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Abstract
Globally, type 2 diabetes mellitus (T2DM) is one of the most common metabolic 
disorders. T2DM physiopathology is influenced by complex interrelationships 
between genetic, metabolic and lifestyle factors (including diet), which differ 
between populations and geographic regions. In fact, excessive consumptions of 
high fat/high sugar foods generally increase the risk of developing T2DM, 
whereas habitual intakes of plant-based healthy diets usually exert a protective 
effect. Moreover, genomic studies have allowed the characterization of sequence 
DNA variants across the human genome, some of which may affect gene 
expression and protein functions relevant for glucose homeostasis. This compre-
hensive literature review covers the impact of gene-diet interactions on T2DM 
susceptibility and disease progression, some of which have demonstrated a value 
as biomarkers of personal responses to certain nutritional interventions. Also, 
novel genotype-based dietary strategies have been developed for improving 
T2DM control in comparison to general lifestyle recommendations. Furthermore, 
progresses in other omics areas (epigenomics, metagenomics, proteomics, and 
metabolomics) are improving current understanding of genetic insights in T2DM 
clinical outcomes. Although more investigation is still needed, the analysis of the 
genetic make-up may help to decipher new paradigms in the pathophysiology of 
T2DM as well as offer further opportunities to personalize the screening, 
prevention, diagnosis, management, and prognosis of T2DM through precision 
nutrition.

Key Words: Type 2 diabetes mellitus; Nutrigenetics; Single nucleotide polymorphism; 
Genotype; Diet; Precision nutrition
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Core Tip: The onset and progression of type 2 diabetes mellitus (T2DM) is influenced by complex interrelationships between 
genetic and dietary factors. Indeed, a number of nutrigenetic studies have identified significant gene-diet interactions related 
to T2DM predisposition, nutrient metabolic status, and dietary intervention responsiveness. Moreover, this knowledge has 
motivated the interest for the design and implementation of genotype-based dietary strategies for improving glycemic 
outcomes compared to conventional nutritional advice. Although more investigation is required, these insights may help to 
explain disease phenotype heterogeneity, with relevance in precision nutrition for the personalized prevention and clinical 
management of T2DM.

Citation: Ramos-Lopez O. Genotype-based precision nutrition strategies for the prediction and clinical management of type 2 diabetes 
mellitus. World J Diabetes 2024; 15(2): 142-153
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/142.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.142

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a metabolic disease caused by insufficient pancreatic insulin secretion or defective 
hormone actions in target tissues[1]. T2DM is recognized as a major public health concern due to rising global prevalence 
and negative impact on human wellbeing and life expectancy, being significantly associated with morbidity burden and 
premature mortality[2].

Several factors have been identified to contribute to the prevalence of T2DM including the genetic background[3]. 
Accordingly, a number of sequence DNA variants across the human genome have been characterized, some of which 
may affect gene expression and protein functions relevant for maintaining glucose homeostasis[3-5]. Largely, single 
nucleotide polymorphisms (SNPs) have been the most prevalent studied genetic variations in the field of precision 
medicine, with applications in T2DM prevention and personalized management[6-8]. Moreover, genetic risk scores (GRS) 
have been developed to assess the additive effect of SNPs[9-11].

Of note, the genetic contribution to T2DM status may depend on interactions with environmental issues including diet, 
which may explain some of the inconsistencies reported among epidemiological studies relating diet to chronic diseases
[12]. Thus, interrelationships between genetic variants and dietary features (i.e., intakes of macro and micronutrients, 
eating behaviors, nutritional patterns, and the consumption of particular foods) may influence T2DM risk or disease 
complications by affecting critical pathways involved in glucose signaling, insulin secretion, β-cell function, gluco-
lipotoxicity, inflammation and oxidative stress[12-14]. Therefore, people with higher genetic predisposition should avoid 
certain harmful foods or adopt healthy dietary patterns to delay T2DM onset.

In this context, it has been illustrated that the combination of genetic (52 SNPs in 37 genes) and dietary data (food with 
high sugar content) using machine learning approaches may improve the prediction of T2DM incidence[15]. Likewise, 
high genetic (48 SNPs) and dietary risk scores (based on sugar-sweetened beverages, processed meat, whole grains and 
coffee) were associated with increased incidence of T2DM[16].

In this document, potential interactions between genetic polymorphisms and dietary factors concerning T2DM suscept-
ibility and disease progression are reviewed, some of which have demonstrated a value as biomarkers of personal 
responses to nutritional interventions. Also, novel genotype-based dietary strategies for the prevention and clinical 
management of T2DM are documented. Future directions comprising the integration of genetics with another omics tools 
are also postulated. These insights may help to explain heterogeneity in predisposition to T2DM and the development of 
related systemic complications, with relevance in disease stratification and precision nutrition through the study of the 
human genome.

GENETIC BACKGROUND, DIETARY INTAKE, AND T2DM RISK
A relevant precision nutrition approach in T2DM risk prediction/prevention include the analysis of associations between 
genetic polymorphisms and T2DM that are modulated by dietary features. Indeed, a number of nutrigenetic studies have 
identified significant gene-diet interactions related to T2DM predisposition (Table 1). These include single SNPs mapped 
to genes involved in pivotal physiological processes such as energy breakdown, nutrient utilization, insulin signaling, 
circadian rhythm, cell cycle regulation, pancreatic function, hypothalamic food intake control, neuronal synapse, signal 
transduction, and taste perception, which interact with nutritional factors to influence T2DM risk (Table 1). Among them, 
the consumption of particular foods (vegetables, whole grains, coffee, olive oils, alcoholic beverages, and dairy products), 
macronutrients (carbohydrates, fatty acids, protein, fiber) and micronutrients (iron, folate) intakes, adherence to dietary 
patterns, and eating time schedules (Table 1).

In addition, GRS have been constructed to evaluate the cumulative effects of SNPs on T2DM susceptibility, where 
dietary factors are implicated. For instance, and obesity GRS positively interacted with dietary intake of cholesterol to 
affect insulin resistance in overweight/obese Spanish individuals[17]. Of note, Brazilian subjects with high GRS for 
metabolic disease and total fat intakes had increased blood glucose and insulin-related traits than those with low GRS
[18]. Conversely, lower serum levels of glycated hemoglobin were found in Ghanaian adults with low total fat intake (≤ 
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Table 1 Gene-diet interactions concerning the risk of developing type 2 diabetes mellitus and individual responses to nutritional 
interventions

SNP 
reference

Gene 
symbol Gene function Risk allele Dietary interaction Main outcome Population Ref.

rs7903146 TCF7L2 Wnt signaling 
pathway

T High dessert and milk 
intakes (above median)

Higher T2DM risk Algerian [83]

rs7903146 TCF7L2 Wnt signaling 
pathway

C Fiber intake Inversely associated 
with T2DM incidence

Swedish [84]

rs7903146 and 
rs4506565

TCF7L2 Wnt signaling 
pathway

rs7903146 (C) 
and rs4506565 
(A)

Per daily 30-g increased 
intake of whole grain 
and per daily 5-g 
increased intake of cereal 
fiber

Decreased risk of 
developing T2DM

Swedish men [85]

rs7901695 TCF7L2 Wnt signaling 
pathway

T Upper protein intake 
quantiles

Higher HbA1c, 
HOMA-IR, blood 
glucose, and insulin 
levels

Polish [86]

rs6696797, 
rs4244372, and 
rs10881197

AMY1 Carbohydrate 
digestion

rs6696797 (A), 
rs4244372 (A), 
rs10881197 (G)

Carbohydrate intake > 
65% of total energy

Higher T2DM 
incidence

Korean women [87]

rs2233998 TAS2R4 Bitter taste perception T High intakes of 
carbohydrates or sugars 
(highest tertile) and low 
intakes of fruits or 
vegetables (lowest 
tertile)

Higher T2DM 
incidence

Korean women [88]

rs1801282 and 
rs3856806

PPARG Fatty acid storage and 
glucose metabolism

rs1801282 
(Pro12), 
rs3856806 (C)

High fat consumption 
(the third sex-specific 
tertile of fat intake

Increased T2DM risk French [89]

rs7756992 CDKAL1 Beta cells function G First tertiles of protein 
and fat intakes

Higher T2DM risk Korean [90]

rs7754840 CDKAL1 Pancreatic beta cells 
function

G Habitual coffee intake Lower risk of 
prediabetes and T2DM

East Asians [91]

rs5215 KCNJ11 Formation of ATP-
sensitive potassium 
(K-ATP) channels in 
pancreatic beta cells

C Habitual coffee intake Lower risk of 
prediabetes and T2DM

East Asians [91]

rs4402960 IGF2BP2 Cellular metabolism 
modulation by post 
transcriptional 
regulation

T Habitual coffee intake Lower risk of 
prediabetes and T2DM

East Asians [91]

rs10517030 PGC-1α Regulation of genes 
involved in energy 
metabolism

C Low-energy diet (daily 
consumption less than 
estimated energy intake)

Positively associated 
with T2DM prevalence 
and insulin resistance 
and negatively 
associated with beta 
cell function

Koreans [92]

rs6265 BDNF Survival and growth 
of neurons, and 
synaptic efficiency 
and plasticity

Met Low-energy (daily 
consumption less than 
estimated daily energy 
intake), low-protein (< 
13% daily energy), and 
high-carbohydrate (70% 
daily energy)

Lower risk for T2DM Koreans [93]

rs161364 and 
rs8065080

TRPV1 Receptor for capsaicin, 
non-selective cation 
channel, and 
participates in 
transduction of 
painful thermal 
stimuli

rs161364 (T) 
and rs8065080 
(C)

High preference for oily 
foods and high fat intake 
from oily foods

Lower risk for T2DM Koreans [94]

rs77768175, 
rs2074356 and 
rs11066280

HECTD4 Glucose homeostasis 
and glucose metabolic 
process

rs77768175 (A), 
rs2074356 (G), 
rs11066280 (T)

Alcohol consumption (> 
5 g/d)

Significantly increased 
risks of T2DM

East Asians [95]

Regulation of the Increasing dietary iron Increased risk of rs10830963 MTNR1B G Chinese [96]
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circadian actions of 
melatonin

intake elevated fasting 
glucose, higher fasting 
glucose, and higher 
HbA1c

rs10830963 MTNR1B Regulation of the 
circadian actions of 
melatonin

G Late dinner Impaired glucose 
tolerance

European [97]

rs10830963 MTNR1B Regulation of the 
circadian actions of 
melatonin

G Late eating Impaired glucose 
tolerance and insulin 
secretion defects

European [98]

rs2943641 IRS1 Insulin signaling T Lower tertiles of 
carbohydrate intake 
(women) and lowest 
tertile of fat intake (men)

Decreased risk of 
T2DM

Swedish [99]

rs7578326 and 
rs2943641

IRS1 Insulin signaling rs7578326 (G) 
and rs2943641 
(T)

Low SFA-to-
carbohydrate ratio (≤ 
0.24)

Lower risk of insulin 
resistance and 
metabolic syndrome

American [100]

rs10423928 GIPR Insulin release 
stimulation

T Highest carbohydrate 
quintile

Decreased T2DM risk Swedish [101]

rs3014866 S100A9 Cell cycle progression 
and differentiation

C High dietary SFA: 
Carbohydrate ratio 
intake

Higher insulin 
resistance

Spanish white 
adults, North 
American non-
Hispanic white 
adults, and 
Hispanic adults

[102]

rs709592 PSMD3 Maintenance of 
protein homeostasis

T Low carbohydrate intake 
(≤ 49.1% energy)

Higher insulin 
resistance

Americans [103]

rs8065443 PSMD3 Maintenance of 
protein homeostasis

A Low (n-3):(n-6) PUFA 
ratio (≤ 0.11)

Higher insulin 
resistance

Americans [103]

rs7645550 KCNMB3 Control of smooth 
muscle tone and 
neuronal excitability

T Low (n-3):(n-6) PUFA 
ratio (≤ 0.11)

Lower insulin 
resistance

Americans [104]

rs1183319 KCNMB3 Control of smooth 
muscle tone and 
neuronal excitability

G High (n-3):(n-6) PUFA 
ratio (> 0.09)

Higher HbA1c levels Hispanics [104]

rs2270188 CAV2 Signal transduction, 
lipid metabolism, 
cellular growth 
control and apoptosis

T Increase of daily fat 
intake from 30% to 40% 
energy

Greater risk of T2DM European [105]

rs10923931 NOTCH2 Wnt signaling 
pathway

T Increasing fiber intake Lower T2DM risk Swedish [106]

rs4457053 ZBED3 Wnt signaling 
pathway

G Increasing fiber intake Lower T2DM risk Swedish [106]

rs3765467 GLP1R Insulinotropic action 
of GLP-1 in β-cells

G Highest tertiles of 
energy, protein and 
carbohydrate 
consumption

Higher risk for 
decreased insulin 
secretion

Japanese men [107]

rs9939609 FTO Regulation of energy 
intake

A Low adherence to the 
Mediterranean diet (≤ 9 
points)

Higher risk of 
prevalent T2DM

Spanish [108]

rs9939609 FTO Regulation of energy 
intake

A Low folate intake (< 406 
μg/d)

Higher fasting plasma 
glucose concentrations

Spanish [108]

rs17782313 MC4R Hypothalamic leptin-
melanocortin 
signaling pathway

C Low adherence to the 
Mediterranean diet (≤ 9 
points)

Higher risk of 
prevalent T2DM

Spanish [108]

SNP: Single nucleotide polymorphism; T2DM: Type 2 diabetes mellitus; SFA: Saturated fatty acids; PUFA: Polyunsaturated fatty acids; HbA1c: 
Glycosylated hemoglobin; HOMA-IR: Homeostasis model assessment-estimated insulin resistance; GLP-1: Glucagon-like peptide-1; TCF7L2: Transcription 
factor 7 like 2; AMY1: Amylase 1; PPARG: Peroxisome proliferator-activated receptor gamma; IGF2BP2: Insulin-like growth factor 2 binding protein 2; 
PGC-1α: Proliferator-activated receptor-gamma coactivator-1alpha; BDNF: Brain-derived neurotrophic factor; TRPV1: Transient receptor potential 
vanilloid-1 channel; HECTD4: HECT domain E3 ubiquitin protein ligase 4; MTNR1B: Melatonin receptor 1B; IRS1: Insulin receptor substrate-1; GIPR: 
Glucose-dependent insulinotropic polypeptide receptor; CAV2: Caveolin-2; ZBED3: Zinc finger BED-type containing 3; FTO: Fat mass and obesity 
associated; MC4R: Melanocortin 4 receptor.



Ramos-Lopez O. Genotype-based precision nutrition in T2DM

WJD https://www.wjgnet.com 146 February 15, 2024 Volume 15 Issue 2

36.5 g/d) despite carrying more than two risk alleles of vitamin D-related genetic variants[19]. Also, associations between 
a GRS related to insufficient glucose-stimulated insulin secretion and T2DM risk was accentuated in Asian individuals 
with high energy and calcium intakes[20]. Moreover, Korean subjects carrying polygenic variants linked to oxidative 
stress had increased risk of T2DM, which was lowered the by the intakes of dietary antioxidants[21]. Besides, the genetic 
predisposition to T2DM was exacerbated with higher intakes of dietary branched-chain amino acids in Chinese[22].

Regarding specific foods, it was reported that middle-aged Korean adults with high GRS affecting insulin signaling 
presented more instances of insulin resistance when combined with high coffee (≥ 10 cups/wk) or caffeine (≥ 220 mg/d) 
intakes[23]. Likewise, alcohol consumption significantly increased the risk of T2DM especially in Chinese men with low 
genetic predisposition to insulin secretion deterioration[24]. In the same way, the association between the consumption of 
sugar-sweetened beverages and serum glucose abnormalities was stronger in Chileans with high T2DM genetic suscept-
ibility[25]. Conversely, augmented genetic risk for T2DM was ameliorated by increasing the consumption of fruits in 
Chinese population[26]. In line with this finding, lower plant protein intake (< 39 g/d) was identified as a factor 
contributing to increase the risk of T2DM in genetically predisposed Asian Indians[27].

Furthermore, a high GRS for impaired insulin secretion increased the risk of T2DM by consuming a low-carbohydrate 
Western dietary pattern in Korean adults[28]. In Asians, higher fasting serum glucose concentrations were found in 
participants with high T2DM-linked GRS who adopted a Western dietary pattern[29]. On the contrary, it was reported 
that Koreans with high GRS for insulin resistance may be benefited by consuming a plant-based diet with high amounts 
of fruits, vitamin C, and flavonoids[30].

These studies show evidence concerning interactions between genetic variants and T2DM risk depending on dietary 
intakes, which may be useful for the design of nutritional therapies aimed to control the burden of T2DM, although more 
research is needed in populations with different genetic ancestries including Hispanics and Africans.

GENE-DIET INTERACTIONS AFFECTING METABOLIC STATUS IN T2DM PATIENTS
Once T2DM has established, several physiopathological processes affecting glucose/lipid metabolism homeostasis, 
immune function, adipokine secretion, and gut microbiota dysbiosis play a critical role in the development of vascular 
injuries including diabetic heart disease and stroke[31]. Thus, it is important to monitor the metabolic status in T2DM in 
order to prevent or delay the progression of complications associated with this disease.

Accordingly, some studies have analyzed the effect of gene-diet interactions on glycemic, lipid, and inflammatory 
features in T2DM patients, with relevance in clinical disease management. In this regard, studies in Mexican population 
have evidenced relevant gene-nutrient interactions concerning glycemic control and lipid profile in T2DM. For example, 
positive correlations were found between calcium intake and glycated hemoglobin and potassium intake and trigly-
ceride-glucose index only in carriers of the 408 Val risk allele of the SLC22A1/OCT1 Met408Val polymorphism[32]. Also, 
higher blood concentrations of total cholesterol, non-high-density lipoprotein cholesterol, and low-density lipoprotein 
cholesterol were found in carriers of the APOE ε2 allele with low consumption of monounsaturated fatty acids (MUFA), 
whereas carriers of the apolipoprotein E (APOE) ε4 allele with high dietary ω-6:ω-3 polyunsaturated fatty acids (PUFA) 
ratio presented higher glycated hemoglobin levels[33]. Likewise, A1 allele carriers of the DRD2/ANKK1 TaqIA 
polymorphism were protected from serum triglyceride increases by maltose intake, but A2A2 homozygotes were 
susceptible to triglyceride rises through excessive consumptions of total fat, MUFA, and dietary cholesterol[34].

In Iranians with T2DM, Met allele carriers of the brain-derived neurotrophic factor (BDNF) Val66Mat polymorphism 
with high scores of dietary indices showed lower blood levels of triglycerides ((healthy eating index and diet quality 
index), total cholesterol, and interleukin-18 (phytochemical index) than Val/Val homozygotes[35]. Meanwhile, C-allele 
carriers of the APOA2-265 T>C polymorphism had highest means of body mass index, waist circumference, blood 
cholesterol and serum ghrelin and leptin levels when dietary acid load (either potential renal acid load or net endogenous 
acid production) values were high[36]. Of note, higher inflammatory and antioxidant markers including C-reactive 
protein, total antioxidant capacity, superoxide dismutase, and 8-isoprostaneF2alpha were found in B2B2 homozygotes of 
the CETP TaqB1 polymorphism when they consumed diets with high dietary insulin index[37]. Similarly, risk-allele 
carriers (CG, GG) of the peroxisome proliferator-activated receptor (PPAR)-γ Pro12Ala polymorphism who consumed a 
diet with high dietary insulin load and insulin indexes were more likely to be obese and have increased inflammatory 
markers (i.e., interleukin-18, isoprostaneF2α, and pentraxin-3) compared to individuals with the CC genotype[38]. 
Moreover, worse plasma lipid profile was found in participants carrying the AA/AG genotype of the ApoB EcoRI 
polymorphism when increasing the percentage of energy derived from dietary fat, carbohydrates, protein, saturated fatty 
acids (SFA), and cholesterol in comparison to GG homozygotes[39]. In the same way, Del-allele carries of the ApoB Ins/
Del genetic variant who consumed high amounts of MUFA (≥ 12% E) and carbohydrates (≥ 54% E) had higher blood 
levels of triglycerides and low density lipoprotein-cholesterol, while low carbohydrate (< 54% E) intakes were associated 
with raised serum concentrations of leptin and ghrelin in T2DM patients with this same genetic profile compared to Ins/
Ins homozygotes[40]. In addition, an increased risk of obesity was found in carriers of the Del allele of ApoB gene when 
combined with a low consumption of dietary ω-3 PUFA (< 0.6% E) in T2DM subjects[41]. Taken together, these results 
could be useful to prevent cardiometabolic risk factors and later complications in T2DM patients via manipulation of 
dietary intakes of selected nutrients mainly in genetically susceptible individuals. However, more investigation is needed 
in other populations with diverse ancestries and exposed to different environments in order to regionalize antidiabetic 
nutritional treatments.
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GENETIC POLYMORPHISMS AS BIOMARKERS OF GLYCEMIC RESPONSES TO DIETARY ADVICE
Dietary strategies aimed to achieve or improve glucose homeostasis not always have a positive impact in all individuals, 
which can be due to genetic factors. In this sense, some trials have evaluated the value of SNPs as potential biomarkers of 
glycemic outcomes in response to different nutritional interventions. For instance, the variant rs3071 of the SCD gene 
modified blood glucose response to dietary oils varying in MUFA content in adults with obesity, where CC genotype 
carriers showed an increase in blood glucose levels with a high SFA/low MUFA control oil, but reductions in this 
outcome with both high MUFA oil diets[42]. Within the multicenter NUGENOB study, the T allele of the protein 
phosphatase Mg(2+)/Mn(2+)-dependent 1K (PPM1K) rs1440581 genetic variant was associated with higher reductions of 
serum insulin and homeostasis model assessment (HOMA)-B after a high-fat (40%-45% E) diet, whereas an opposite 
effect was found in the low-fat (20%-25% E) diet group[43]. Also, obese individuals who were homozygous for the T-risk 
allele of the transcription factor 7 like 2 (TCF7L2) rs7903146 polymorphism and consumed a high-fat (40%-45% E) diet, 
underwent smaller reductions in HOMA-estimated insulin resistance (HOMA-IR)[44].

Findings from the POUNDS lost trial revealed greater decreases in fasting glucose, serum insulin, and HOMA-IR in T-
allele participants of the glucose-dependent insulinotropic polypeptide receptor (GIPR) rs2287019 variant who were 
assigned to low-fat (20%-25% E) diets[45]. In addition, subjects with the risk-conferring CC genotype of the insulin 
receptor substrate-1 (IRS1) rs2943641 SNP had greater decreases in insulin and HOMA-IR than those without this genetic 
profile in the highest-carbohydrate (65% E) dietary group[46]. Whereas, the T allele of deficient activity of 7-dehydrocho-
lesterol reductase (DHCR7) rs12785878 polymorphism was associated with higher decreases in serum insulin and 
HOMA-IR only in high-protein (25% E) diets[47]. Similarly, greater drops in fasting insulin levels were related to the 
PCSK7 rs236918 G allele in high-dietary carbohydrate (65% E) intakes, especially in white Americans[48]. Of note, carriers 
of the risk allele (A) of the Fat mass and obesity associated (FTO) rs1558902 variant benefited more in improving insulin 
sensitivity by consuming high-fat (40%-45% E) diets rather than low-fat (20%-25% E) regimens[49].

In a Spanish cohort with obesity, improvements in serum insulin levels and HOMA-IR were associated with the 
ADRB3 Trp64Trp genotype after hypocaloric diet with high protein (34% E) content[50]. Besides, AA genotype carries of 
the BDNF rs10767664 variant underwent reductions in insulin resistance markers when consumption of MUFA (67.5%) 
was high[51]. Likewise, TNFA-308GG homozygotes had a better glycemic response after high (22.7%) dietary intakes of 
PUFA[52]. In the same say, UCP3 55CC genotype carriers benefited more (more decreases in blood glucose, serum 
insulin, and HOMA-IR) when consumed a high-protein (34% E) diet[53]. Interestingly, it was suggested that the T allele 
of the ADIPOQ rs1501299 SNP was related to a lack of response of fasting glucose/insulin and HOMA-IR secondary to a 
Mediterranean-style diet in Spanish obese individuals[54]. Insulin resistance was ameliorated after the consumption of 
this same dietary pattern in T allele carries of the RETN rs10401670 gene polymorphism[55]. Comparable results were 
reported concerning insulin resistance reductions in CC genotype carries of the melatonin receptor 1B (MTNR1B) 
rs10830963 variant but not in GC + GG groups after following a hypocaloric diet with Mediterranean pattern[56].

Some studies have evaluated the cumulative effect of multiple SNPs (by calculating GRS) instead of single variants. In 
this context, participants with high genetic risk of glucose abnormalities showed increased fasting glucose after 
consuming a high-fat diet (40%-45% E), which was not observed in subjects assigned to the low-fat (20%-25% E) group
[57]. A lower GRS for diabetes was associated with higher reductions in fasting insulin, glycated hemoglobin, and 
HOMA-IR, and a lesser increase in HOMA-B only when the consumption of dietary protein (15% E) was low[58]. In the 
meantime, insulin resistance improvements were limited to individuals with a higher GRS of habitual coffee consumption 
following a low-fat (20%-25% E) dietary intervention[59].

The influence of the genetic background on metabolic outcomes after dietary treatments have also been assessed in 
T2DM patients. For example, a dietary intervention based on increased intakes of whole grains, vegetables, and legumes 
was able to prevent an age-related increase in blood triglyceride concentrations in Koreans with impaired fasting glucose 
or new-onset of T2DM carrying the TT genotype of the APOA5-1131 T>C SNP[60]. Accordingly, low glycemic index diets 
induced significant decreases of serum lipids, fasting blood glucose, and glycated albumin only in Chinese women with 
T2DM who were FABP2 Ala54 homozygotes[61]. Furthermore, carriers of the FTO rs9939609 risk allele (A) underwent a 
better response in improving body mass index and diastolic blood pressure in response to supplementation with epigal-
locatechin-3-gallate (300 mg/d) in Iranian patients with T2DM[62].

Overall, current evidence suggests a role of selected genetic polymorphisms in modulating the individual metabolic 
responses to some dietary treatments. However, available studies have been performed mainly in Europeans/
Caucasians, with particular genetic backgrounds; therefore, additional studies in different populations are required 
including Latin Americans, Africans, and Asians. Also, the analysis of the effects of supplementation with antioxidant 
micronutrients and bioactive compounds with anti-inflammatory properties is warranted.

GENOTYPE-BASED DIETARY INTERVENTIONS AND GLYCEMIC OUTCOMES
The knowledge about the implication of genetic variants and dietary factors in the onset and progression of T2DM has 
motivated the interest for the design and implementation of genotype-based intervention strategies for improving 
glycemic/metabolic outcomes compared to traditional nutritional prescriptions. For instance, it was evidenced that a 
personalized low-glycemic index nutrigenetic diet (utilizing 28 SNPs with evidence of gene-diet/lifestyle interactions) 
induced higher fasting glucose reductions than a Ketogenic diet in overweight/obese individuals[63]. Likewise, healthier 
effects in HOMA-IR and insulin serum levels were observed in MTHFR 677T allele carriers consuming a GENOMEX diet 
comprising of diet-related adaptive gene polymorphisms highly prevalent in Mexicans[64]. However, no differences were 
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detected regarding glucose homeostasis outcomes at 24 wk of follow-up between a nutrigenetic-guided diet (using 
genetic information of a proprietary algorithm) and a standard balanced diet in obese or overweight American veterans
[65].

In T2DM patients, a case study based on the N-of-1 approach revealed better glycemic control when adhered to a 
genetically-guided Mediterranean diet (high-quality foods rich in fiber and antioxidants that have been proven to exert 
beneficial glycaemia effects) considering genetic variants guiding the personalized selection of macronutrients for the 
nutritional management of T2DM[66]. Similarly, greater improvements in fasting plasma glucose and glycosylated 
hemoglobin concentrations were found in patients with pre-diabetes or T2DM following a personalized nutritional plan 
(taking in consideration SNPs associated with individual responses to macronutrient intakes) compared to conventional 
medical nutrition therapy[67].

Furthermore, some studies have evaluated the utility of genetic disclosure as a tool for T2DM prevention and disease 
control. For example, participants who received diabetes genetic risk counseling together with general education about 
modifiable risk factors and personal stimulus to adopt diabetes lifestyle prevention behaviors reported high levels of 
support, perceived personal control and satisfaction with the genetic counseling sessions[68]. Nevertheless, diabetes 
genetic risk testing and counseling did not necessarily improved disease prevention behaviors such as self-reported 
motivation or prevention program adherence among overweight individuals at increased phenotypic risk for T2DM[69]. 
Moreover, comparison analyzes did not revealed significant differences between genetic testing results and traditional 
risk counseling concerning behavior changes to reduce the risk of T2DM in non-diabetic overweight/obese veterans[70]. 
Given inconsistences in available evidence, more research is needed to translate this knowledge into clinical care in 
T2DM. Further investigation should contemplate information that could interfere with the results including the 
prevalence and metabolic effects of selected SNPs, cultural level of populations, compatibility of dietary plans with 
genotypic characteristics, and the quality of nutritional/lifestyle advice.

FUTURE DIRECTIONS
In addition to genetics, progresses in other omics areas are improving current understanding of the biological/molecular 
mechanisms involved in T2DM pathogenesis and clinical outcomes[71]. Similar to the influence of the genetic 
background, it has been evidenced that epigenetic modifications may alter transcriptional activity resulting in different 
T2DM traits and phenotypes; certainly, different genes responsible for the interindividual variability in responses to 
antidiabetic treatments (including dietary advice) are subjected to epigenetic regulation[72]. More importantly, 
interactions among polymorphisms in key metabolic genes (i.e., TCF7L2), related methylation status, and environmental 
factors have been suggested as a possible etiologic pattern for T2DM[73]. Besides, SNPs in microRNA (miRNA) genes 
may change the structure of miRNAs and their target gene expressions to influence T2DM risk[74].

Also, metagenomic and metabolomic methodologies have emerged to investigate the interrelationships between the 
gut microbiota dysbiosis and their related metabolites (affecting critical metabolic pathways in the host such as immunity 
and nutrient metabolism) in the development of T2DM[75]. Of note, characterization of gut microbiota of individuals 
carrying the risk alleles of the PPARGC1A (rs8192678) and PPARD (rs2267668) variants revealed some taxa (with overrep-
resentation of ABC sugar transporters) putatively associated with insulin resistance and T2DM[76]. Correspondingly, the 
MMP27 rs7129790 polymorphism was strongly associated with high gut abundance of Proteobacteria in Mexican 
Americans with a high prevalence of obesity and T2DM[77].

Moreover, high-throughput proteomics assays have allowed the discovery and representation of potential protein-
T2DM links, providing novel intervention targets in this disease[78]. Interestingly, a set of circulating proteins causally 
associated with T2DM were identified using two-sample Mendelian randomization approaches, which is a validated 
method to examine the causal effect of variation in genes of known function on disease[79]. Also, Mendelian random-
ization analyses did not uncover significant causal effects between proteins (i.e., retinal dehydrogenase 1, galectin-4, 
cathepsin D, and lipoprotein lipase) and diabetes, suggesting that identified proteins are expected to be biomarkers for 
T2DM, rather than demonstrating causal pathways[80].

Additionally, coupling genomic data (i.e., GRS) with conventional phenotypical information (i.e., age, sex, body 
composition, medication use, and vital signs) is being useful for enhancing individual T2DM risk stratification and 
disease prediction[81,82]. Advances in next-generation sequencing technologies and the use of machine learning and 
other artificial intelligence methods became fundamental to analyze these T2DM-associated multiomics datasets.

CONCLUSION
Current evidence support the impact of genetic variation on the risk of developing blood glucose/insulin alterations and 
subsequent T2DM as well as its implication in affecting the lipid, inflammatory, and carbohydrate status in T2DM 
patients through interactions with dietary factors. These include SNPs and other structural variants mapped to metabol-
ically active genes such as TCF7L2, amylase 1, TAS2R4, PPARG, CDKAL1, KCNJ11, insulin-like growth factor 2 binding 
protein 2, proliferator-activated receptor-gamma coactivator-1alpha, BDNF, transient receptor potential vanilloid-1 
channel, HECT domain E3 ubiquitin protein ligase 4, MTNR1B, IRS1, GIPR, S100A9, PSMD3, KCNMB3, Caveolin-2, 
NOTCH2, zinc finger BED-type containing 3, GLP1R, FTO, melanocortin 4 receptor, SLC22A1/OCT1, APOE, DRD2/
ANKK1, APOA2, CETP, PPAR-γ, and ApoB, which have been analyzed using single and cumulative approaches. 
Moreover, some genetic polymorphisms have been identified as putative biomarkers of individual responses to energy-
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restricted nutritional prescriptions aimed to glucose control including those located in SCD, PPM1K, FTO, TCF7L2, GIPR, 
IRS1, DHCR7, PCSK7, ADRB3, BDNF, TNFA, UCP3, ADIPOQ, RETN, MTNR1B, APOA5, and FABP2 genes. Furthermore, 
some genotype-based dietary strategies have been developed for improving T2DM control in comparison to general 
lifestyle recommendations for all people. However, more research is needed in order to expand and confirm these 
findings in other populations less explored such as Latin Americans and Africans considering some sources of variability 
(i.e., allele frequency, quantitative trait locus, and gender influence) incorporating the assessment of the role of food 
bioactive compounds and micronutrients in prospective dietary interventions. In any case, the analysis of the genetic 
make-up may help to decipher new paradigms in the pathophysiology of T2DM as well as offer further opportunities to 
personalize the screening, prevention, diagnosis, management, and prognosis of T2DM.
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