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Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern 
with a considerable impact on human life, long-term health expenditures, and 
substantial health losses. In this context, the use of dietary polyphenols to prevent 
and manage T2DM is widely documented. These dietary compounds exert their 
beneficial effects through several actions, including the protection of pancreatic 
islet β-cell, the antioxidant capacities of these molecules, their effects on insulin 
secretion and actions, the regulation of intestinal microbiota, and their contri-
bution to ameliorate diabetic complications, particularly those of vascular origin. 
In the present review, we intend to highlight these multifaceted actions and the 
molecular mechanisms by which these plant-derived secondary metabolites exert 
their beneficial effects on type 2 diabetes patients.

Key Words: Polyphenols; Antioxidants; Oxidative stress; Type 2 diabetes mellitus; Health 
benefits

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.4239/wjd.v15.i2.154
mailto:arojasr@ucm.cl


González I et al. Polyphenols and T2DM

WJD https://www.wjgnet.com 155 February 15, 2024 Volume 15 Issue 2

Core Tip: At present, a compelling body of evidence suggests that dietary polyphenols may represent an important alternative 
source to the management of type 2 diabetes mellitus due to their multifaceted actions on glucose homeostasis as well as in 
attenuating many diabetes complications raised because of the hyperglycemic condition. Additionally, new data derived 
from either clinical trials or meta-analyses have started to figure out the usefulness of these bioactive compounds thus 
providing solid clinical shreds of evidence.

Citation: González I, Lindner C, Schneider I, Diaz E, Morales MA, Rojas A. Emerging and multifaceted potential contributions of 
polyphenols in the management of type 2 diabetes mellitus. World J Diabetes 2024; 15(2): 154-169
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/154.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.154

INTRODUCTION
Diabetes mellitus (DM) is a heterogeneous group of chronic metabolic disorders characterized by hyperglycemia 
resulting from defects of insulin action, insulin secretion, or both[1]. This metabolic disease is a global health issue, which 
has been increasing from time to time and it is now considered as one of the most important disorders worldwide. 
According to International Diabetes Federation, 10.5% of adults of the world population are currently living with diabetes 
and this alarming indicator is predicted to rise to 11.3 % (643 million people) by 2030 and to 12.2 % (783 million) by 2045
[2].

Noteworthy, a considerable proportion of the world's burden of diabetes is caused by type 2 DM (T2DM). In this 
regard, T2DM is recognized as a serious public health concern with a considerable impact on human life and health 
expenditures[3]. The onset and progression of T2DM are determined by a complex pathophysiological basis where 
oxidative stress is a crucial contributor not only involved in the disease development but also to diabetes complications, 
particularly those associated with both microvascular (retinopathy, nephropathy, and neuropathy) and macrovascular 
complications (ischemic heart disease, peripheral vascular disease, and cerebrovascular disease[4].

Acute or chronic hyperglycemia upregulates reactive oxygen species (ROS) production in the mitochondrial electron 
transfer chain. This excessive production of superoxide mediates the downregulation of glyceraldehyde-3-phosphate 
dehydrogenase levels, which in turn activates the major pro-oxidative pathways involved in the pathogenesis of diabetes 
complications, such as the activation of protein kinase C, the polyol and hexosamine pathways, the formation of 
advanced glycation end products productions (AGEs), as well as the increased expression of the receptor for AGEs[5-7]. 
On the other hand, antioxidant mechanisms are diminished in diabetic patients, which may further augment oxidative 
stress[8-10].

During the last few years, compelling shreds of evidence have shed light on the usefulness of dietary antioxidants as an 
alternative option in the treatment of T2DM, considering both the adverse effects conferred by conventional pharmaco-
logical treatments as well as the enormous economic burden that lifelong treatments place on patients[11].

In this regard, dietary polyphenols have emerged as an option to manage T2DM[12]. These compounds are one of the 
most abundant secondary plant metabolites, which are grouped into four major families, flavonoids, ligands, stilbenes, 
and phenolic acids, and are widely found in fruits, vegetables, nuts, cereals, and in many beverages such as tea, coffee, 
and red wines. These bioactive phytochemicals can reach and act at several cellular compartment levels including cellular 
membranes by binding to the bilayer interface or by interacting with the hydrophobic fatty acid tails[13].

A growing body of experimental and clinical evidence supports the protective role of these compounds on several 
human diseases through their antioxidant activity and diverse molecular mechanisms[14-18] (Figure 1). This review aims 
to highlight the roles of this large and heterogeneous family of secondary metabolites of plants containing phenol rings, 
on pancreatic islet β-cell functioning and promotion of insulin production and signaling, protection against micro-and 
microvascular complications, protection against the progression of T2DM-associated obesity, management of dyslip-
idemia and gut microbiome dysbiosis. In addition, the capacity of polyphenols to reduce both the formation of advanced 
glycation products and their pathologic consequences is also addressed.

LITERATURE SEARCH
The literature search was conducted using Medline/PubMed, Embase, Cochrane, and RCA, databases. Search terms 
included “type-2 diabetes mellitus”, “prediabetes”, “polyphenols”, “natural antioxidants”, “oxidative stress” and 
“abnormal glucose homeostasis”. Articles published between January 2013 to March 2023 and additional publications 
were retrieved by snowballing. Exclusion criteria included T1DM (autoimmune β-cell destruction), gestational DM, 
pancreatogenic diabetes, drug-induced diabetes, and the monogenic diabetes syndromes.

https://www.wjgnet.com/1948-9358/full/v15/i2/154.htm
https://dx.doi.org/10.4239/wjd.v15.i2.154
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Figure 1 Some polyphenols for which there is documented information about their beneficial properties in the management of the main 
alterations observed in type 2 diabetes mellitus.

Β-CELL DYSFUNCTION AND DEATH
Currently, both clinical and experimental data support that during the development of T2DM, there is not only a 
progressive deterioration in β-cell functioning but also a marked reduction of the β-cell mass in the pancreatic islets of 
Langerhans[19-21]. Many factors such as the glucotoxicity associated with the hyperglycemic state, the oxidative and 
endoplasmic reticulum stresses, as well as the lipotoxicity due to chronic exposure to saturated free fatty acids, are crucial 
elements in decreased β-cell functioning and, eventually in β cell death through apoptosis[19,22,23].

Hyperglycemia is a crucial factor in the onset of oxidative stress in T2DM and it even correlates with the progression of 
disease[24]. Additionally, β-cells are very susceptible to oxidative damage, because of their low antioxidant capacity[25,
26], and consequently, oxidative stress is a very important contributor to the impairment of β-cell functioning[23,27,28]. 
Furthermore, oxidative stress mediates the permeabilization of mitochondrial membranes, and consequently the release 
of cytochrome C and thus β-cell death by apoptosis[29].

Based on their antioxidant activities polyphenols are major regulators of oxidative stress and consequently the 
improvement of mitochondrial functions. At present, compelling pieces of evidence support that many metabolic 
disorders such as type 2 diabetes, are associated with impaired mitochondrial function such as diminished oxidative 
capacity and antioxidant defense, mainly due to the onset of an oxidative stress condition[30,31].

Oxidative stress condition is established by the imbalance between the production of ROS and antioxidant defense 
mechanisms, and where the detrimental ROS activities exceed the antioxidant capacities of the cell. Mitochondrial 
dysfunction is defined by several features including a diminished mitochondrial biogenesis, an altered membrane 
potential, a decrease in the mitochondrial number as well as by an altered activity of oxidative proteins due to the 
accumulation of ROS in cells and tissue[32,33].

Polyphenols can not only exert powerful antioxidant actions and thus protect against oxidative stress[34], they have 
additional capacities to modulate crucial pathways in mitochondrial functionality such as mitochondrial biogenesis, 
mitochondrial membrane potential, ATP synthesis, intra-mitochondrial oxidative status, and apoptosis cell death[35-38]. 
Cocoa catechins can also improve insulin secretion by increasing the expression of some genes involved in mitochondrial 
respiration[39].

Resveratrol is known for its remarkable activities in improving pancreatic β-cell function mainly by its effect on sirtuin 
1 (SIRT1), a master regulator for β-cell function[40]. Cinnamic acid derivatives can improve the insulin-secreting capacity 
of β-cells, by raising the levels of intracellular calcium[41]. Noteworthy, compelling pieces of evidence support that the 
hyperglycemia-associated overexpression of human amylin, also known as islet amyloid polypeptide, can form 
aggregates to favor amylin fibril formation, and these fibrils evoke the activation of caspases cascade, and thus leading to 
β-cell death by apoptosis[42,43]. Several polyphenols such as rosmarinic acid, ferulic acid, epigallocatechin gallate, and 
resveratrol, among many others, can interfere with the formation of fibrillar structures and thus avoid β-cell death[44,45].
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INSULIN RESISTANCE
Insulin receptor (IR) is a tyrosine kinase receptor, which is autophosphorylated upon insulin binding and it is expressed 
in all tissues. The major responders to IR engagement by insulin are the liver, skeletal muscle, and adipose tissue[46]. 
Upon insulin binding complex signaling is activated including several substrates such as insulin or insulin-like growth 
factor-1, IR, IR substrate (IRS)-1, and phosphatidylinositol-3 kinase (PI3K)/Akt or ERK kinases. The phosphorylation of 
IRS1 can recruit PI3K rendering Akt phosphorylated, which in turn can regulate crucial events such as the translocation 
of glucose transporter-4 (GLUT4) to the cell surface, promoting glycogen synthesis through inhibition of glycogen 
synthase kinase 3 activity, the induction of protein synthesis via activation of mammalian target of rapamycin and the 
inhibition of Forkhead transcription factors of the O class (FoxO) transcription factors[47,48].

The inactivation of Akt and activation of FoxO1, through the suppression of IRS1 and IRS2 in different organs 
following hyperinsulinemia, over-nutrition, and inflammation, represent crucial mechanisms for insulin resistance in 
humans[49,50]. Compelling shreds of evidence support that oxidative stress is an important contributor to insulin 
resistance in T2DM[51], and that the overproduction of mitochondrial H2O2[52,53], and the overactivation of NAPDPH 
oxidase, via angiotensin II/AT1 receptor can mediate skeletal muscle insulin resistance[54-56].

ROS are known to actively participate in several crucial physiological processes at the cellular level such as differen-
tiation, cellular signaling, and phosphorylation/dephosphorylation events among many others[57]. The existence of 
various endogenous antioxidant systems is responsible for maintaining ROS at the low levels required to contribute to 
cellular homeostasis[58]. However, the hyperglycemia condition, which is a hallmark of T2DM, is crucial in the 
acquisition of a dysfunctional state of these antioxidant systems, thus favoring the onset of the oxidative stress condition
[59,60]. Thus, this condition is a crucial element in the multifactorial etiology of insulin resistance. Oxidative stress 
impairs β-cell function, which markedly reduces not only insulin production but also its secretion into the circulation. 
Additionally, oxidative stress can reduce GLUT-4 gene expression and translocation to the membrane[61-63].

The c Jun-N-terminal kinases (JNKs) is major signal transducer driving the physio-logical response to several cellular 
stressors, including oxidative stress. Epigallocatechin gallate, the major green tea catechin can protect both the IR and IRS 
proteins from phosphorylation by JNKs, a crucial event in the onset of insulin resistance[63], as well as by reducing the 
expression of the negative regulator of IR protein tyrosine phosphatase 1B (PTP1B)[64].

Resveratrol, which is one of the main polyphenolic compounds of red wines, peanuts, and apples, is a potent activator 
of SIRT1, which is a potent intracellular inhibitor of oxidative stress, and thus attenuates insulin resistance and improves 
insulin signaling in the skeletal muscle cells[65,66]. Additionally, some polyphenols can also stimulate glucose uptake in 
both skeletal muscle and adipocytes by translocating GLUT4 to the plasma membrane through an adenosine 
monophosphate (AMP)-activated protein kinase (AMPK)-dependent pathway[67].

PTP1B is an intracellular enzyme responsible for the deactivation of the IR, resulting in insulin resistance in various 
tissues[68,69]. Hence, PTP1B has become an important target for controlling insulin resistance and T2DM. In this regard, 
many polyphenols have inhibitory activity on PTP1B as demonstrated either by screening platforms for detecting the 
inhibition activity or by Quantitative Structure-Activity Relationship analysis[70,71].

OBESITY
Obesity is the major driving factor of T2DM and it is characterized by chronic low-grade inflammation with permanently 
increased oxidative stress[72,73]. The onset of a chronic condition of oxidative stress in obesity is supported by different 
mechanisms implicated in the homeostasis of adipose tissue, which contributes to the development of pathological 
systemic consequences[74].

On one hand, those associated with increased ROS production such as the adipocytes-associated endoplasmic 
reticulum stress, a sustained increase of NOX activities, as well as the high level of post-prandial-associated ROS 
generation, and on the other, the altered antioxidant defenses observed in obese patients[75-78]. In addition to the 
antioxidant properties of polyphenols, they exert several beneficial effects on obesity far beyond their antioxidant 
capacity[79], such as the attenuation of obesity-linked inflammation[80-82], the beneficial regulation of several key 
obesity path-ways such as the modulation of food intake[81], the inhibition of pancreatic lipase[82,83], decreasing 
lipogenesis by inhibiting both fatty acid synthase activity and the activation of the AMP-AMPK[84,85], and by increasing 
thermogenesis and mitochondrial biogenesis[86].

Finally, some polyphenols have been reported to mediate the suppression of the conversion of preadipocytes into 
adipocytes, which can store an excessive lipid load. This polyphenols-mediated suppression of adipocyte differentiation 
occurs by the regulation of crucial factors such as the CCAAT/enhancer binding protein α, the nuclear receptor 
peroxisome proliferator-activated receptor γ 1 and 2, (PPARγ1, PPARγ2), and GLUT-4 in mature adipocytes[84,86-88].

DYSBIOSIS
Human gut microbiota is considered a complex microbial ecosystem composed of different microorganisms, including 
bacteria, archaea, viruses, fungi, and protists, which are involved in the regulation of many physiological processes and 
numerous diseases[89].
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Firmicutes and Bacteroidetes are the main phyla that compose the adult gut flora, regulating the homeostatic 
production of microbiota-induced metabolites such as butyrate, which have anti-inflammatory and antioxidative 
properties, and the production of lipopolysaccharide (LPS), which can promote systemic inflammation and insulin 
resistance through induction of metabolic endotoxemia[90,91].

Growing data raised from both clinical and experimental evidence shows that T2DM patients have an altered gut 
microbiota, where the Bacterioidetes/Firmicutes ratio of the intestinal flora of diabetic patients significantly differs from 
non-T2DM adults[92,93]. A crucial consequence of the quantitative change in gut microbiota composition in T2DM 
patients is the impairment of the expression of gut-microbiota-related metabolites, which have crucial consequences in 
the metabolic regulation of glucose homeostasis, and insulin sensitivity[93].

Short-chain fatty acids (SCFAs) are considered one of the main microbial metabolites, that have crucial effects on the 
expression of glucagon-like peptide-1 (GLP-1) and GLP-2 via stimulating G-protein-coupled receptors, thus contributing 
to improving glucose homeostasis and amplification of insulin sensitivity[94].

Under this dysbiosis condition that affects T2DM patients, structural changes in the intestinal epithelium barrier allow 
LPS translocation into the bloodstream, resulting in increased plasmatic levels of LPS, which in consequence, activates 
Toll-like receptor-4 leading to the production of pro-inflammatory mediators, and sustaining low-grade systemic inflam-
mation[95].

This condition known as metabolic endotoxemia induces a significant decrease in bacterial populations which are 
crucial producers of beneficial gut-derived metabolites such as SCFA, thus supporting the impairment of glucose 
metabolism and insulin resistance[96,97]. In addition, different studies have demonstrated that specific gut microbiota 
dysbiosis in mice models of T2DM, induces GLP-1 resistance and consequently, the impairment of GLP1-induced insulin 
secretion, which is crucial in the acquisition of the insulin resistance condition in diabetic individuals[98].

At present, polyphenols have emerged as novel compounds that could interact with microbiota and exert strong 
regulatory effects on intestinal bacteria, with subsequent regulation of gut microbiota and its derivate metabolites[99]. 
These interactions between polyphenols and gut microbiota can positively affect crucial metabolic markers of T2DM, 
improving systemic inflammation and insulin sensitivity[100,101].

Growing evidence reveals that distinct types of polyphenolic compounds, such as genistein, curcumin, and grifolic acid 
can increase GLP-1 secretion from L-cells via different mechanisms[102-105]. Besides their effect to directly stimulate 
GLP-1 secretion, some polyphenols, particularly luteolin, apigenin, and resveratrol may also naturally suppress DPP-IV 
activity, which potentially increases the half-life of GLP-1, thus stimulating glucose-dependent insulin secretion and 
regulating glycemia[106,107].

Different studies demonstrate that different doses of oral intake of polyphenols including catechins, and (-)-epigalloc-
atechin-3-gallate, can also favor the increase of different microbial populations of SCFA-producing agents in fecal 
samples of human patients, thus improving the insulin sensitivity and glucose homeostasis of individuals[108,109].

In addition, other phenolic compounds including chlorogenic and ferulic acid can also act as antidiabetic agents, 
through significant upregulating of the expression of GLUT4 and PPAR-γ, thus favoring the uptake of 2-deoxyglucose in 
time- and dose-dependent manner, and improving the pathogenesis of T2DM progression[110-112]. Branched-chain 
amino acids (BCAAs) include leucine, isoleucine, and valine, which cannot be synthesized de novo by mammalians and 
consequently, they are acquired either from the diet or gut microbiota. Elevated plasma circulating levels of BCAAs and 
their ketoacids are associated with insulin resistance in obesity and T2DM[113-117].

Conversely, experimental results have demonstrated that lowering BCAA and branched-chain alpha-keto acid levels is 
associated with improved insulin sensitivity and reduced fat accumulation in mouse models[118]. Emerging studies have 
suggested that polyphenol administration may accelerate the catabolism of BCAA, inducing a lowering of circulating 
BCAA levels, thus improving glucose homeostasis and insulin sensitivity[119].

Additionally, some evidence also supports that intestinal catabolites of polyphenolic compounds by the action of the 
gut microbiota could act as a strong antiglycative agent[120,121]. In this sense, dietary polyphenolic intake may have a 
significant positive impact on the generation of glycation products and diabetes-related complications[122,123]. Taken 
together, those findings suggest that a polyphenols-enriched diet can strongly modulate the dysbiotic changes induced by 
hyperglycemia, improving the regulation of metabolites that mediate glucose homeostasis and insulin sensitivity in 
T2DM patients.

VASCULAR COMPLICATIONS
Vascular complications in T2DM are those long-term complications that affect the blood vessel network, and are 
responsible for most of the morbidity, and required hospitalization in these patients[124]. The vascular complications of 
diabetes are classified as either microvascular (retinopathy, nephropathy, and neuropathy) or macrovascular, which 
includes coronary artery, peripheral, and cerebral vascular diseases[125].

At present, a large body of compelling evidence supports that oxidative stress has a key role in the pathogenesis of 
vascular complications in diabetes[126-128]. As a major regulator of vascular homeostasis, the vascular endothelial cells 
play crucial roles by controlling vascular tone through a balance between vasodilation and vasoconstriction, fibrinolysis, 
platelet adhesion and aggregation, leukocyte activation, adhesion, and transmigration, smooth muscle cell proliferation, 
and modulating the growth of blood vessels[129,130].

The onset of an imbalanced vasodilation and vasoconstriction, elevated ROS, and proinflammatory factors, as well as a 
reduced nitric oxide (NO) bioavailability, are crucial elements in the onset of the systemic disorder known as endothelial 
dysfunction[131]. NO is produced in the endothelium by the endothelial NO synthase (eNOS), a Ca2+-calmodulin-
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dependent enzyme that can convert the L-arginine to NO plus citrulline. By activation of soluble guanylyl cyclase and 
modulation of cation channels, NO promotes vascular smooth muscle cells relaxation and thus regulates vascular tone. 
Additionally, NO is a crucial mediator in controlling platelet activation and aggregation[132].

When ROS bioavailability overtakes the antioxidant defenses due to the onset of oxidative stress, superoxide (O2-) 
rapidly inactivates NO and forms peroxynitrite (ONOO-). It is known that peroxynitrite inactivates prostacyclin synthase 
thus favoring the deterioration of vascular health due to the vasodilatory, growth-inhibiting, antithrombotic, and antiad-
hesive effects of prostacyclin. Additionally, peroxynitrite increases the release of prostaglandin H2 and thromboxane A2, 
which are potent vasoconstrictors, prothrombotic, growth- and adhesion-promoting agents[133-135]. A growing body of 
data supports the beneficial roles of polyphenols in protecting against endothelial dysfunction induced by oxidative 
stimuli[136-138].

Of note, some polyphenols, as reported for resveratrol and its derivatives show dual protecting activities, either by the 
expression of Nox4, a ROS-generating enzyme highly expressed in the endothelium, and by enhancing the expression of 
two crucial members of the antioxidant defense of the vascular wall, such as glutathione peroxidase 1 and superoxide 
dismutase 1[139]. Moreover, polyphenols seem to have peroxynitrite-scavenging activity[140]. Furthermore, different 
reports have demonstrated that some polyphenols such as resveratrol and others derived from strawberry and grape skin 
and seeds, can promote the phosphorylation of eNOS at Ser1177 by PI3K/Akt pathway, which is essential for NO 
production[141-143]. In addition, resveratrol is reported to increase both endothelial eNOS mRNA and protein levels[144-
146]. This effect seems to be associated with the effects of resveratrol on SIRT1 and FOXO factors[147].

POLYPHENOLS AND ADVANCED GLYCATION
Advanced glycation is one of the major pathways involved in the onset and progression of T2DM complications, partic-
ularly those associated with the cardiovascular system[148]. Since the pioneering works of the Vlassara group[149,150], a 
huge and compelling body of evidence has demonstrated the paramount importance of AGEs in diabetes complications, 
due to the hyperglycemic condition[151,152].

The formation of AGEs involves the reaction of reducing sugars, such as glucose, with the terminal amino groups of 
proteins, nucleic acids, or phospholipids to initially form unstable Schiff bases, which evolve towards the formation of 
more stable compounds called Amadori products, which by a series of complex reaction yield the AGEs. Degradation of 
both Schiff bases and Amadori products rise to highly reactive short-chain carbonyl compounds, called α-dicarbonyls
[153].

These highly reactive compounds can also be formed by hexose autoxidation, as well as by-products of either the 
glycolytic or polyol pathways and from lipid oxidation. Dicarbolyls can then react non-enzymatically with lysine or 
arginine residues to produce AGEs[154,155].

The AGEs exert their deleterious effects, either directly by cross-linking of proteins, thus disrupting protein functioning 
and turn-over[156,157], or indirectly by binding to a signaling receptor for AGE-modified proteins, known as the receptor 
of advanced glycation end-products (RAGE)[158,159]. Noteworthy, oxidative stress is an important contributor to the 
formation of endogenous eAGEs, by leading to the increased formation of endogenous reactive aldehydes such as 
glyoxal, methylglyoxal (MG), and thus favoring the formation of AGEs[160]. Additionally, when AGEs activate RAGE, 
NADPH oxidase is activated and thus increases ROS levels[161].

At present, compelling evidence derived from experimental and clinical data studies supports the role of different 
polyphenols as very active inhibitors of the deleterious effects of AGEs, through several mechanisms[162,163]. By their 
antioxidant activities, polyphenols are potent antiglycation compounds and antiglycation activity strongly correlates with 
the free radical scavenging activity and antiglycation activity[120], as reported catechins, proanthocyanidins, 
anthocyanin, stilbenoids, and flavonols[164,165]. Additionally, polyphenols have other properties, which are essential to 
reduce the formation of AGEs, such as the chelation of transition metal, as reported for chlorogenic and caffeic acids[166,
167].

The capacity of trapping dicarbonyl compounds is another crucial activity reported for some polyphenols considering 
that dicarbonyls are one of the main precursors of AGEs[154], epigallocatechin-3-gallate, resveratrol, catechin, and 
epicatechin as well as different procyanidins can efficiently trap both glyoxal and MG[162,168,169]. Dicarbonyls are 
detoxified by the glyoxalase system a highly specific enzyme responsible for the detoxification of dicarbonyl species[170]. 
Some polyphenols can even stimulate this detoxifying system[171]. Finally, several reports have demonstrated that 
polyphenols can actively reduce the undesired consequences of the activation of RAGE, either by interfering with 
receptor signaling as well as by reducing its expression[172-174].

LIPID METABOLISM
T2DM has been widely associated with an increased risk for atherosclerotic cardiovascular disease, which is closely 
related to raised plasmatic low-density lipoprotein (LDL) levels with important oxidative changes[175], which support 
diabetic hyperlipidemia and accelerated atherosclerosis, increasing the risk of macrovascular complication and 
cardiovascular morbidity. Noteworthy, LDL is a highly sensitive molecule to hyperglycemia-induced hyperglycemia 
damage and modification, making it highly pathogenic and atherogenic[176,177]. Under hyperglycemic conditions, 
transition metals in the presence of oxygen catalyze the autoxidation of glucose or lipid peroxidation[178]. In addition, 
excess ROS formation in T2DM patients fuels vascular inflammation and mediates oxidized LDL (ox-LDL) formation, 
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Figure 2 Polyphenols have multifaceted actions to support their use in the management of type 2 diabetes mellitus. Due to their positive 
actions on multiple physiopathological mechanisms which are crucial not only in the onset of type 2 diabetes mellitus (T2DM) by protecting and supporting many 
functions of β-cells and insulin signaling, but also in those associated with common T2DM complications by improving dyslipidemia profiles, reducing systemic 
inflammation, dampening the deleterious consequences of the high rate formation of advanced glycation end products production, reducing oxidative stress, as well 
as by supporting vascular functionality. AGE: Advanced glycation end products production; GLP-1: Glucagon-like peptide-1; GLUT-4: Glucose transporter 4; BCAA: 
Branched-chain amino acid; DM: Diabetes mellitus.

which is considered a hallmark feature of atherosclerotic development due to the crucial induction of atherosclerotic 
plaque progression and destabilization in T2DM patients[179-181].

Besides the different pathways that conflux in activate NADPH oxidase and subsequent ROS production in T2DM 
patients, the increased expression of ox-LDL also stimulates NADPH oxidase, thus contributing to increment ROS 
formation and oxidative stress in T2DM patients[182]. In addition, hyperglycemia-mediated mitochondrial ROS 
production can also promote the nuclear factor kappa-beta-mediated entry of monocytes in atherosclerotic lesions, 
fueling the inflammation and progression of unstable plaques, and increasing the risk of macrovascular complication in 
T2DM patients[183], thus, sustaining a vicious cycle that perpetuating ROS production and ox-LDL formation, 
contributes to the progression of atherosclerosis unstable plaques on DM patients.

In recent years, polyphenols have been postulated to lower lipids through different mechanisms that imply beneficial 
effects on cardiovascular diseases of T2DM patients[184]. Based on their antioxidant effects, different studies have shown 
that many polyphenols including resveratrol, apigenin, and some synthetic polyphenol-like molecules can inhibit 
NAPDH oxidase activity, thus decreasing vascular oxidation and atherogenesis in nondiabetic apolipoprotein (apo) 
E–deficient mice[185], as well as improve hyperlipidemia and atherosclerosis in diabetic individuals[186].

Resveratrol based on its antioxidant activities can influence lipid metabolism and is considered an important protective 
compound against LDL oxidation and atherosclerosis progression[187]. In this sense, the free radical scavenging activity 
of resveratrol has been investigated, revealing that this polyphenol compound can interact with free radicals to form 
relatively stable free radicals and non-radicals, resulting in inhibition of lipid peroxidation by Fenton reaction products
[188,189], which may decrease the progression of accelerated atherosclerosis through inhibition of oxidation in T2DM 
patients[190,191].

More recently, it was demonstrated that resveratrol can upregulate eNOS expression by increasing cAMP levels, and 
decreasing ox-LDL-induced oxidative stress in human endothelial cells, leading to a significant improvement of 
endothelial dysfunction and atherosclerosis in mice[192]. Similar results have been demonstrated for quercetin, an 
important flavonoid, which has demonstrated protective effects in diabetic individuals through significantly reversed 
dyslipidemia and hepatic steatosis in diabetic mice, including lowered liver cholesterol and triglycerides contents[193,
194]. Taken together, these findings suggest that dietary polyphenols may be crucial in the regulation of dysregulated 
lipid metabolism through the modulation of antioxidative mechanisms in T2DM patients.

CONCLUSION
A compelling body of evidence suggests that dietary polyphenols may represent an important alternative to the 
management of T2DM due to their multifaceted actions on glucose homeostasis as well as by attenuating many diabetes 
complications raised because of the hyperglycemic condition (Figure 2). Most of the pieces of evidence derived from 
animals and in vitro studies support these issues. However, new emerging data derived from either clinical trials or meta-
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Table 1 Clinical trials and meta-analysis studies in the last five years supporting the roles of dietary polyphenols in the management of 
type 2 diabetes mellitus

Type of study Beneficial effects Ref.

Randomized clinical trial Increased antioxidant capacity and antioxidant gap in T2DM patients García-Martínez et al[195], 
2023

Double-masked, cross-over, dietary 
intervention trial

Improvement of endothelial function in both healthy individuals and T2DM 
patients

Bapir et al[196], 2022

Meta-analysis Improving HbA1c, and insulin levels in T2DM García-Martínez et al[197], 
2021

Randomized, clinical trial Lowering fasting blood glucose levels in T2DM Sirvent et al[198], 2022

Systemic review and meta-analysis Reduction of systolic and diastolic blood pressure and fasting blood glucose levels 
in T2DM patients

Gu et al[199], 2022

Systematic review and meta-analysis Reduction of fasting blood glucose and HbA1c levels Delpino et al[200], 2021

Randomized clinical trial Improvement of glycemic control by reducing insulin resistance Mahjabeen et al[201], 2022

Randomized clinical trial Lowering effects on inflammatory status and oxidative stress biomarkers in 
diabetic patients

Grabež et al[202], 2022

Randomized clinical trial Improvement of glycaemia markers Gómez-Martínez et al[203], 
2021

Systematic review and meta-analysis Improvement of glycemic control and cardiometabolic parameters in patients with 
T2DM

Abdelhaleem et al[68], 2022

Meta-analysis Reduction of insulin resistance, HbA1c levels and fasting blood glucose Delpino and Figueiredo
[204], 2022

Meta-analysis Improvement of glucose control and lowering blood pressure Nyambuya et al[205], 2020

Randomized clinical trial Improvement of postprandial dyslipidemia and inflammation following a high-fat 
dietary challenge in adults with T2D

Davis et al[206], 2020

Meta-analysis Significant reduction in CRP level in patients with T2D Hosseini et al[194], 2021 

Meta-analysis Combined effects with anti-diabetic medication to lowering serum glucose levels in 
individuals with T2D

Raimundo et al[207], 2020

Randomized clinical trial Improvement of glycemic control and lipid profile Hoseini et al[208], 2019

Meta-analysis Lowering fasting blood glucose, HbA1c, and HOMA-IR Huang et al[209], 2019

Randomized clinical trial Improvement of lipid profile and lowering serum biomarkers of inflammation Adibian et al[210], 2019

Randomized clinical trial Lowering postprandial hyperglycemia and serum biomarkers of inflammation Schell et al[211], 2019

Randomized clinical trial Lowering fasting blood glucose and improvement of lipid profile Mollace et al[212], 2019

Systematic review and meta-analysis Lowering the risk of T2D Rienks et al[213], 2018

Randomized clinical trial Reduction of plasma protein carbonyl content and increasing plasma total 
antioxidant capacity

Seyyedebrahimi et al[214], 
2018

T2D: Type 2 diabetes; HbA1c: Glycosylated hemoglobin; HOMA-IR: Homeostasis Model Assessment of Insulin Resistance; CRP: C-reactive protein; T2DM: 
Type 2 diabetes mellitus.

analyses have started to figure out the usefulness of these bioactive compounds, and thus providing solid clinical shreds 
of evidence (Table 1). However, much more research is needed on some topics that may be crucial to explain the current 
controversial results in some clinical studies. In this regard, a full understanding of the metabolisms and bioavailability, 
the assessment of dietary intake by measuring urine or blood polyphenol metabolites, duration of exposure, delivery 
systems that guarantee high stability, as well as more efforts to understand the structure-activity relationship of 
polyphenols, are crucial elements to be considered in the design and execution of more double-blinded clinical trials.
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