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Abstract
The vascular endothelium is a critical determinant of dia- 
betes-associated vascular complications, and improving 
endothelial function is an important target for therapy. 
Diabetes mellitus contributes to endothelial cell injury 
and dysfunction. Endothelial progenitor cells (EPCs) play 
a critical role in maintaining endothelial function and mi- 
ght affect the progression of vascular disease. EPCs are 
essential to blood vessel formation, can differentiate 
into mature endothelial cells, and promote the repair of 
damaged endothelium. In diabetes, the circulating EPC  
count is low and their functionality is impaired. The me- 
chanisms that underlie this reduced count and impaired 
functionality are poorly understood. Knowledge of the 
status of EPCs is critical for assessing the health of the 
vascular system, and interventions that increase the 
number of EPCs and restore their angiogenic activity in  
diabetes may prove to be particularly beneficial. The pre- 

sent review outlines current thinking on EPCs’ therapeu- 
tic potential in endothelial dysfunction in diabetes, as well  
as evidence-based perspectives regarding their use for 
vascular regenerative medicine. 
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VASCULAR Function and 
DYSFUNCTION IN DIABETES
Diabetes is a metabolic disorder which is characterized by 
hyperglycemia and glucose intolerance due to insulin defi- 
ciency, impaired effectiveness of  insulin action or, both.

Type 1 diabetes mellitus is caused by cellular-mediated 
autoimmune destruction of  pancreatic islet beta cells, lea- 
ding to loss of  insulin production. It usually starts during 
childhood, but can occur at all ages. Type 2 diabetes melli- 
tus accounts for 90%-95% of  all diabetes and is more com- 
monly found in people older than 45 who are overweight. 
There is strong evidence that genetics plays an important 
role as well. However, the prevalence of  type 2 diabetes 
mellitus is increasing in children and young adults, mainly 
because of  the higher rate of  obesity in this population. 
Obesity, insulin resistance associated with diabetes, high 
cholesterol and high blood pressure form the most impor- 
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tant risk factors for cardiovascular disease (CVD). CVD 
is the major cause of  death in people with type 2 diabetes 
mellitus[1].

The vascular manifestations associated with diabetes 
mellitus result from the dysfunction of  several vascular 
physiological components, mainly involving the endothe- 
lium, vascular smooth muscle and platelets[2]. Over the last  
two decades it has become evident that the endothelium is 
not an inert, single-cell lining covering the internal surface  
of  blood vessels, but in fact plays a crucial role in regula- 
ting vascular tone and structure. Importantly, a healthy en- 
dothelium inhibits platelet and leukocyte adhesion to the 
vascular surface and maintains a balance of  prothrombic 
activity[3]. Hyperglycemia is the major causal factor in the  
development of  endothelial dysfunction in diabetes melli- 
tus. Although the mechanisms underlying this phenome- 
non are likely to be multifactorial, insulin resistance has  
been identified in several diseases that increase cardiovas- 
cular risk and mortality, such as diabetes, obesity, hyperten- 
sion, metabolic syndrome, and heart failure[4].

In health, endothelial cell injury is mitigated by endo
genous reparative processes. In diabetes sufferers, the im- 
balance in repair and injury results in micro-vascular chan- 
ges, including apoptosis of  micro-vascular cells, ultimately 
leading to diabetes-related complications.

Dysfunction of  the endothelium in diabetes mellitus is 
characterized by changes in proliferation, barrier function, 
adhesion of  other circulating cells, and sensitivity to apop- 
tosis. Furthermore, it is suggested that diabetes mellitus 
modifies the angiogenic and synthetic properties of  endo- 
thelial cells[5].

A variety of  markers indicates endothelial dysfunction 
in diabetes mellitus, including poor EC-dependent vasodi
lation, increased blood levels of  the von Willebrand factor  
(vWF), thrombomodulin, selectin, plasminogen activator  
inhibitor-1 (PAI-1), type Ⅳ collagen and tissue plasmino- 
gen activator (t-PA)[6]. Endothelial dysfunction is an early  
manifestation of  vascular disease in type 2 diabetes patients  
but late in the course of  those with type 1 diabetes[7]. Fur- 
thermore, studies have shown that the levels of  vascular  
cell adhesion molecule 1 (VCAM-1) were more markedly 
elevated in type 1 diabetes patients with diabetic retinopa- 
thy, than in those patients with micro- or macroalbumi- 
nuria, whereas no difference in inter-cellular adhesion 
molecule 1 (ICAM-1) and endothelial-leukocyte adhesion 
molecule 1 (ELAM-1) levels was apparent in diabetes 
patients without diabetic retinopathy[8].

The loss of  the endothelium modulator role may be a  
critical and initiating factor in the development of  diabetic 
vascular disease. Endothelial dysfunction plays a key role 
in the pathogenesis of  diabetic vascular disease. The endo- 
thelium controls the tone of  underlying vascular smooth 
muscle through the production of  vasodilator mediators. 
The endothelium-derived relaxing factors (EDRF) com- 
prise nitric oxide (NO), prostacyclin, and a still-elusive 
endothelium-derived hyperpolarizing factor (EDHF). Im- 
paired endothelium-dependent vasodilation has been de- 
monstrated in various vascular beds of  different animal 

models of  diabetes, and in humans with type 1 and 2 dia- 
betes[9-12]. Several other mechanisms of  endothelial dysfun- 
ction have been reported, including impaired signal trans- 
duction or substrate availability, impaired release of  EDRF,  
increased destruction of  EDRF, enhanced release of  endo- 
thelium-derived constricting factors, and decreased sensi- 
tivity of  the vascular smooth muscle to EDRF. The prin- 
cipal mediators of  hyperglycaemia-induced endothelial 
dysfunction may be activation of  the protein kinase C, in- 
creased activity of  the polyol pathway, and non-enzymatic 
glycation[13]. It is also known that hyperglycemia-induced 
oxidative stress plays a role in the development of  vascular  
dysfunction[1]. In general, diabetic microvascular compli- 
cations are typically associated with dysregulation of  vas- 
cular remodeling and vascular growth with decreased res- 
ponsiveness to ischemic/hypoxic stimuli and impaired or 
abnormal neovascularization[14].

Lack of  endothelial regeneration and impaired angio- 
genesis contribute to the progression of  diabetic micro-  
and macrovascular complications. Formation of  stable vas- 
culature in response to tissue injury is an essential event  
for the restoration of  blood flow and the repair of  affe- 
cted tissue areas. Currently, clinical management of  diabetic  
complications relies exclusively on pharmacological thera- 
peutics that, in most cases, minimally affect the endothelial 
repair or regeneration, and, therefore these treatments have  
a modest influence on end organ dysfunction. Hence there  
is a need for therapeutic interventions that can accelerate 
the repair ofdysfunctional endothelium in the end organ, 
and restore blood flow, resulting in functional tissue gene- 
ration. A promising novel therapeutic option for the repla- 
cement of  damaged endothelial cells, i.e. re-endothelia- 
lization, as well as for the neovascularization of  ischemic 
tissues, is the use of  progenitor cells. In vascular biology, 
progenitor cells were first identified by Isner and Asahara 
in 1997, and they are known as endothelial progenitor cells  
(EPCs), able to initiate neovascularization[15].

EPCS: A BIOMARKER OF VASCULAR 
DYSFUNCTION IN DIABETES
The discovery of  EPCs in human peripheral blood has 
advanced the field of  cell-based therapeutics for many 
pathological conditions. It is known that EPCs could be 
released from bone marrow, fat tissue, vessel walls, espe- 
cially adventitia, and possibly also from the spleen, the  
liver, and the intestine, into the blood, where they express 
CD133 at the early stage, then CD34/Flk-1, and also VE- 
GFR2[16]. Experimental studies have shown that EPCs 
can be isolated from peripheral, umbilical cord, and bone  
marrow blood, and identified by specific markers, using 
flow cytometry. In most published studies, the amounts of   
circulating EPCs are determined by a culture[17]. EPCs  
are defined as fibronectin-adherent peripheral blood-deri- 
ved cells uptaking acetilated low-density lipoprotein (LDL)  
and binding Ulex-selectin in culture, and then further  
characterized by the expression of  surface markers. Pei- 
chev et al, showed that circulating CD34+CD133+KDR+ 
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cells give rise to endothelial cells in vitro, and thus func- 
tionally correspond to the definition of  EPCs. Therefore- 
three-fluorescence analysis of  this cell subset may be 
another simple and elegant way to unambiguously identify 
and quantify circulating EPCs without culturing them[18]. 
At present there is no general agreement on methods for 
defining EPCs, and different studies have used different 
ways of  identification and isolation.

It has been indicated that a strong correlation between 
cardiovascular risk factors and EPC number and function 
exists[19]. Diabetes mellitus has also been shown to adver- 
sely affect EPCs’ number and function[20,21], and it has been  
suggested that a reduction in the number of  EPCs might 
be useful as a surrogate marker of  vascular dysfunction in  
diabetes[22]. As for the function of  EPCs in diabetes, it has  
been shown that EPCs have decreased migratory ability,  
reduced proliferative capacity, and an altered cytokine/
growth factor secretory profile. Changes in the function  
of  EPCs decreases their repair mechanisms[14]. Conse- 
quently, the idea of  using EPCs as therapeutic agents has 
grown in popularity.Successful exploitation of  EPCs is a 
complex, multi-step process that includes mobilization, 
homing to specific sites, adhesion, further differentiation, 
and functional integration[22].

The first experimental studies for using EPCs as bio- 
markers of  vascular dysfunction in diabetes were done in 
animal models. A possible role for EPCs in diabetic vas- 
cular disease was first investigated in mice. Infusion of  
human CD34-positive leukocytes, as an EPC-enriched po- 
pulation, was able to accelerate blood flow restoration in 
diabetic nude mice with experimental hind limb ischemia, 
but did not have this effect in non-diabetic animals[23]. The 
reason for the different response of  diabetic and non-
diabetic mice to the administration of  EPCs was not clear, 
but it could be due to the fact that blood flow restoration 
in non-diabetic animals was largely provided by physio- 
logical ischemia-induced neovascularization, which is ham- 
pered in diabetic animals. It is therefore possible that exo- 
genous cells have beneficial effects only in diabetic animals  
who have either a reduced level or compromised EPC fun- 
ction. Indeed, reduced angiogenic potential of  EPCs has 
been demonstrated in diabetic animals[24].

In type 1 and type 2 diabetic patients, the reduction 
in circulating EPCs and the functional impairment of  
cultured EPCs has been reported. Tepper et al, showed 
that peripheral blood mononuclear cells (PBMC)-derived 
EPCs isolated from type 2 diabetic patients displayed a 
proliferation rate in culture decreased to control subjects, 
a weaker adherence to activated human umbilical vein 
endothelial cells (HUVEC), and a reduced incorporation 
into vascular structures in vitro[20]. Loomans et al, reported 
almost identical results in type 1 diabetic patients[21]. 

The rate of  EPC proliferation from plated PBMCs in 
diabetic patients was inversely correlated with the levels  
of  glycated hemoglobin, suggesting a possible relation be- 
tween glucose control and EPC function. Poor adhesion 
of  EPCs to HUVECs demonstrated altered cell-to-cell  
interactions, which could indicate that EPCs are recruited 

less avidly in vivo at sites of  ischemia, as well that re-endo- 
thelization by means of  bone-marrow derived cells is less 
likely to take place in the presence of  EPC dysfunction. 
Moreover, Lambiase et al., have shown that poor coronary 
collateral development (typical for diabetes), may be 
related to low levels of  circulating EPCs[25]. 

THE MECHANISMS GOVERNING EPCs’ 
ROLE IN DIABETES
Mechanisms underlying the reduction of  EPCs in diabetes  
are largely unknown. Weak bone marrow mobilization, im- 
paired peripheral differentiation, and short survival in peri- 
pheral\blood are all candidates. Several mobilizing factors, 
such as granulocyte colony-stimulating factor (G-CSF), 
stromal cell derived factor-1 (SDF-1), vascular endothelial 
growth factor (VEGF), and erythropoietin (Epo) via AKT 
protein kinase pathway activation and endothelial nitric 
oxide synthase (eNOS), were demonstrated to mediate 
EPCs’ mobilization, proliferation, and migration.

It was revealed that myocardial infarct size in the rat is 
increased in hyperglycemic conditions, and is associated 
with a reduced expression of  the hypoxia-inducible factors 
1 (HIF-1) gene[26]. Chemokine (C-X-C motif) ligand 12 
(CXCL12), also known as SDF-1, and its receptor C-X-C 
chemokine receptor type 4 (CXCR4) both play a critical 
role in regulating hematopoietic cell trafficking[27]. In non- 
obese diabetic (NOD) mice, the onset of  diabetes is signi- 
ficantly delayed by reducing the level of  CXCL12, either 
by antibody-mediated neutralization or G-CSF-induced 
suppression of  CXCL12 transcription[28,29]. Despite these 
initial observations, however, how chemokine CXCL12 
affects the development of  type 1 diabetes has not been 
fully investigated. Bruhl et al, revealed a dose-dependent 
relation between levels of  p21Cip1, that controls cell cycle 
progression and apoptosis in mature endothelial cells, and 
levels of  circulating EPCs in double and single p12Cip1 
knockout mice[30]. In rats with streptozotocin-induced dia- 
betes, circulating EPC levels were reduced, compared to 
controls and associated with uncoupled eNOS in bone 
marrow[31].

In particular, it was found that the expression of  angio- 
genic factors VEGF and HIF-1 is reduced in the hearts 
of  diabetic patients during acute coronary syndromes in 
comparison with control subjects[32]. Moreover, impaired 
cell-to-cell interactions of  EPCs cultured from diabetic 
subjects could reflect alterations in the so-called “stem 
cell niche” that hampers cytokine-induced mobilization 
of  stem cells[33]. There is much data supporting the theory 
that EPCs might decrease because of  increased apoptosis. 
Also, another study shows that EPCs are better protected 
against oxidative stress than are mature endothelial cells, 
and therefore it seems unlikely that the decrease in number 
and dysfunction of  EPCs is mediated by increased oxi- 
dative stress[34]. Furthermore, EPCs dysfunction in type 2 
diabetes patients was associated with oxidative stress due 
to excessive generation of  reactive oxygen species (ROS). 
It was shown that prolonged exposure of  EPCs to high 
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glucose concentrations in vitro increased superoxide anion 
production, and reduced NO bioavailability[35]. Generation 
of  superoxide anions appears to take place by several pro- 
cesses including glucose auto-oxidation, and increased pro- 
tein kinase C (PKC) and nicotinamide adenine dinucleotide  
phosphate-oxidase (NADPH oxidase) activity[36]. Moreover, 
in diabetic patients, the presence of  advanced glycation 
end-products (AGEs) adducts on basement membrane 
and compromises repair by EPCs with implications for 
vaso-degeneration during the micro-vasculopathy[37].

NOVEL INSIGHTS INTO THE POTENTIAL 
THERAPEUTIC USEFULNESS OF EPCS
EPCs have recently generated considerable attention as 
potential novel diagnostic/prognostic biomarkers for 
vascular integrity, and therapeutic clinical approaches 
using these cells are ongoing[38]. There is evidence that 
some drugs that positively affect vascular function in 
diabetic patients, could also improve the function and 
number of  circulating EPCs. Thus, it appears that the 
vasculo-protective effect of  these compounds may partly 
be due to their action on EPCs.

Ohshima et al, demonstrated that antioxidant therapy 
with superoxide dismutase (SOD) in diabetic mice reduced  
oxidative stress, and increased EPC count and their poten- 
tial to differentiate into endothelial cells[39]. In addition, a  
new inhibitor of  CXCR4, AMD3100, was found to acce- 
lerate blood flow restoration to ischemic tissue in diabetic 
mice[40]. Also, the treatment with AMD3100 in non-obese 
diabetic mice abolished T-cell accumulation in the bone  
marrow and simultaneously inhibited disease develop- 
ment[41].

Notably, it was shown that the angiotensin-converting 
enzyme (ACE) inhibitors such as ramipril[42], enalapril[28] 
and angiotensin Ⅱ (AT Ⅱ) inhibitors, like valsartan[43] in-
creased EPC levels in patients, probably interfering with 
the CD26/dipeptidylpeptidase Ⅳ system. Other studies 
suggested that either the phosphatidylinositol 3-kinase/
Akt/endothelial nitric oxide synthase/NO (PI3K/Akt/
eNOS/NO) signaling pathway or the interaction between 
hyperglycemia and hyperlipidemia in diabetic patients who  
have vascular diseases, are potential therapeutic targets for 
abolishing the impaired function of  EPCs[44]. Neutraliza-
tion of  the p66ShcAgene, which regulates the apoptotic re-
sponse to oxidative stress, prevented high glucose-induced  
EPC impairment in vitro [45]. The existence of  molecules act-
ing on EPCs can be used to positively condition cultured  
EPCs before therapeutic transplantation. Thus, because it  
is known that chemokine SDF-1α is able to mobilize 
EPCs, and because EPCs are known to have receptors for 
SDF-1α, it was demonstrated that SDF-1α - primed EPCs 
exhibit increased adhesion to HUVEC, resulting in more 
efficient incorporation of  EPCs into sites of  neovascular-
ization[46]. Also, it has been shown that platelets promote 
the homing and differentiation of  EPCs at sites of  vascu-
lar injury[47]. Furthermore, it was hypothesized that circula- 
ting microparticles (MPs) are able to program stem/ pro-

genitor cells to repair tissue injury. In particular, it was 
speculated that MPs of  endothelial origin may operate to 
induce differentiation of  bone marrow-derived progenitor  
cells into endothelial cells and subsequently promote 
postnatal vasculogenesis. Moreover, the treatment with 
AMD3100 in diabetic patients improved wound healing by 
correcting EPC mobilization and homing[49]. AMD3100 
is now approved for use as a mobilization agent of  EPCs 
in the United States; new data have provided enticing evi-
dence regarding its therapeutic effect in human myocardial 
infarction[50].(Table 1)

Another way to improve vascular dysfunction could 
beby means of  a therapy using EPC transplantation. In 
a very recent study it was demonstrated that administra- 
tion of  circulating human EPCs intravenously had benefi- 
cial effects on ischemic brain injury in a mouse model of   
transient middle cerebral artery occlusion[51]. Transplanta- 
tion of  human cord blood-derived EPCs was reported to  
contribute to neovascularization in various ischemic diseas- 
es, and EPC transplantation on diabetic wounds has a 
beneficial effect, mainly achieved by their direct paracrine 
action on keratinocytes, fibroblasts, and endothelial cells, 
rather than through their physical engraftment into host 
tissues (vasculogenesis). In addition, an EPC-conditioned 
medium was shown to be therapeutically equivalent 
to EPCs, at least for the treatment of  diabetic dermal 
wounds[52].

CONCLUSION
Therapeutic interventions do not necessarily restore a pro- 
per endothelial function and, when they do, may improve 
only some of  these variables. Bone marrow-derived 
circulating EPCs might be a better alternative. For over 
10 years, EPCs have been studied as a novel biomarker 
to assess the severity of  diabetes, and as a potential new 
strategy in regenerative medicine.

Although the role of  EPCs in these processes is well  
established, the challenge for the next decade is to identify 
and evaluate methods that increase EPC homing and incor- 
poration, thereby enabling targeted delivery of  EPCs to a 
site of  interest. This goal might be achieved through the  
continued characterization of  EPCs in animals and hu- 
mans, coupled with investigations of  the long-term poten- 
tial of  EPCs in vivo. Once accomplished, the therapeutic 
potential of  this treatment modality could transform the 
treatment of  both cardiovascular disease and diabetes.
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Signaling pathways Specific drugs

Angiotensin-Convering-Enzyme (ACE) Ramipril; Enalapril

Angiotensin Ⅱ Valsartan

PI3-K/Akt/eNOS/NO Statins

Reactive oxygen species (ROS) SOD

CXCR4 AMD3100

Table 1  Summarizes the potential therapeutic targets to 
increase EPC number or function
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