
 GUIDELINES FOR BASIC RESEARCH

Diabetes and cancer: Looking at the multiligand/RAGE axis

Armando Rojas, Ileana González, Erik Morales, Ramón Pérez-Castro, Jacqueline Romero, Héctor Figueroa

Armando Rojas, Ileana González, Erik Morales, Ramón 
Pérez-Castro, Jacqueline Romero, Héctor Figueroa, Biome­
dical Research Labs., Medicine Faculty, Catholic University of 
Maule, Talca, POB 617, Chile
Author contributions: Rojas A contributed to the original  idea, 
literature search, manuscript writing and final revision of the 
article; Gonzalez I, Morales E, Pérez-Castro R, Romero J and 
Figueroa H contributed to literature search, the  manuscript writ­
ing and the final revision of the article. All authors approved the 
final manuscript
Supported by the Fondecyt Grant 1090340
Correspondence to: Armando Rojas, PhD, Associate Profes-
sor and Head, Biomedical Research Labs., Medicine Faculty, 
Catholic University of Maule, Talca, POB 617, 
Chile. arojasr@ucm.cl
Telephone: +56-71-203134  Fax: +56-71-413657
Received: May 5, 2011       Revised: June 21, 2011
Accepted: June 28, 2011
Published online: July 15, 2011 

Abstract
The association between diabetes and hyperglycemia 
and the associated increased risk of several solid and 
hematologic malignancies has been the subject of inves-
tigation for many years. Although the association is not 
fully understood, current knowledge clearly indicates 
that diabetes may influence malignant cell transforma-
tion by several mechanisms, including hyperinsulinemia, 
hyperglycemia and chronic inflammation. In this con-
text, the receptor for advanced glycation end-products 
(RAGE) has emerged as a focal point in its contribution 
to malignant transformation and tumor growth. We high
light how RAGE, once activated, as it manifests itself in 
conditions such as diabetes or hyperglycemia, is able to 
continuously bring about an inflammatory milieu, thus 
supporting the contribution of chronic inflammation to 
the development of malignancies.
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INTRODUCTION
The association between diabetes and hyperglycemia and 
cancer, has been investigated extensively. Most studies, but 
not all, have found that both conditions are associated with  
an increased risk of  several solid and hematologic malig- 
nancies. Currently, more than 250 million people live with  
diabetes; hence any impact derived even in smaller increa- 
ses in the risk of  cancer may have important consequences 
at world population level, and on associated costs to health- 
care systems worldwide[1]. Although this association has 
been consistently reported for the most common cancer,  
more research efforts are needed, particularly in connection  
with the less common cancers, where data are limited or 
absent[2].

From the biological point of  view, an essential question  
is raised when the association is analyzed: What are the me- 
chanistic links between diabetes and cancer risk? Obviously, 
the answer to this question is not easy to find. However, 
and based on current knowledge, diabetes may influence  
malignant cell transformation by several mechanisms, in- 
cluding hyperinsulinemia, hyperglycemia and chronic in- 
flammation. These three mechanisms are closely related to  
the receptor for advanced glycation end-products (RAGE), 
which may represent a focal point in their respective contri- 
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butions to malignant transformation.
In 1927, Otto Warburg and co-workers reported the in- 

creased uptake of  glucose and production of  lactate by 
tumors. At present, resurgent research interest in the War- 
burg effect, as it is now known, have brought about a grow- 
ing body of  evidence supporting the dependence of  many 
tumors on glycolysis for energy production. One conse-
quence of  the rise of  glycolysis is the non-enzymatic glyca
tion of  proteins, leading to the formation of  advanced gly- 
cation end-products (AGEs)[3,4]. AGEs were the first iden-
tified RAGE ligands, particularly N-carboxymethyllysine 
[CML]-modified proteins[5] .

The formation of  AGEs is based on the non-enzy
matic reaction of  the reactive aldehyde moiety of  glucose 
with the amino groups of  proteins, forming slowly reversi- 
ble Amadori products. Rearrangement reactions then occur  
to produce a chemically related group of  moieties, termed 
AGEs, which remain irreversibly bound to proteins[6].

The major AGEs in vivo appear to be formed from 
highly reactive intermediate carbonyl groups, known as 
α-dicarbonyls or oxoaldehydes, including 3-deoxygluco-
sone, glyoxal, and methylglyoxal[7,8]. 

There is considerable evidence linking hyperglycemia 
with the accelerated formation of  irreversible AGEs, which  
subsequently accumulate in different tissue locations[9,10,11]. 
Of  note, the presence of  AGEs has been detected in hu-
man cancer tissues, and their expression is markedly varied 
between different types of  tumors[12].

It has been demonstrated by different authors that the 
circulating level of  AGEs is associated with insulin resis-
tance even in non-obese, non-diabetic subjects, indepen-
dent of  adiponectin levels[13,14,15].

How AGEs can impact insulin actions has been recen
tly reviewed by Schalkwijk and co-workers[16]. Experimen-
tal data, obtained from both animal and isolated muscle 
and adipose tissue, suggest that glycation of  insulin sig-
nificantly impairs its biological activity[17]. 

It is also known that the increase of  endogenous meth- 
ylglyoxal accumulation impairs the insulin-signaling path-
way and decreases insulin-stimulated glucose uptake in 
adipose tissue, which, in turn, may contribute to the devel-
opment of  insulin resistance[18,19]. 

Reduced intake of  dietary AGEs has been shown to 
decrease the incidence of  type 1 diabetes in non-obese 
diabetic mice[20], as well as the formation of  atheroscle-
rotic lesions in diabetic apolipoprotein E-deficient mice[21]. 
Vlassara and co-workers[22] have also shown that reduced 
AGE intake leads to lower levels of  circulating AGEs and 
to improved insulin sensitivity in db/db mice. Further-
more, AGEs are reported to impair insulin action in mus-
cle tissue by the formation of  a multi-molecular complex, 
including RAGE/IRS-1/Src and PKCα[23].

RECEPTOR FOR ADVANCED GLYCATION 
END-PRODUCTS
The receptor for advanced glycation end-products (RAGE) 

is a member of  the immunoglobulin protein family of  cell 
surface molecules[24] and shares structural homology with 
other immunoglobulin-like receptors. Firstly described in 
1992, RAGE has attracted increasing attention, due to its 
diverse ligand repertoire and its involvement in several 
pathophysiological processes associated with inflamma-
tion, such as diabetes, cancer, renal and heart failure, as 
well as neurodegenerative diseases[25,26]. 

The RAGE gene is localized on chromosome 6 in the 
vicinity of  the MHC class Ⅲ complex region in humans 
and mice, and in close proximity to the homeobox gene 
HOX12 and the human counterpart of  the mouse mam-
mary tumor gene int-3[27,28].

RAGE is highly expressed during development, es-
pecially in the brain, but its expression level decreases in 
adult tissues. However, RAGE expression is also markedly 
augmented by increased levels of  ligands, as observed in 
some pathologic states[29]. The mature 382 amino-acid 
long RAGE is composed of  an extracellular domain (85 
aa), a single transmembrane spanning helix (27 aa) and a 
short cytosolic region (41 aa)[30]. The extracellular domain 
of  RAGE contains one variable, like V-domain, and two 
constants, like C type domains, which are frequently re-
ferred to as C1 and C2 domains. Recent studies suggest 
that RAGE forms oligomers at the cell surface[31]. RAGE 
possesses two N-glycosylation sites, one adjacent to the 
V-domain and the second one located within the V-do-
main[32].

Recently, RAGE splice variants have been classified and  
renamed according to the Human Gene Nomenclature 
Committee[33], and many of  them appear to be more abun- 
dant under various pathological conditions. At DNA level,  
the RAGE gene consists of  11 introns/exons that can 
alternatively be spliced into different variants. In terms 
of  prevalence, the three major isoforms appear to be the 
full-length RAGE, a secreted form RAGE_v1 (previously 
named as sRAGE, secretory C-truncated RAGE, esRA- 
GE, hRAGEsec or sRAGE1/2/3) and a N-terminally 
truncated isoform RAGE_v2 (previously named Nt-RA- 
GE, N-RAGE or N-truncated RAGE). It is important to 
point out that RAGE_v1 is released  into  the extracellular 
compartment, where it can interact with free RAGE ligan- 
ds, then working as a “decoy receptor”, thereby prevent-
ing ligands from  interacting  with cell surface RAGE[34].

RAGE AS A MULTILIGAND RECEPTOR
In addition to AGEs, other molecules have been identified 
as RAGE ligands, as has been demonstrated for S100/cal-
granulins; high-mobility group box 1 (HMGB1) have also 
been identified as ligands of  this promiscuous receptor. 
The S100/calgranulin protein family comprises several 
members of  non-ubiquitous Ca-binding proteins of  the 
EF-hand type that have both intracellular and extracellular 
functions. At intracellular level, S100 proteins are respon-
sible for different roles in the cell cycle, cell differentiation 
and cell motility. However, some members of  the family 
have additional relevant extracellular roles, particularly 
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at sites of  chronic inflammation, where they are able to 
activate, via RAGE, endothelial cells, macrophages and 
peripheral blood mononuclear cells, including T lympho-
cytes[35].

The DNA binding protein HMGB1 stabilizes nucleo-
some function, and acts as a transcription factor that regu-
lates the expression of  several genes[36]. HMGB1 belongs 
to the so-called “damage associated molecular pattern 
molecules” or alarmins, which are released in response to 
infection or inflammatory stimuli, especially during tissue 
damage[37]. 

Although glucose may be the triggering stimulus to 
draw RAGE into diabetes pathology, consequent cellular 
stress results in the release of  pro-inflammatory RAGE 
ligands S100/calgranulins and HMGB1. Thus, RAGE 
engagement in diabetic tissue produces a vicious cycle of  
ligand-RAGE perturbation, leading not only to chronic 
tissue injury, but also suppression of  repair mechanisms[38]. 
RAGE engagement activates multiple signaling pathways 
(Figure 1), including reactive oxygen species, p21ras, erk1/ 
2 (p44/p42) mitogen-activated protein kinases, p38 and 
SAPK/JNK mitogen-activated protein kinases, rhoGT-
Pases, phosphoinositol-3 kinase and JAK/STAT pathway, 
with important downstream inflammatory consequences, 
such as the activation of  nuclear factor-kappaB (NFkB), 
AP-1 and STATs, which are involved in the inflammatory 
process seen in both diabetes and cancer.

RAGE, CHRONIC INFLAMMATION AND 
CANCER
In the nineteenth century, Rudolph Virchow first launched 
the idea about a putative connection between inflamma-
tion and cancer. At present, resurgent research interest in 
this topic has raised a growing body of  evidence support-
ing the contribution of  chronic inflammation to the devel-
opment of  malignancies, as well as an association between 
the usage of  non-steroidal anti-inflammatory agents, and 
protection against various tumor types[39,40,41,42]. 

For many years, the relationship between the expres-
sion of  the receptor of  advanced glycation end-products 
(RAGE) and cancer has been well-documented, as re-
ported in gastric, prostate, lung, pancreas, and liver malig-
nancies. However, the contribution of  RAGE to cancer 
biology seems to be much more functional than initially 
thought, because it has now emerged as a relevant element 
that can continuously fuel an inflammatory milieu at the 
tumor microenvironment[43].

Most of  the cancer-promoting effects of  RAGE ligan
ds are the result of  their interaction with RAGE. Signals 
downstream of  RAGE, drive the strength and mainte-
nance of  an inflammatory reaction during tumor promo-
tion in a mouse model of  skin cancer, as well as a marked 
reduction in the number of  infiltrating immune cells and 
the levels of  proinflammatory mediators in RAGE-/- ani- 
mals[44]. In addition, the interaction of  the ligands S100A8/ 

A9 with RAGE involve carboxylated glycans; the transi-
tion from acute to chronic inflammatory conditions in 
the study cited did not occur in RAGE-/ - mice, which in 
turn, produced fewer tumors in a colitis-associated cancer 
model[45].

The consequences of  RAGE activation to tumor biol-
ogy also reach key processes, such as the acquisition of  an 
hypoxia–resistant phenotype in carcinoma cells[46]. Recent-
ly, it has been reported that S100A8/A9 proteins contrib-
ute to the recruitment and retention of  myeloid suppres-
sor cells through a mechanism mediated, at least in part, 
by the binding to carboxylated N-glycans expressed on 
the receptor for advanced glycation end-products, and the 
subsequent activation of  the NFkB signaling pathway[47]. 
AGEs can also down-regulate in vitro the ability of  den-
dritic cells (DCs) to express co-stimulatory signals and to 
activate T cells[48]. Similar results have been described after 
a blockade of  the autocrine secretion of  HMGB1, and of  
RAGE activation[49,50].

In recent years, a growing body of  evidence supports 
the role of  ligands/RAGE axis in angiogenesis. Upon RA- 
GE engagement, profound effects are reported in endo- 
thelial cells, including up-regulation of  VEGF and metal-
loproteinase-2, as well as the disruption of  the VE-cad-
herine/catenins complex,  thus favoring capillary tube for-
mation[51,52]. Additionally, RAGE activation also increases 
endothelial permeability to macromolecules, a condition 
very common in tumor microvasculature[53].

Although many aspects of  differentiation, mobiliza-
tion and recruitment of  endothelial progenitor cells (EPCs) 
remain controversial, it has been reported that the levels 
of  peripheral blood EPCs have been shown to be in-
creased in certain malignant states[54].
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Figure 1  RAGE engagement activates many signaling pathways which 
are involved in both diabetes-associated vascular complications and 
tissue damage, and as well as in the tumor microenvironment-associated 
inflammatory milieu. RAGE: Receptor of advanced glycation end-products.
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HMGB1 increased EPCs adhesion to the immobilized 
integrin ligands intercellular adhesion molecule-1 and fi-
bronectin in a RAGE-dependent manner, thus stimulating 
EPC homing to ischemic tissues[55].

In 2000, a seminal report on the contribution of  mul- 
tiligand/RAGE axis on invasion and metastasis dem-
onstrated that a blockade of  RAGE-HGMB1-derived 
signaling decreased growth and metastases of  both im-
planted tumors, and tumors developing spontaneously in 
susceptible mice[56].

CONCLUSION
During the last decade, relevant advances in our under
standing of  the pathophysiologic role of  the multiligand/
RAGE axis have lead to a substantial knowledge of  how 
this promiscuous receptor, once activated, is able to conti
nuously bring about an inflammatory milieu (Figure 2). 
The current relevance of  Virchow´s postulate about the 
role of  chronic inflammation in cancer development high- 
lights the facts associated with the presence of  an activa- 
ted RAGE axis, smoldering inflammation such as that 
occurring in diabetes, and thus its contribution towards 
the understanding of  the mechanistic scenario supporting 
the link between diabetes and cancer.
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