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Abstract
Both environmental and genetic factors contribute to the  
development of diabetes mellitus and although mono- 
genic disorders are rare, they offer unique insights into  
the fundamental biology underlying the disease. Muta- 
tions of the insulin gene or genes involved in the respon- 
se to protein misfolding cause early onset diabetes. 
These have revealed an important role for endoplasmic 
reticulum stress in β-cell survival. This form of cellular 
stress occurs when secretory proteins fail to fold efficien- 
tly. Of all the professional secretory cells we possess, 
β-cells are the most sensitive to endoplasmic reticulum 
stress because of the large fluctuations in protein synthe- 
sis they face daily. Studies of endoplasmic reticulum 
stress signaling therefore offer the potential to identify 
new drug targets to treat diabetes.
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INTRODUCTION
We place a heavy burden on our pancreatic β-cells. They 
are expected to deliver a life-long supply of  insulin at the 
precise levels necessary to maintain glucose homeostasis 
while avoiding hypoglycaemia. This requires that they 
synthesize and secrete insulin at times of  plenty, but rap-
idly attenuate protein synthesis when the hormone is no 
longer needed. Consequently, the secretory pathway of  a 
β-cell experiences dramatic changes in client protein flux. 
As a consequence, it is exquisitely sensitive to defects of  
protein folding because large increases in the rate at which 
new proteins enter the endoplasmic reticulum (ER) can 
overwhelm the resident chaperones. This can allow in-
correctly folded proteins to accumulate inside the organ-
elle, a situation termed “endoplasmic reticulum stress”. 
Evidence accrued over the last decade has shown that 
ER stress plays an important role in the pathogenesis of  
diabetes, both through direct toxicity to the β-cell caus-
ing loss of  β-cell mass and in peripheral tissues where it 
contributes to insulin resistance. We propose that current 
views of  diabetes should be revised, so that it is seen as 
another member of  the growing list of  protein misfolding 
diseases.

GENETIC STUDIES IDENTIFYING ER 
PROTEINS IN THE DEVELOPMENT OF 
DIABETES MELLITUS
A critical observation was made almost forty years ago 
when three siblings, two brothers and a sister, were repor- 
ted who had developed permanent neonatal diabetes mel- 
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litus in association with developmental bone defects[1].  The  
parents of  those first cases were unrelated, but many subse- 
quent case reports were of  consanguineous families[2,3]. The  
condition now eponymously named Wolcott-Rallison 
syndrome (OMIM #226980)[4] is also known as multiple  
epiphiseal dysplasia with early onset diabetes mellitus (ME 
D-IDDM) to highlight its extra-pancreatic manifestations. 
Indeed, these are diverse and include osteoporosis, growth 
retardation, hepatic and renal dysfunction and cognitive 
impairment. It is now known to be inherited as a classical 
autosomal recessive trait and has been mapped in two con- 
sanguineous families to the region 2p12[2]. Each family har- 
bored a distinct mutation, but both proved to be in the 
Perk gene.

PERK is a ubiquitously expressed kinase localized to 
the membrane of  the ER[5,6]. Protein sequence homology 
showed it to be a member of  the eIF2α kinase family that  
links cellular stresses to the inhibition of  protein transla-
tion. For example, the prototypical family member GCN2 
reduces protein synthesis during periods of  amino acid 
starvation by phosphorylating and thus inhibiting the tran- 
slation initiation factor eIF2α[7]. Other members of  this fa- 
mily inhibit protein synthesis during viral infection (PKR[8]) 
or iron deficiency in red blood cell progenitors (HRI[9]). In 
each instance, reduced protein synthesis promotes cellular 
health, by reducing the consumption of  amino acids dur-
ing starvation or preventing viral replication or matching 
haemoglobin synthesis to available haeme. In the case of  
PERK, reduced protein synthesis prevents new proteins 
entering the ER when they cannot be correctly folded. It 
transpires that PERK is essential for β-cells to withstand 
fluctuations in proinsulin synthesis that occur daily. Mice in  
which the Perk gene is deleted faithfully recapitulate many 
of  the phenotypic features of  Wolcott-Rallison syndrome 
and this has been very useful in understanding this condi-
tion[10]. Remarkably, these mice are born with normal islets 
of  Langerhans, but rapidly lose β-cells in the neonatal peri-
od. Prior to death, these cells exhibit ER dilatation, due to  
distention with aggregates of  misfolded proinsulin.  

When circulating glucose levels are low, so is the de-
mand for insulin and PERK is inactive. When proinsulin 
enters the ER it is bound reversibly by molecular chaper-
ones, such as BiP, to promote its correct folding. In addi-
tion, chaperones shield newly synthesized proteins from 
inappropriate interactions with other incompletely folded 
proteins. When glucose levels rise, β-cells are stimulated 
to increase insulin synthesis. If  this increase were unregu-
lated, the rise in proinsulin synthesis might overwhelm ER 
chaperones causing ER stress and threatening to cause 
protein aggregation. Indeed, this occurs in the β-cells of  
Wolcott-Rallison patients and in Perk knockout mice lead-
ing to cell death. However, in healthy cells, PERK detects 
this rise in ER client protein demand by monitoring the 
level of  free BiP in the ER lumen. When free BiP levels 
fall due to its binding to newly synthesized protein, this 
triggers PERK to phosphorylate eIF2α and protein trans-
lation levels fall. In parallel, ER stress signaling pathways 
cause an increase in many ER resident proteins including 

molecular chaperones, which enable higher levels of  client 
proteins to be folded. This mechanism has been called the 
Unfolded Protein Response (UPR)[11,12]

The major client protein of  the β-cell ER is proinsu- 
lin[12]. Recently, defects in insulin folding have been shown  
to underlie rare cases of  familial permanent neonatal dia- 
betes mellitus (OMIM #606176)[13]. Initially discovered in 
mice by Dr. Akio Koizumi in Akita, Japan, a spontaneous 
INS2 gene mutation causes β-cell death[14]. In contrast to 
man, mice possess two insulin genes that are functionally 
redundant[15] and yet the Akita mutation (C96Y) behaves 
as a semi-dominant trait[14,16]. This toxic-gain-of-function 
is caused by a substitution of  a conserved cysteine residue 
required for the formation of  an intra-molecular disulphi- 
de bond[17,18]. The mutant insulin fails to be secreted and is 
instead retained in the ER where, crucially, wildtype proin- 
sulin also becomes trapped in complexes with Akita mutant  
proinsulin impairing secretion of  the normal protein[14,19,20].  
When a three-generation family with permanent neonatal 
diabetes mellitus was found to have a heterozygous muta- 
tion of  the insulin gene, this led to 83 similar families 
being screened, nine of  which harbored insulin mutations  
including one analogous to the Akita mutation of  mice[13].  
Several subsequent studies have also confirmed that mis- 
sense mutations of  the INS gene in man are a rare but im- 
portant cause of  neonatal diabetes[21-24]. When such mutant  
insulins were expressed in cultured cells, they caused ER 
sress and impaired cell viability[22,25]. This contrasts with mu- 
tations that impair proinsulin synthesis through impaired 
transcription, which are inherited recessive traits and fail 
to cause death of  the β-cell[26].

EMERGING MODEL FOR ENDOPLASMIC 
RETICULUM STRESS INVOLVEMENT IN 
DIABETES
The precise details of  UPR signaling and its links to cell 
death have been reviewed elsewhere[11,12,27]. However, it is  
worth examining some aspects of  ER stress and cell death 
again, as these may provide a novel target for therapeutic 
intervention in the future. For example, Dr Seiichi Oyado- 
mari observed that deletion of  the Chop gene could delay  
the onset of  diabetes in Akita mice[28] and prevent β-cell  
death following other toxic stresses[29]. CHOP is a transcri- 
ption factor that is up-regulated by a number of  cellular 
insults, notably ER stress. It has been linked to the induc- 
tion of  cell death and some have suggested its function  
is to kill cells when the degree of  ER stress is insurmoun- 
table[30-32]. However, our work has suggested that the link 
to cell death is more complex and most likely stems from 
CHOP acting to boost the secretory capacity of  the cell[33]. 
We showed that the Gadd34 gene is transcriptionally indu- 
ced by CHOP during ER stress and that deleting Gadd34 
was at least as protective as deleting the Chop gene in an  
animal model of  ER stress. GADD34 functions to dephos- 
phorylate eIF2α following ER stress so that protein trans- 
lation can recover and UPR target genes can be transla- 
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ted[34,35]. In this manner, it behaves as a functional antagoni- 
st of  PERK. Whilst cells lacking PERK are vulnerable to 
death during ER stress, it appears that the antagonism of  
PERK by GADD34 during ER stress can also result in cell 
death. Excessive activity of  GADD34 in some circumstan- 
ces creates a situation similar to that of  PERK deficiency.
Could GADD34 inhibitors therefore prove useful to treat 
diabetes? A molecule called salubrinal has been identified 
that promotes eIF2α phosphorylation during ER stress[36].  
Its precise mechanism of  action requires further elucida- 
tion, but has been suggested to involve inhibition of  eIF2α  
dephosphorylation, which can promote cell survival in 
some models of  ER stress.

When mice were generated with β-cells that were par-
tially resistant to PERK by mutating the phosphorylation 
site of  eIF2α (eIF2αS51A), the animals developed diabetes 
due to uncontrolled proinsulin synthesis and increased 
oxidative stress[37]. Feeding them antioxidants in their diet 
ameliorated this. Interestingly, CHOP induces the tran-
scription of  ERO1α, which increases protein oxidation in 
the ER to promote disulphide bond formation[33].While 
this may improve protein folding, it also imposes an oxida-
tive stress burden on the β-cell. Consequently, preventing 
the induction of  ERO1α may explain why Chop knockout 
reduces oxidative damage and improves β-cell survival in 
models of  diabetes[38]. Chop deletion also increases β-cell 
mass and prevents glucose intolerance both in high-fat fed 
eIF2αS51A mice and in leptin receptor deficient mice. This 
appears to be mediated by increased β-cell proliferation 
and by reduced apoptosis suggesting that CHOP antago-
nism might help maintain β-cell mass in patients if  this 
could be achieved pharmacologically.

β-cells, therefore, can be subject to ER stress either 
from poorly regulated proinsulin synthesis in Wolcott-
Rallison syndrome or directly from mutant proinsulins. It 
is less clear, however, why ER stress should be relevant in 
peripheral tissues in diabetic patients. Nevertheless, ER 
stress in peripheral tissues plays at least as important a role 
in diabetes as it does in the β-cell. Some peripheral tissues,  
for example adipocytes, respond to raised circulating glu-
cose by increasing ER protein synthesis thus increasing ER  
client load[39].  In addition, obesity increases peripheral tis-
sue inflammation, which can also cause ER stress[40,41]. A 
consequence of  this appears to be impaired insulin signal-
ing and consequently insulin resistance.

While PERK regulates protein translation during ER 
stress and has further effects on UPR gene transcription, a 
second ER stress sensor called IRE1 regulates other UPR 
genes. IRE1 is far older than PERK in evolutionary terms, 
being found even in yeast. Not only can it trigger gene 
transcription but it can, at least in mammals, also impair 
insulin receptor signaling. Activated insulin receptors 
signal to the cell’s interior via the phosphorylation of  target  
molecules including insulin receptor substrate 1 (IRS1) on  
tyrosine residues. This can be blocked if  IRS1 is phos- 
phorylated on serine residues by the Jun N-terminal kinase  
(JNK)[42] and is triggered in peripheral tissues of  obese 
subjects through activation of  JNK by IRE1[43]. The notion  

that peripheral ER stress can impair glucose homeostasis 
is supported by a number of  other lines of  evidence. For  
example, if  ER function is impaired in the liver by deleting  
the chaperone Oxygen-Regulated Protein 150 (ORP150), 
mice display impaired IRS1-dependent insulin signaling 
and develop glucose intolerance[44]. In contrast, raising the  
levels of  ORP150 protects obese mice from diabetes[44,45]. 
We may yet be able to use these observations in therapies, 
since two small molecular “chemical chaperones”, 4-phenyl  
butyric acid and taurine-conjugated ursodeoxycholic acid, 
relieve ER stress in animal models in vivo and improve 
peripheral insulin sensitivity in obese diabetic mice[46].

CONCLUSION
Substantial clinical and experimental evidence clearly 
shows that ER stress is important in diabetes both affect-
ing β-cell survival and contributing to peripheral insulin 
resistance. This novel paradigm has already shed light on 
poorly understood aspects of  diabetes and is providing 
exciting new targets for therapeutic intervention. Novel 
molecules, for example salubrinal and guanabenz, are 
already becoming available to help study ER stress in the 
laboratory and these may perhaps represent the lead com-
pounds in the development of  new drugs that will enable 
us to tackle ER stress in diabetes and will eventually help 
to treat this important cause of  human suffering.
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