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Abstract
Insulin is a hormone secreted by pancreatic β cells. The concentration of glucose in 
circulation is proportional to the secretion of insulin by these cells. In target cells, 
insulin binds to its receptors and activates phosphatidylinositol-3-kinase/protein 
kinase B, inducing different mechanisms depending on the cell type. In the liver it 
activates the synthesis of glycogen, in adipose tissue and muscle it allows the 
capture of glucose, and in the hypothalamus, it regulates thermogenesis and 
appetite. Defects in insulin function [insulin resistance (IR)] are related to the 
development of neurodegenerative diseases in obese people. Furthermore, in 
obesity and diabetes, its role as an anorexigenic hormone in the hypothalamus is 
diminished during IR. Therefore, hyperphagia prevails, which aggravates hyper-
glycemia and IR further, becoming a vicious circle in which the patient cannot 
regulate their need to eat. Uncontrolled calorie intake induces an increase in 
reactive oxygen species, overcoming cellular antioxidant defenses (oxidative 
stress). Reactive oxygen species activate stress-sensitive kinases, such as c-Jun N-
terminal kinase and p38 mitogen-activated protein kinase, that induce phos-
phorylation in serine residues in the insulin receptor, which blocks the insulin 
signaling pathway, continuing the mechanism of IR. The brain and pancreas are 
organs mainly affected by oxidative stress. The use of drugs that regulate food 
intake and improve glucose metabolism is the conventional therapy to improve 
the quality of life of these patients. Currently, the use of antioxidants that regulate 
oxidative stress has given good results because they reduce oxidative stress and 
inflammatory processes, and they also have fewer side effects than synthetic 
drugs.
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Core Tip: Insulin is the connection between the β cells of the pancreas and the hypothalamus. Insulin 
reaches the arcuate nucleus of the hypothalamus and represses the expression of orexigenic neuropeptides 
to suppress appetite. However, its function decreases when there is damage to the β cells of the pancreas. 
Its anorexigenic effect decreases and thus increases appetite. The excess of nutrients, specifically 
carbohydrates, aggravates the damage to β cells and induces obesity and/or diabetes and oxidative damage. 
The use of antioxidants constitutes a therapeutic approach that has been approached experimentally to 
regulate the negative effects of alterations in insulin secretion and function.

Citation: De la Cruz-Concepción B, Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, Espinoza-Rojo 
M. Insulin: A connection between pancreatic β cells and the hypothalamus. World J Diabetes 2023; 14(2): 76-91
URL: https://www.wjgnet.com/1948-9358/full/v14/i2/76.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i2.76

INTRODUCTION
Insulin is a peptide hormone that plays an important role in glucose homeostasis, cell growth and 
metabolism[1]. This hormone is synthesized in the β cells of the pancreatic islets; its transcription and 
translation is regulated in part by nutrients, specifically in response to glucose concentrations[2,3]. The 
active structure of this hormone is formed by two chains named “chain A” with 21 amino acid residues 
and “chain B” with 30 amino acid residues linked by three disulfide bonds between both chains[2,4]. 
The insulin is stored in vesicles to be released into the bloodstream when β cells take up glucose from 
the extracellular medium[1]; through the bloodstream it will reach all peripheral organs and the brain
[5].

Insulin will bind to its receptor in the cell membrane and allow activation of the phosphatidylinositol-
3-kinase/protein kinase B (PI3K/AKT) insulin signaling pathway[6]. The effects of the activation of this 
pathway will depend on the cell lineage. It has an anti-atherogenic effect in the vascular system. In the 
liver, it promotes energy utilization. In the muscle, insulin promotes glucose metabolism and par-
ticipates in protein synthesis. In adipose tissue, insulin induces lipogenesis[7,8], and finally in the brain 
it will activate thermogenesis and regulate appetite, glucose homeostasis and metabolism[8-10]. When 
there are alterations in the secretion or function of insulin, chronic-degenerative pathologies are 
produced such as hyperphagia, hyperglycemia, insulin resistance (IR) and diabetes mellitus (DM)[11]. A 
common feature of these pathologies is the formation of reactive oxygen species (ROS), which alter 
signaling pathways activated by insulin[12-14]. Currently, the use of nutraceuticals has been reported 
with highly positive effects on the control of ROS and alterations in the secretion and function of insulin 
at the pancreatic[15] and cerebral levels[16].

INSULIN AND THE PANCREAS
The human pancreas is a retroperitoneal organ in the upper abdomen weighing between 100-150 g and 
measuring between 15-25 cm in length. It is connected to other abdominal organs such as the spleen, 
stomach, duodenum and colon[17]. This organ is surrounded by a fibrous capsule that divides its 
parenchyma into distinct lobes and lobules[18] separated by connective tissue that divides the pancreas 
into two structurally distinct components: The exocrine pancreas, which consists mainly of acinar cells 
and duct cells; and the endocrine pancreas, which is the site of islet cells[17,19].

The endocrine portion is composed of groups of cells known as islets of Langerhans, which are 
attributed with the secretion of several pancreatic peptide hormones for glucose homeostasis, including 
insulin. There are five major cell types that constitute the islet: α cells; β cells; δ cells; PP cells; and ε cells. 
They are responsible for producing glucagon, insulin, somatostatin, pancreatic polypeptide and ghrelin, 
respectively[1,17,20]. The most numerous are the β cells that synthesize and secrete insulin. Insulin is a 
peptide hormone that was discovered in 1922 by surgeon Frederick Grant Banting and physician 
Charles Herbert Best and purified by biochemist James Bertam Collip[21,22]. This hormone plays an 
important role in glucose homeostasis, cell growth and metabolism[1]. In humans, it is encoded by the 
INS gene on chromosome 11, in rats (Rattus norvegicus) by the ins1/2 gene on chromosome 1 and in mice 
(Mus musculus) by the Ins1 (chromosome 19) and Ins2 (chromosome 7) genes[23].

The human INS gene (1425 bp) is composed of three exons and two introns, as is the rodent Ins2 gene. 
However, the rodent Ins2 gene is composed of only two exons, with the entire coding sequence 
contained in the second exon[24,25]. In the insulin gene promoter, there are response elements such as 
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the A element, GG box, C1 [rat insulin promoter element (RIPE)3b1/C2 (RIPE3b2) element (RIPE 3b1/
2), cyclic 3´5´-adenosinemonophosphate (cAMP) response element, E element, insulin-linked 
polymorphic region], enhancer core and Z region where the negative regulatory element is located. 
These regulatory elements within the promoter region of the insulin gene either enhance or inhibit 
transcription of the gene and are located between positions -340 and -91 bp relative to the transcription 
start site.

Several transcription factors bind in these regions including pancreatic-duodenal homeobox-1 protein 
1, pair box protein 4 and 6, transcription factor A, hepatocyte nuclear factor-1 alpha and neurogenic 
differentiation factor 1[2,26,27]. The signal transducer and activator of transcription (STAT) protein also 
has a very important role in the activation of insulin gene transcription. It has been reported that 
elevated Ca2+ levels activate calpain-1, a protease that cleaves a cytosolic fragment of islet cell 
autoantigen 512, which promotes transient fusion of the cell membrane with the membrane of insulin-
containing granules to release insulin into the extracellular milieu. The free fragment of islet cell 
autoantigen 512 targets the nucleus and binds to STAT5, which in turn promotes increased transcription 
of the insulin gene, thus maintaining optimal levels of stored insulin[3].

In addition, there are polypyrimidine tract-binding proteins that positively regulate mRNA 
translation. Cytosolic polypyrimidine tract-binding protein 1 can bind to pyrimidines, i.e. cytosine-
uracil-rich sequences in the 3’ untranslated regions of insulin mRNA, thereby stabilizing the insulin 
mRNA strand and increasing its translation[28].

Insulin translation in pancreatic β cells is regulated in part by nutrients, specifically in response to 
glucose concentrations[2]. Levels between approximately 2 mmol/L and 4 mmol/L glucose are required 
to promote insulin biosynthesis and levels greater than 5 mmol/L to promote insulin release[29]. 
Increased glucose concentrations contribute to the activation of protein phosphatase 1, which dephos-
phorylates eukaryotic translation initiation factor 2a promoting insulin translation. However, pancreatic 
endoplasmic reticulum (ER) kinase decreases insulin synthesis through phosphorylation of eukaryotic 
translation initiation factor 2a[2].

In β cells, insulin is translated as a 110 amino acid pre-proinsulin in the cytosol. Pre-proinsulin 
contains a 24 amino acid nuclear transport signal peptide (Ala-Ala-Ala-Ala-Pro-Asp-Pro-Gly-Trp-Leu-
Ala-Leu-Leu-Leu-Ala-Leu-Leu-Leu-Pro-Leu-Leu-Leu-Arg-Met-Trp-Leu-Ala-Met)[30], which guides pre-
proinsulin to the rough ER (RER) membrane for translocation to the RER cisternae via two mechanisms: 
(1) A signal recognition particle (SRP)-dependent cotranslational translocation mechanism where SRP 
recognizes and binds to the signal peptide of pre-proinsulin arising from ribosomes, forming a complex 
that interacts with the SRP receptor on the RER membrane, thereby directing nascent pre-proinsulin to 
the Sec61 translocon[31]; and (2) An SRP-independent post-translational translocation mechanism 
where in addition to the Sec61 translocon several RER and cytosolic molecular chaperones are involved, 
including heat shock protein 70, transmembrane recognition complex-4, calmodulin and protein 
complex Sec 62/63[31].

During translocation, the pre-proinsulin signal peptide must be correctly oriented within the Sec61 
translocon so that the N-terminal end of the signal peptide faces the cytosolic side of the RER. This 
orientation allows the signal peptide cleavage site to be exposed to signal peptidase on the luminal side 
of the RER membrane[31], generating pro-insulin, a chain of 86 amino acids that folds and stabilizes in 
its three-dimensional configuration by linking peptide chains A and B through the formation of three 
disulfide bonds via chaperones such as thiol reductase. The first bond is between amino acids CysA6 
and CysA11, the second is between amino acids CysA7 and CysB7, and the third bridge is between 
amino acids CysB19 and CysA20[23,32].

After acquiring three-dimensional folding, pro-insulin is transferred from the RER to the Golgi via 
vesicles where pro-insulin is converted to insulin as these immature vesicles acidify and mature[31] 
(Figure 1). In the secretory granules there are two endoproteases involved in the conversion of 
proinsulin to insulin called prohormone convertase 2 (PC2) and PC1/3. The former hydrolyzes between 
the basic amino acids Arg33-Gly1 at the C-peptide and A-chain junction, and the latter hydrolyzes 
between the dipeptide Thr30-Arg31 at the B-chain and C-peptide junction[33]. Subsequently, car-
boxypeptidase E hydrolyzes between the Gln31-Lys32 amino acids as well as between Arg32 and Glu1 
basic C-termini of the resulting peptide chains, producing a mature insulin protein of 51 amino acids[23] 
(Figure 2).

Insulin in its monomeric form tends to form dimers as insulin concentration increases. In the presence 
of zinc and pH optima (10 mmol/L Zn2+, pH 6.0), the hydrophobic amino acids in the dimeric structures 
interact and assemble into higher order conformations called hexamers, useful for insulin storage[2]. 
Once the hexamers are secreted into the circulation by exocytosis, they diffuse into the blood in favor of 
their concentration gradient. A combination of electrostatic repulsion and decrease in insulin concen-
tration favors the dissociation of insulin into its monomeric form, releasing active insulin and an 
equimolar proportion of C-peptide[2,33].

This active structure is formed by two chains named “chain A” with 21 amino acid residues and 
“chain B” with 30 amino acid residues linked by three disulfide bonds between both chains (CysA7-
CysB7, CysA20-CysB19 and CysA7-CysA11) (Figure 2). The secondary structure of the A chain contains 
two antiparallel α-helices connected near the two ends of the A chain. The secondary structure of the B 
chain contains α-helices and β-strands. This chain can generate two distinct conformations. In a taut 
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Figure 1 Insulin synthesis. Following food intake, glucose is internalized into pancreatic β cells and its degradation through glycolysis and the tricarboxylic acid 
cycle is initiated. Intracellular ATP levels increase, which generates the closure of K+ channels, causing a change in membrane permeability opening Ca2+ channels. 
Elevated Ca2+ intracellular levels activate calpain-1, a protease that cleaves a cytosolic fragment of islet cell autoantigen 512. The free fragment islet cell autoantigen 
512 targets the nucleus and binds to signal transducer and activator of transcription 5, which in turn promotes increased transcription of the insulin gene to mRNA. In 
the cytosol, insulin is translated as pre-proinsulin that includes a nuclear transport signal peptide that guides pre-proinsulin to the rough endoplasmic reticulum (ER) 
membrane for translocation to the ER cisternae via two mechanisms: a signal recognition particle-dependent cotranslational translocation; and a signal recognition 
particle-independent post-translational translocation mechanism. Pro-insulin is generated and folds and stabilizes in its three-dimensional configuration. After 
acquiring three-dimensional folding, pro-insulin is transferred from the ER to the Golgi via vesicles where pro-insulin is converted to insulin. Also, elevated Ca2+ 
intracellular levels induce the remodeling of the cytoskeleton and the translocation of insulin granules to the plasma membrane to be subsequently secreted to the 
blood stream.

state, there is a central α-helix from SerB9 to CysB19 as well as a β-twist from GlyB20-GlyB23 generating 
a “V” fold. This twist also allows the formation of a β-sheet with Phe24 and Tyr26 in contact with Leu11 
and Leu15 of the α-helix of the B-chain. In a resting state, there is a continuous alpha helix from PheB1-
CysB19. Disulfide bonds between residues CysA7-CysB7 and CysA20-CysB19 contribute to the stability 
of the native insulin structure[2,4]. The overall tertiary structure of the protein is highly organized and 
stabilized by specific interactions involving residues CysA6-CysA11 and LeuA11, PheB1 and LeuB15, 
IleA2, PheB24, ValA3, IleA13, ValB18 and ValB12 generating a hydrophobic core[2].

Following food intake, glucose is transported into pancreatic β cells via the glucose transporter 
(GLUT) 2 in humans and mice[30,33]. Once pancreatic β cells have internalized glucose and its 
degradation through glycolysis and the Krebs cycle is initiated, intracellular ATP levels increase, which 
generates the closure of K+ channels, causing a change in membrane permeability opening Ca2+ 
channels. This induces the remodeling of the cytoskeleton and the translocation of insulin granules to 
the plasma membrane to subsequently release the hormone, which through the bloodstream will reach 
all peripheral organs and the brain[5,30,33] (Figure 1).

Levels between approximately 2 mmol/L and 4 mmol/L glucose are required to promote insulin 
biosynthesis and levels greater than 5 mmol/L to promote insulin release[29]. Once insulin synthesis is 
stimulated in the β cells of the pancreas, it is exported through the portal vein to the liver. During this 
process, more than 50% of the insulin is eliminated by hepatocytes from the liver. The remaining insulin 
exits through the hepatic vein until it reaches the heart to be distributed through the arterial circulation 
to the rest of the body to fulfill its various functions. Finally, the remaining circulating insulin is 
degraded in the kidney[23].
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Figure 2 Insulin structure. Pre-proinsulin is secreted as a polypeptide chain of 110 amino acids (aa), composed of a signal peptide (24 aa), chain A (21 aa), 
peptide C (33 aa) and a chain B (32 aa). The signal peptide is cleaved by signal peptidase generating pro-insulin, a chain of 86 aa that folds and stabilizes in its three-
dimensional configuration by three disulfide bonds between both chains: CysA7-CysB7; CysA20-CysB19; and CysA7-CysA11. Finally, two endoproteases, 
prohormone convertase 2 and prohormone convertase 1/3, hydrolyze between the basic aa Arg33-Gly1 at the C-peptide and A-chain junction and between the 
dipeptide Thr30-Arg31 at the B-chain and C-peptide junction, respectively. Subsequently, carboxypeptidase E hydrolyzes between the Gln31-Lys32 aa as well as 
between Arg32 and Glu1 basic C-termini of the resulting peptide chains, producing a mature insulin protein of 51 aa.

In the peripheral organs that depend on insulin to bring glucose into the cells, the hormone will bind 
to its receptor and allow activation of the PI3K/AKT insulin signaling pathway. This will generate 
translocation of GLUT4 to the cell membrane thus allowing glucose to enter the cell. Therefore, insulin, 
through anabolic pathways, regulates blood glucose concentrations[6]. Whereas, the counter-regulatory 
hormone, glucagon, regulates glucose concentrations through catabolic pathways[1].

Within the positive regulators of insulin, in addition to glucose, are amino acids, glucagon, glucagon-
like peptide 1 (GLP-1), growth hormone, secretin, gastrin, glucose-dependent insulinotropic peptide 
and cholecystokinin. Among the major negative regulators of insulin are adrenocorticosteroids, 
somatostatin, adrenaline, norepinephrine, neuropeptide Y and calcitonin gene-related peptide[33].
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INSULIN SECRETORY DYSFUNCTION
Insulin-secreting β cell dysfunction, defined as the loss of the ability of pancreatic β cells to produce and 
release insulin in concentrations sufficient to maintain euglycemia, occurs when high and prolonged 
insulin secretion in response to environmental insults leads to exhaustion of pancreatic β cells[34]. β cells 
can suffer from insulin secretory dysfunction due to multiple factors. The most common causes are 
overnutrition (excess nutrients such as glucose and fatty acids), increased body weight, a sedentary 
lifestyle and aging, which will lead to pathological conditions such as obesity and type 2 DM (T2DM)
[34-36]. Other causes of β cell dysfunction, accounting for less than 5% of cases, include diseases that 
destroy the pancreas, such as acute pancreatitis, chronic pancreatitis and cystic fibrosis[37-39], that 
specifically inhibit insulin secretion (genetic β cell defects) or that alter counterregulatory hormones 
(Cushing’s syndrome, obesity)[34]. The clinical presentations in these cases depend on the exact nature 
of the process.

The most common causes of β cell dysfunction share the formation of ROS and cellular oxidative 
stress as the initiation mechanism[40-42]. Pancreatic β cells are especially vulnerable to stress and 
oxidative damage[38] due to the low expression of classical antioxidant enzymes such as catalases, 
glutathione peroxidases and superoxide dismutases compared to other cell types[43,44]. The main 
antioxidant system of β cells consists of peroxiredoxins, thioredoxins and thioredoxin reductase. This 
system has been shown to be sufficient to protect β cells against short-term oxidative stress and 
hypothetically provides a signaling role required for glucose-stimulated insulin secretion in both rodent 
and human cells[45]. However, long-term glycolipotoxic conditions compromise β cell metabolism and 
ATP production through glycolytic dysfunction and reduced activation of glyceraldehyde 3-phosphate 
dehydrogenase, which reduces the generation of pyruvate and promotes β-oxidation.

As a result of metabolic dysfunction, the generation of superoxide and hydrogen peroxide by the 
mitochondrial electron transport chain is increased[46], increasing cellular ROS concentrations. Excess 
ROS are capable of oxidizing DNA (mainly mitochondrial DNA), proteins and lipids and function as 
effector and signaling molecules in cell membranes that mediate signal transduction and inflammation 
pathways[46,47]. In addition, inflammation, which is also present in the aforementioned pathologies, 
aggravates the damage and functions as a feedback for stress and oxidative damage because poly-
morphonuclear neutrophils at the site of inflammation release large amounts of ROS as an immune 
defense response, causing tissue damage and endothelial dysfunction[48]. Oxidative stress can induce 
and maintain a proinflammatory environment through the activation of proinflammatory pathways 
regulated by the transcription nuclear factor kB and c-Jun N-terminal kinase (JNK) and the production 
of inflammatory cytokines such as interleukin-1beta[34,38,40,49]. This improves polymorphonuclear 
neutrophil recruitment, which further stimulates the proinflammatory condition in the tissue, thus 
generating a feedback process oxidative stress-inflammation-oxidative stress[46].

Persistent inflammation of the pancreas causes ER stress, progressive atrophy and/or replacement 
with fibrotic tissue, pain, exocrine pancreatic insufficiency, trypsin activation leading to pancreatic 
autodigestion, loss of functional β cell mass and consequently the reduced ability of β cells to secrete 
insulin (Figure 3). This pathology is known as pancreatic endocrine dysfunction or DM[50,51].

DM is a complex and heterogeneous disorder defined by the presence of hyperglycemia[11] and can 
lead to life-threatening complications such as severe hypoglycemia or chronic micro- and macroan-
giopathic complications[52]. There are several types of diabetes, although type 1 DM (T1DM) and T2DM 
are the most common. The American Diabetes Association defines T1DM as the autoimmune 
destruction of β cells, usually leading to absolute insulin deficiency and T2DM as the progressive loss of 
insulin action in target tissues as well as a decrease in their secretion from β cells[53]. All cellular events 
are summarized in Figure 3.

INSULIN AND APPETITE REGULATION
The hypothalamus is the specific area of the brain where eating behavior is regulated, which is directly 
related to glucose homeostasis[54]. The hypothalamus is located around the third ventricle, below the 
thalamus and above the median eminence, one of the circumventricular organs in which the blood brain 
barrier is slightly modified with semi-permeable capillaries that allow selective exchange between 
molecules of the blood and cerebrospinal flow with the neurons of the hypothalamus[55,56]. This region 
is divided into several nuclei, among which the arcuate nucleus (ARC), paraventricular nucleus, ventro-
medial nucleus, dorsomedial nucleus and lateral area nucleus stand out[57,58]. The ARC is located very 
close to the median eminence. It is made up of first-order neurons that first receive signals from 
peripheral organs such as the stomach, adipose tissue and the pancreas[56,59].

Insulin is the signal derived from the pancreas in response to the presence of nutrients (glucose) in 
the bloodstream[54]. After being secreted from pancreatic β cells, insulin via the bloodstream reaches the 
hypothalamus crossing the median eminence or crossing the vascular endothelium via transport 
proteins or via the insulin receptor itself, which is assumed to also act as its transporter (mechanism not 
fully defined)[60,61].
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Figure 3 Insulin secretory dysfunction. Timeline of abnormalities in insulin secretion due to the most common causes, reflecting progressive deterioration in 
functional β cell mass. ER: Endoplasmic reticulum.

Insulin reaches the ARC and binds to its receptor in the first-order neurons. Once insulin binds to its 
receptor in the hypothalamus, it leads to rapid autophosphorylation of the insulin receptor, followed by 
tyrosine phosphorylation of insulin receptor substrates, which induces the activation of the PI3K/AKT 
and the mitogen-activated protein kinases (MAPK) cascades[61]. The PI3K/AKT pathway promotes the 
activation of the mammalian target of rapamycin complex 1/p70-S6 kinase[61,62], which is capable of 
phosphorylating AMP-activated protein kinase (AMPK) at serine 485/491 sites[63], reducing the ability 
of Ca2+/calmodulin-dependent kinase II to phosphorylate AMPK in the threonine 172 residue and 
resulting in the low expression of genes related to appetite induction (orexigenic), such as neuropeptide 
Y (NPY) and agouti-related protein (AgRP) in the ARC, the paraventricular nucleus and the lateral area 
nucleus, which decreases appetite[56,63,64].

Moreover, AKT induces the phosphorylation of the transcription factor forkhead box protein O1. 
When forkhead box protein O1 is phosphorylated it leaves the nucleus and therefore decreases the 
expression of genes that are activated by this factor, such as NPY and AgRP[56,64]. Therefore, insulin 
and the activation of it signaling pathway promotes an anorexigenic effect by inducing a decrease in the 
expression of the neuropeptides that induce appetite (NPY/AgRP).

Similar to insulin, another anorexigenic signaling pathway is activated by leptin[56,64]. Leptin is 
secreted from adipocytes in proportion to levels of body fat stores. Through the bloodstream it reaches 
first-order neurons, binds to its receptors and activates the Janus tyrosine kinase pathway and STAT3 
pathway. STAT3 is a transcription factor that stimulates the expression of the precursor neuropeptide of 
α-melanocyte-stimulating hormone, named proopiomelanocortin (POMC) and the transcript regulated 
by cocaine and amphetamines (CART). These neuropeptides exert an anorexigenic effect[56,64]. Leptin 
and insulin signaling converge in the activation of PI3K/AKT, thus the anorexigenic effect is enhanced 
since the expression of NPY/AgRP is decreased by insulin and leptin, while POMC/CART expression is 
increased by leptin[56,64,65].

POMC/CART are the main anorexigenic neuropeptides expressed in neurons of the first-order 
(named neurons POMC/CART). These neurons release multiple cleavage products of POMC, including 
α-melanocyte-stimulating hormone, that bind in the second-order neurons located in the paraventricular 
nucleus, dorsomedial nucleus, ventromedial nucleus and lateral area nucleus to activate downstream 
melanocortin receptors (MC3R/MC4R) to promote satiety and control eating behavior, glucose 
homeostasis and body weight[54,58,64,66].

In periods of fasting, when glucose decreases, the release of insulin in the pancreas also decreases, 
and consequently the expression of POMC and CART decreases along with the satiety effect[56]. 
Meanwhile, the concentrations of ghrelin, a hormone secreted in the stomach during periods of 
starvation, increase[67]. This hormone reaches ARC through the bloodstream to activate the growth 
hormone receptor 1a, a G protein-coupled receptor, for the release of the α subunit from the βγ subunits 
of G protein. The α subunit activates phospholipase C. Phospholipase C induces the production of 
diacyl glycerol and phosphoinositol triphosphate. Phosphoinositol triphosphate is a second messenger 
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that binds to its receptor in the ER and causes the release of Ca2+ into the cytosol[68]. Increasing Ca2+ 
activates the Ca2+/calmodulin-dependent kinase II, which phosphorylates AMPK in the threonine 172 
residue. AMPK activates transcription factors such as the cAMP-response element binding protein and 
forkhead box protein O1, which act on the promoter region of the NPY and AgRP genes, promoting 
their expression and inducing appetite[14,56].

NPY exerts its orexigenic effect on second-order neurons through stimulation of the Gi-coupled NPY 
family of receptors[66,69], mediating the inhibition of adenylate cyclase, decreased levels of cAMP[57,
70] and the activation of MAPK[61,70]. AgRP is a biased agonist of the melanocortin receptors (MC3R/
MC4R) and prevents the binding of α-melanocyte-stimulating hormone to these receptors, blocking the 
induction of satiety and driving sustained increase in food intake[66]. This constitutes an orexigenic 
signal.

Therefore, under normal physiological conditions, the release of the specific signal (inducing or 
inhibiting appetite) in the peripheral organs will depend on the metabolic state of the organism and will 
induce a response in the form of orexigenic or anorexigenic neurotransmitters in the hypothalamus[9,56,
64,66]. The strict regulation of these afferent and nutrient-related hormonal signals is necessary to avoid 
alterations in the regulation of appetite since an uncontrolled increase in POMC/CART would cause 
anorexia, but the uncontrolled increase in the expression of NPY/AgRP will generate hyperphagia, 
which due to excessive consumption of hypercaloric diets has been related to weight gain and obesity 
(characteristics that are linked to IR and T2DM)[9].

In studies in experimental models of hyperphagia and DM induced with streptozotocin, NPY/AgRP 
neurons are more active and the expression level of NPY and AgRP is increased, while POMC/CART 
neurons are less active and the expression level of POMC and CART is decreased. This change is 
explained in part to the inefficiency and/or deficiency of insulin[71,72] and leptin[73] and increased 
levels of circulating ghrelin[74,75].

During diabetic hyperphagia, high glucose intake will induce a proportional release of insulin from 
pancreatic β cells (hyperinsulinemia). The high concentration of insulin will induce the constant 
activation of the receptor at the cerebral and peripheral levels, which generates molecular and cellular 
regulation mechanisms such as: (1) Internalization of the receptor by clathrin-mediated endocytosis[76]; 
(2) Dephosphorylation in tyrosine residues of the insulin receptor by protein tyrosine phosphatase 1B, 
which is a nontransmembrane tyrosine phosphatase that acts as a potent negative modulator of insulin 
signaling by reversing insulin-induced phosphorylation in tyrosine residues and impairs insulin signal 
transduction; and (3) Phosphorylation on serine residues by serine-threonine kinases, such as JNK and 
the p38 MAPK[12,13]. This will generate a lack of response to the presence of the hormone (i.e. IR). At 
the level of the hypothalamus, this will decrease the activity of one of the pathways that induce satiety.

On the other hand, hyperphagia is often associated with the accumulation of visceral fat[77] and 
consequently elevated plasma leptin concentrations. This situation will induce the failure to respond to 
the hormone at central and peripheral levels, named leptin resistance[78,79]. In this way, there will be a 
decrease in the two central signals that induce satiety, favoring the persistence of hyperphagia and the 
onset of resistance to both hormones. This becomes a vicious circle: hyperphagia-hyperglycemia-
hyperinsulinemia/hyperleptinemia-insulin/leptin resistance-hyperphagia.

In addition, excessive consumption of carbohydrates (glucose and/or fructose), coupled with a lack 
of physical activity, will generate an increase in glucose uptake in all cells but mainly in cells that have 
glucose transporters that act independently of the presence or absence of insulin[9,13,14] transporters, 
such as GLUT1 and GLUT3, mainly present in the brain[80]. With excessive intake of carbohydrates, 
glycolysis will increase, and therefore the release of ROS (species produced normally in glycolysis) will 
increase progressively until they overcome antioxidant barriers and oxidative stress develops[13,14,81].

It has been reported that during oxidative stress there is the activation of stress-sensitive kinases 
(JNK, p38 MAPK) that induce phosphorylation of serine residues in the insulin receptor and in the 
insulin receptor substrates, which blocks the pathway of insulin signaling aggravating the condition of 
IR[12,13]. In addition, studies carried out in rat models fed with fructose and subjected to an environ-
mental stress protocol revealed that stress decreased body mass, adiposity and blood leptin level, 
decreased expression of the leptin receptor and POMC in the hypothalamus and led to a marked 
increase of AgRP, associated with AMPK phosphorylation and reduced Akt activity[14]. In parallel 
studies undertaken in normal rats, chronic blockade of hypothalamic insulin receptors caused 
hyperphagia and IR[82]. Furthermore, it has been reported that stimulation of hypothalamic insulin 
signaling would be sufficient to inhibit the glucose production in the liver through the intra-
cerebroventricular administration of agonists and antagonists of insulin signaling[83], combined with 
evidence that mice with neuron-specific insulin receptor deletion are overweight, insulin-resistant and 
glucose-intolerant. These data demonstrate that neuronal insulin signaling is required for intact control 
of both body fat mass and glucose homeostasis[9]. Consequently, chronic stress can dysregulate the 
hypothalamus-adipose tissue[14,84] and hypothalamus-pancreas[64] axis over time, which affects 
glucose metabolism, promotes IR and influences multiple appetite-related hormones in the hypo-
thalamus[64,84].

On the other hand, the effect of insulin has not only been studied in the hypothalamus at the level of 
glucose homeostasis. It has also been shown that the administration of insulin into the hippocampus of 
rats promotes Akt-dependent translocation of GLUT4[85]. Furthermore, hippocampal-specific 
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Figure 4 Insulin promotes decreased appetite in the arcuate nucleus. Insulin is secreted by the  cells of the pancreas and through the circulation 
reaches the arcuate nucleus of the hypothalamus. It binds to its receptor on first-order neurons, triggering the phosphatidylinositol-3-kinase/protein kinase B signaling 
pathways and forkhead box protein O1 repression, resulting in decreased expression of neuropeptide Y (NPY) and agouti-related protein resulting in an anorexigenic 
effect. Like insulin, leptin activates anorexigenic signaling pathways by binding to its receptor, which activates the Janus tyrosine kinase/signal transducer and 
activator of transcription pathway, promoting the expression of the anorexigenic peptide precursor neuropeptide of α-melanocyte-stimulating hormone and transcript 
regulated by cocaine and amphetamines and with it the release of the α-melanocyte-stimulating hormone that activates the melanocortin receptors (MC3R/MC4R) in 
the neurons of the second order. Together, insulin and leptin signals amplify the anorexigenic effect. During fasting periods, ghrelin activates the growth hormone 
receptor 1a and promotes the activation of the adenosine monophosphate-activated protein kinase pathway that promotes the expression of NPY/agouti-related 
protein, stimulates orexigenic receptor Gi-coupled NPY in second-order neurons and prevents α-melanocyte-stimulating hormone from binding to melanocortin 
receptors (MC3R/MC4R), driving the orexigenic signal. 3V: Third ventricle; DAG: Diacylglycerol; IP3: Inositol triphosphate; IP3R: Inositol triphosphate receptor; ME: 
Median eminence; PLC: Phospholipase C; ROS: Reactive oxygen species.

suppression of insulin signaling reduces long-term potentiation in the hippocampus and significantly 
impairs memory and learning ability[86]. In hypothalamic neurons they have an important effect on 
body thermoregulation by signaling with brown adipose tissue[87]. Therefore, the effect of insulin at the 
brain level has been fully established. All cellular and molecular events are summarized in Figure 4.

THERAPEUTIC CONSIDERATIONS
Medical therapy is the first step to achieve adequate control of complications related to alterations in 
insulin secretion. Considering that DM is the main pathology related to this alteration, therapeutic 
treatments are focused on reducing hyperglycemia as well as stimulating the production and secretion 
of insulin in the  cells of the pancreas and its signaling in the different tissues.
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For T1DM, characterized by the destruction of the  cells of the pancreas by autoantibodies as well as a 
decrease in the production and secretion of insulin, the first-line treatment is the administration of non-
endogenous insulin[88]. Regarding T2DM, there are various therapeutic approaches, starting with 
improving eating habits[89] and increasing physical activity, which results in improving insulin 
sensitivity and helps control blood glucose[90]. When the above does not help control hyperglycemia, 
the therapeutic approach is based on the use of conventional drugs such as sulfonylureas (inducing 
insulin release from  cells of the pancreas), biguanides (inducing glucose uptake by cells that are not 
insulin-dependent and reducing hepatic glucose production) and alpha-glucosidase inhibitors (blocking 
the absorption of glucose in the intestine)[91].

Currently, the use of incretin-based therapy has been implemented. Incretins are enteroendocrine 
hormones released after nutrient intake that stimulate glucose-dependent insulin secretion from β cells. 
To date, two incretins have been identified, glucose-dependent insulinotropic polypeptide (GIP) and 
GLP-1. In mice, deficiencies in GIP and GLP-1 secretion are associated with decreased insulin response 
and impaired glucose tolerance. In this context, the overexpression of GIP or GLP-1 improves β cell 
function and glucose tolerance, and enhances insulin sensitivity. However, GIP also has an obesogenic 
effect, at least in animal models. Therefore, investigations have focused on GLP-1, specifically on its 
receptor. Agonists for GLP-1 receptor activation have recently been used. These include liraglutide, 
albiglutide, dulaglutide and semaglutide, and the results have been favorable for the management of 
DM[92].

On the other hand, the importance of finding new therapies that help improve disease control and the 
use of nutraceuticals has been increasing in recent years[93]. A positive effect has been reported in 
compounds such as melatonin[94], aloe vera extract[95] and hibiscus sabdariffa leaf extract[96]. They 
have regenerated pancreatic β cells and enhanced insulin secretion in streptozotocin-induced diabetic 
animal models. In patients with metabolic syndrome, a nutraceutical diet composed of barberine, 
policosanol, red yeast rice or tocotrienols significantly reduced the Homeostatic Model Assessment for 
IR index, leading to the conclusion that they have beneficial effects on IR[97,98].

Resveratrol, a polyphenol, found in many types of red fruits, has beneficial effects both in vivo and in 
vitro, showing great antioxidant capacity while improving insulin sensitivity[99,100]. Resveratrol is 
capable of activating the AKT pathway to stimulate insulin action[15]. The activation of sirtuin-1/
AMPK has also been reported[101], which has a positive impact on mitochondrial biogenesis, inhibition 
of lipogenesis and fatty acid oxidation[102] and improves insulin sensitivity in DM[103,104].

Another antioxidant compound that has been less studied than resveratrol but with positive effects in 
models of obesity[105] and diabetes[106] has been curcumin, a non-flavonoid polyphenol[107]. In 
diabetic animal models, curcumin improves insulin sensitivity and increases glucose uptake. This 
mechanism is mediated by the liver kinase B1-AMPK pathway. Adding curcumin induced an increase 
in fatty acid oxidation, an event that improves insulin sensitivity[108]. At the brain level, curcumin 
increases glucose metabolism and improves the insulin signaling pathway, improving learning and 
memory[16] both under non-pathological conditions and in Alzheimer’s disease[109]. Currently there 
are several studies on the use and beneficial effects of a wide variety of nutraceuticals, which are 
described in Table 1.

CONCLUSION
Insulin is a peptide hormone that plays an important role in various organs: in pancreas it participates 
in glucose homeostasis; in muscle it promotes glucose metabolism for energy generation and storage; in 
the vascular system it exerts an anti-atherogenic effect and participates in bone formation; in liver it 
decreases gluconeogenesis and favors glucose storage through glycogenesis; in adipose tissue it induces 
lipogenesis; and in brain it activates thermogenesis, regulates appetite, participates in glucose 
homeostasis and metabolism, reduces long-term potentiation and impairs memory and learning ability. 
Alterations in secretion or function of insulin considerably alter the cellular events regulated by the 
activation of its signaling pathway. Obesity and DM are pathologies associated with alterations in the 
function and secretion of insulin. In these pathologies, oxidative stress plays an important role since the 
uncontrolled increase in ROS derived from the increase in glycolysis due to the constant entry of 
glucose into the cells overcomes the antioxidant defenses. ROS induces alterations in insulin signaling 
and triggers a cascade of cellular alterations in various organs. Specifically in the hypothalamus, it can 
be the inducer of hyperphagia, which aggravates the diabetic condition and obesity. The use of antiox-
idants can be a complementary strategy to conventional treatment of DM.
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Table 1 Mechanism of action of nutraceuticals

Nutraceutical Mechanism of action Study model Ref.

Resveratrol Reduces blood glucose and serum insulin levels, 
improves insulin and glucose tolerance, increases 
Sirt1, p-AMPK, p-IRS1 and p-AKT levels in liver

Mice, KKAy [110]

Enhances peripheral insulin signaling in diabetic mice 
in association with PTBP1 inhibition

Mice deficient in IRS2 (Irs2 -/-) 
and injected with STZ

[111]

Reduces stress on the endoplasmic reticulum, thus 
improving insulin sensitivity and glucose levels

Mice C57BL/6J on a HFD [112]

Regulates protein expression of insulin receptor and 
GLUT4

Rat, Goto-Kakizaki [113]

Counteracts insulin resistance caused by hyperinsu-
linemia by activating AMPK and regulating GLUT4 
translocation in muscle cells

L6 cell line [114]

Reduces insulin levels and the HOMA-IR index Patients with T2DM [115]

Curcumin As a pretreatment, it protects pancreatic islets from 
cytokine-induced death

Mice, C57BL/6J [116]

Protects pancreatic islets from glycolipotoxicity by 
inhibiting oxidative stress and NADPH oxidase 
activity

Rats, Sprague-Dawley [117]

Improves insulin sensitivity and energy metabolism 
through the FNDC5/p38 MAPK/ERK pathways

Mice, C57BL/6J [118]

HOMA-IR index decreases Patients with T2DM [119]

Garlic Decreases serum insulin level, HOMA-IR index and 
appetite

Patients with metabolic syndrome [120]

Rhizoma polygonati odorati extract Regulates serum insulin, adiponectin and leptin levels 
in mice on an HFD

Mice, C57BL/6 [121]

Diospyros kaki (persimmon) extract Increases the number of pancreatic islets, decreases 
the expression of TNFα and IL-6, which interferes with 
insulin action

Zebra fish [122]

Morus alba leaves Decreases in the fasting insulin level and the HOMA-
IR index, resulting in decrease of insulin resistance

Mice, C57BL/6 with HFD and STZ [123]

Hydrolyzed pea protein Enhances insulin-stimulated phosphorylation of AKT 
and FOXO1, increases IRS1 expression

Cells AML-12 [124]

Avocado oil Improves insulin and glucose sensitivity Mice, C57BL/6J [125]

Eugenol Improves glucose uptake in muscle, by insulin-
independent pathway CaMKKβ/AMPK/GLUT4.

Mice, C57BL/6N with HFD and 
STZ

[126]

Okra leaf extract (Abelmoschus 
esculentus)

Regulates blood glucose level, food intake and 
changes in body weight 

Wistar rats with STZ [127]

AKT: Protein kinase B; AML-12: Alpha mouse liver 12 cells; AMPK: Adenosine monophosphate-activated protein kinase; CaMKKβ: Ca2+/calmodulin-
dependent kinase β; FNDC5: fibronectin type III domain containing 5; ERK: Extracellular signal-regulated kinase; FOXO1: Forkhead box protein O1; 
GLUT4: Glucose transporter 4; HFD: High-fat diet; HOMA-IR: Homeostatic Model Assessment of Insulin Resistance; IL-6: Interleukin-6; IRS1: Insulin 
receptor substrate 1; MAPK: Mitogen-activated protein kinases; NADPH: Nicotinamide adenine dinucleotide phosphate reduced; PTBP1: Polypyrimidine 
tract-binding protein 1; Sirt1: Sirtuin 1; STZ: Streptozotocin; T2DM: Type 2 diabetes mellitus; TNFα: Tumoral necrosis factor alpha.
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