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Abstract
Obesity is increasing around the globe. While adult life-
style factors undoubtedly contribute to the incidence of 
obesity and its attendant disorders, mounting evidence 
suggests that programming of obesity may occur fol-
lowing under- and over-nutrition during development. 
As hypothalamic control of appetite and energy ex-
penditure is set early in life and can be perturbed by 
certain exposures such as undernutrition and altered 
metabolic and hormonal signals, in utero  exposure to 
altered maternal nutrition and inadequate nutrition dur-
ing early postnatal life may contribute to programming 
of obesity in offspring. Data from animal studies indi-
cate both intrauterine and postnatal environments are 
critical determinants of the development of pathways 
regulating energy homeostasis. This review summarizes 
recent evidence of the impact of maternal nutrition as 
well as postnatal nutrition of the offspring on subse-
quent obesity and disease risk of the offspring. While 
much of the experimental work reviewed here was con-
ducted in the rodent, these observations provide useful 

insights into avenues for future research into develop-
ing preventive measures to curb the obesity epidemic.
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INTRODUCTION
Obesity is a common disorder and an important risk 
factor for many chronic diseases. As the second big-
gest cause of  mortality after smoking, obesity-associated 
complications account for 10% of  health-care costs in 
most countries[1]. The prevalence of  obesity, particularly 
childhood obesity, is rising worldwide. The reasons be-
hind this epidemic are not clearly understood, however 
this metabolic disease can result from a complex inter-
action between many factors including genetic, physi-
ological, behavioural and environmental influences. The 
rate at which this disease has increased suggests that 
environmental and behavioural factors such as increased 
consumption of  high-fat and high-energy foods, coupled 
with reduced physical activity play a greater role than 
genetic causes[2-4]. It is therefore particularly relevant that 
recent epidemiological and animal studies have suggested 
that long-term health can be influenced by events in fetal 
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and early infant phases of  life. Nutritional status during 
“critical windows” in early development is thought to 
influence or “program”, the onset of  major diseases in 
adulthood[5] (Figure 1). The mechanisms underlying this 
development of  obesity and associated disease in adult-
hood are not yet completely understood. This review will 
discuss the effects of  nutritional imbalances in utero and 
in early postnatal life as well as the mechanisms that may 
contribute to the development of  adult disease.

FETAL ORIGINS OF DISEASE
One of  the first studies to highlight the fetal origins of  
disease was a population study in Hertfordshire dem-
onstrating a link between low birth weight and weight 
at 1 year of  age and increased death rate from ischemic 
heart disease, impaired glucose tolerance and type 2 dia-
betes[6,7]. This led to the “Thrifty Phenotype” hypothesis, 
where poor nutrition in utero led to fetal adaptations that 
produced permanent changes in insulin and glucose me-
tabolism, increasing the risk of  developing the metabolic 
syndrome in adulthood[8]. A more recent hypothesis is 
the “Predictive Adaptive Response” hypothesis[9], which 
proposes that the fetus makes adaptations in utero or dur-
ing the early postnatal developmental period based on the 
predicted postnatal environment. When the predictive 
adaptive response is appropriate the phenotype is normal, 
however when the predicted and actual environments do 
not match, disease manifests[9]. Epidemiological data in-
dicate that maternal obesity is linked to offspring obesity, 
and a child’s body mass index (BMI) correlates with that 
of  the mother[10]. Thus both undernutrition, and maternal 
obesity have been shown to increase the risk of  obesity in 
offspring. In support of  these hypotheses, a large number 
of  studies have been carried out, where maternal nutri-
tion has been altered during gestation and early postnatal 
life. 

METABOLIC PROGRAMMING IN UTERO
In determining the mechanisms involved in metabolic 
programming, the use of  animal models has been para-
mount. A benefit of  using non-human species is the 
capacity to rigorously control diet and other relevant 
environmental factors that impact on obesity. In altricial 
species such as rat the lactation period correlates with the 
third trimester of  human gestation. Initial animal experi-
ments examining early life programming influences on 
subsequent obesity risk dealt with the impact of  under-
nutrition during gestatsaion, utilizing restricted feeding, 
uterine ligation or protein deprivation of  the mother. The 
effects of  maternal undernutrition, low protein diets and 
nutritional excess have diverse effects on the offspring, as 
recently reviewed[11-13]. 

MATERNAL UNDERNUTRITION
Maternal protein restriction during gestation has previ-
ously been shown to result in low birth weight of  the off-

spring and impaired development of  organs such as the 
pancreas and kidney[14] leading to impaired glucose toler-
ance and insulin resistance in peripheral tissues. There 
is also strong evidence that these animals will develop 
obesity later on in life[15]. In a rat model of  total caloric 
restriction during pregnancy, offspring are hyperphagic, 
hyperinsulinemic and develop obesity and hyperten-
sion[16]. Other models of  early growth restriction have 
produced similar findings, together with an amplification 
of  the metabolic disturbances when a highly-palatable or 
high-fat diet is introduced postnatally[16-18]. 

MATERNAL OVERNUTRITION
Rodent models of  maternal overnutrition usually involve 
the feeding of  a high fat diet to pregnant dams, resulting 
in the development of  a phenotype comparable to that 
of  the human metabolic syndrome[11]. Offspring have 
altered neuron development[19,20], increased adiposity and 
blood pressure, impaired cardiovascular function[21], and 
become hyperinsulinemic and hyperglycemic in adult-
hood[22]. More recent studies have shown that offspring 
from obesity-prone rats developed adiposity and im-
paired glucose and lipid metabolism as early as postnatal 
day 20[23,24] and this was maintained until adulthood[25]. 
Furthermore, maternal high fat diet during the precon-
ceptional period and/or throughout pregnancy and lac-
tation has also been shown to result in a similar obesity 
phenotype in the offspring independent of  postnatal 
nutrition[26]. These recent studies highlight the profound 
impact that dietary interventions during pregnancy could 
have on the long-term health of  the offspring.

METABOLIC PROGRAMMING IN THE 
POSTNATAL PERIOD
Maternal diet during the suckling period is also important 
as several regulatory mechanisms not fully developed at 
birth undergo significant maturation in the early postnatal 
period. This is more marked in rodents, as they undergo 
rapid maturation of  most organ systems after birth. The 
important influence of  the suckling period is supported 
by rodent studies where reducing rat litter sizes to 3-4 
pups from 10-12 pups per dam, increases milk availability 
resulting in offspring with dyslipidemia, hyperinsulinemia, 
hyperleptinemia, increased body weight and fat pad 
mass[27-34]. This model was designed by McCance who 
demonstrated that the adjustment of  rat pup litter size 
during lactation changes the milk intake of  the pups and 
this resulted in a lifetime of  programming of  the growth 
trajectory[35]. A subsequent study added to these initial 
observations suggesting that the amount of  food con-
sumed in early life plays an important role in determin-
ing the pattern of  food intake in later life[36]. To further 
support the importance of  the postnatal period, a recent 
epidemiological study demonstrated that rapid weight 
gain in neonatal life is associated with increased risk of  
obesity in later life, independent of  birth weight and 
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weight at 1 year of  age[37]. Thus, rapid weight gain mainly 
results from neonatal overfeeding, highlighting the im-
portance of  this period of  development in programming 
of  adult disease. Although a recent study demonstrated 
that maternal obesity exerted a stronger detrimental im-
pact on the offspring phenotype compared to overnutri-
tion during the early postnatal period, pre- and postnatal 
nutritional excess were shown to interact with each other 
to exert additive detrimental effects on programming of  
central appetite regulators and glucose and lipid metabo-
lism[24,38]. 

MECHANISMS MEDIATING THE DEVEL-
OPMENTAL PROGRAMMING OF DISEASE
There are a growing number of  signals and pathways that 
have been shown to be involved in energy homeostasis, 
some of  which are listed in Table 1. Alteration of  one or 
more relevant pathways during early development plays a 
major role in the programming of  obesity and associated 
adulthood diseases. These mechanistic pathways can be 
located both centrally and peripherally. 

Central mechanisms 
Alteration in the environment during a “critical period” 
of  development may alter the normal development of  
the neuronal circulatory regulating food intake. Recent 
evidence shows that there are physiological differences in 
the regulation of  energy balance between adults and neo-
nates. Although much is known about the neurocircuitry 
in adults, the development of  important appetite regulat-
ing systems such as the neuropeptide Y (NPY) and mela-
nocortin systems remains unclear.

The ontogeny of  the NPY system has been extensive-
ly studied by Grove and associates. Initial studies dem-
onstrated that NPY was not only abundantly expressed 
in the arcuate nucleus (ARC) but transient expression of  
NPY was also observed in the other hypothalamic re-
gions, including the dorsomedial hypothalamus, paraven-
tricular nucleus, lateral hypothalamus and the perifornical 
region which is not evident in adulthood[39]. NPY levels 
in all areas were low at postnatal day 2 (P2), increased 
rapidly to peak at P15-16 and returned to levels observed 

in adulthood in the ARC, while in the other areas NPY 
was no longer apparent after P30[39].

The development of  important neuronal circuits 
regulating appetite occurs late in gestation and contin-
ues postnatally in rodents, suggesting that the normal 
development of  this system may be susceptible to envi-
ronmental and nutritional changes after birth. A series 
of  early studies demonstrated that the amount of  food 
consumed during suckling in the rat plays an important 
role in determining food intake later in life[36]. This may 
contribute to long-term development of  Syndrome 
X-like alterations, such as insulin resistance, obesity and 
increased blood pressure[30]. Recent data extends these 
observations, demonstrating that maternal consumption 
of  “junk” food during gestation and lactation led to in-
creased preference for “junk” food in offspring as they 
matured[40]. 
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Figure 1  Obesity is increasing at the population level, in part due to increased energy intake and reduced energy expenditure, contributing to increasing 
pre-pregnancy body mass index. Overnutrition during gestation and early development is thought to influence or “program” appetite and metabolic regulation, which 
in turn affects the risk of major disease in adulthood.

Table 1  Central and peripheral signals involved in the control 
of energy homeostasis

Orexigenic Anorexigenic

Peripheral
   Adipose tissue: Adipose tissue:
      Adipsin    Leptin
      Glucocortiocoids    Adiponectin
      Angiotensin Ⅱ    Resistin

   Tumour necrosis factor α
   Stomach: Gut:
      Ghrelin    Cholecystokinin

   Peptide YY
   Obestatin
Pancreas:
   Insulin
   Amylin
   Pancreatic polypeptide

Central
   Neuropeptide Y α-melanocyte stimulating 

hormone
   Agouti related peptide Cocaine and amphetamine 

regulated transcript
   Melanin concentrating hormone Corticotrophin releasing hormone
   Orexin A and B Urocortin
   Galanin Serotonin
   Noradrenaline Dopamine
   Cannabinoid
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Peripheral mechanisms
Leptin and insulin signaling appears to be important for 
the development of  the appetite regulating system. In 
the rodent during the first 3 wk of  life, leptin is unable 
to alter feeding or energy expenditure[41]. During the neo-
natal period a surge of  leptin is evident, which does not 
correlate with body fat[42]. In rodents, fetal adipocytes and 
placenta produce very low levels of  leptin late in gesta-
tion[43], so the main source for this surge of  leptin may be 
the transplacental transfer of  maternal leptin to the fe-
tus[44]. This neonatal hyperleptinemia however, is not able 
to affect growth, food intake or energy expenditure in 
mice and rats as the neuronal circuits are still not devel-
oped[32,45]. Recently it has been suggested that this leptin 
surge is actually an important signal for the initiation of  
the development of  ARC projections in the rodent[46]. 
The main evidence for this is the incomplete develop-
ment of  ARC projections in ob/ob and db/db mice that 
do not have a functioning leptin system[47]. On the other 
hand, exogenous leptin treatment during the early postna-
tal period in rodents can also cause abnormal expression 
of  NPY, agouti-related peptide and pro-opiomelanocor-
tin in the ARC[45], however the effect on the projections is 
unknown. Hyperleptinemia caused by overfeeding during 
this period can also cause abnormalities in hypothalamic 
circuits[48,49]. Collectively these findings suggest that a cer-
tain level of  leptin is required during the “critical period” 
of  development and both deficiency and excess can have 
long-term detrimental effects on the hypothalamic cir-
cuitry that regulates energy homeostasis.

Insulin receptors are also highly expressed in the fetal 
brain of  rodents and humans, with expression declining 
during the postnatal period[50]. Insulin treatment during 
the postnatal period results in increased body weight, 
chronic hyperinsulinemia and increased blood pressure 
that persists into adulthood[51], suggesting abnormal in-
sulin levels during a “critical period” of  development 
may cause long-term defects in the regulation of  energy 
homeostasis[49]. Insulin may also be an important trophic 
factor, however more studies are needed to determine its 
role in the development of  the feeding circuits.

Adipose tissue development can also be affected 
during the fetal and postnatal periods. Development of  
adipose tissue commences in utero, where adipocytes have 
the ability to develop into either brown or white adipose 
tissue (WAT)[52]. The main function of  brown adipose 
tissue (BAT) is to convert energy into heat[53], whereas 
the WAT represents an endogenous energy store that is 
capable of  secreting a number of  mediators involved in 
the regulation of  energy metabolism, neuroendocrine 
function and immune function[54]. 

BAT is present in rodents throughout life but until 
recently it was thought that BAT in humans was only 
present in early life and did not have any important func-
tion in adults[53]. The presence of  BAT in rodents has 
been shown to be important in body weight and energy 
regulation as well as glucose metabolism[53,55] while active 
BAT in adult humans has been demonstrated following 

cold exposure[56]. A recent study was able to demonstrate 
a functioning BAT in adult humans, particularly females, 
using combined positron-emission tomography and com-
puted tomography scanning[57]. Furthermore, the same 
study demonstrated an inverse correlation between the 
amount of  BAT and BMI[57]. The ability to measure and 
locate the mass and activity of  BAT will help to better 
understand the physiological role of  BAT in adult hu-
mans and its potential as a therapeutic target in the man-
agement of  obesity[57]. 

Over the last decade WAT has become recognized 
as an important endocrine organ able to secrete a vast 
number of  hormones as well as expressing numerous 
receptors that allow it to respond to traditional hormone 
systems as well as signals from the central nervous sys-
tem[54,58]. The wide range of  protein signals and factors 
that have been identified in WAT highlights the com-
plexity of  this system which is highly integrated into the 
general homeostatic mechanisms of  mammals[59]. WAT 
development is characterized by a rapid increase in fat 
cell number until 4 wk of  age, followed by slower rate of  
growth until puberty, whereas increase in adipose tissue 
mass during maturity is mainly due to increased adipocyte 
size[60]. The increase in fat mass during early life appears 
to be dependent on an increase in local glucocorticoid 
action during the postnatal period[61]. The ability of  glu-
cocorticoids to promote lipogenesis and decrease lipoly-
sis[62], highlights their role as important mediators in the 
development of  central obesity, which can contribute to 
hypertension and glucose intolerance[63]. Corticosterone 
production driven by the enzyme 11β-HSD1 could play 
a pivotal role in the growth and development of  the adi-
pose tissue[64]. Further evidence of  programming of  the 
adipose tissue was recently provided by a study, which 
showed that increased maternal nutrition in the sheep 
led to upregulation of  peroxisome proliferator activated 
receptor γ, lipoprotein lipase and leptin in fetal tissue, 
thereby predisposing the offspring to enhanced adipose 
accumulation[65]. 

PERSPECTIVES
Evidence from both epidemiological and animal studies 
suggests that the programming of  obesity and adulthood 
disease arises from multifactorial influences occurring 
early in life. Adipocyte development, leptin, insulin and 
glucocorticoid signaling, as well as the plasticity of  the 
hypothalamus all play a major role in the programming 
of  appetite and metabolism, possibly leading to develop-
ment of  associated diseases. While the intrauterine envi-
ronment and early postnatal window are critical determi-
nants, recent data from our laboratory highlighting the 
detrimental impact of  paternal high fat diet-induced obe-
sity on offspring glucose tolerance and pancreatic β cell 
function, highlights the possibility that unhealthy paternal 
diets can reprogram gene expression in offspring, impli-
cating epigenetics in these trans-generational effects[66].
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