the treatment of diabetic wounds

Pathology Source of exosome Modification Outcome

Diabetic ulcerative wounds
[15]

Adipose-derived stem 
cells

Nrf2 Treatment of animal models with exosomes high in Nrf2 expression 
significantly reduced ulceration area and promoted angiogenesis

Diabetes-associated 
impaired wound healing[50]

Adipose-derived 
mesenchymal stem cells

mmu_circ_0000250 Exosomes modified to contain more mmu_circ_0000250 had a greater 
effect than unmodified exosomes in endothelial repair in diabetic rats

Diabetes-associated 
impaired wound healing[84]

Mesenchymal stem cells ATV ATV-loaded exosomes enhanced angiogenesis and tissue repair in 
animal models compared to unmodified exosomes

Diabetic wounds[86] Mesenchymal stem cells MiR-155 inhibitor Loaded exosomes promoted anti-inflammatory action and enhanced re-
epithelialization

Diabetic wounds[87] Adipose stem cells MiR-21-5P Loaded exosomes promoted re-epithelialization and angiogenesis. MiR-
21-5P was protected from degradation

Studies have shown that exosomes may carry a myriad of therapeutic cargo to end chronic inflammation, enhance wound healing, and promote 
angiogenesis and re-epithelialization. miRNA: MicroRNA; Nrf2: Nuclear factor E2-related factor 2; ATV: Atorvastatin.

DFUs is supported by the role of immunomodulation, antimicrobials, modulation of cytokine 
production, and targeting inflammation using loaded exosomes in chronic inflammatory diseases[88-
92].

CONCLUSION
Various studies have discussed that attenuating chronic inflammation can be an effective strategy to 
enhance healing in DFUs. Despite the current treatment in practice, the risk of amputation persists. 
Exosomes have been demonstrated to be a potential therapeutic agent for a wide variety of inflam-
matory conditions and diseases. As a therapeutic vehicle, exosomes enhance the therapeutic efficacy of a 
host of drugs and anti-inflammatory factors. To this end, using exosomes for the delivery of inflam-
mation resolving mediators including Rv and pro-inflammatory cytokine targeted therapy offers 
promise in ending chronic inflammation and enhancing wound healing with the benefits of target-
specificity, non-immunogenicity, and easier handling compared to similar delivery methods.
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