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Abstract
Under-nutrition as well as over-nutrition during preg-
nancy has been associated with the development of 
adult diseases such as diabetes and obesity. Both 
epigenetic modifications and programming of the mi-
tochondrial function have been recently proposed to 
explain how altered intrauterine metabolic environment 
may produce such a phenotype. This review aims to re-
port data reported in several animal models of fetal mal-
nutrition due to maternal low protein or low calorie diet, 
high fat diet as well as reduction in placental blood flow. 
We focus our overview on the β cell. We highlight that, 
notwithstanding early nutritional events, mitochondrial 
dysfunctions resulting from different alteration by diet 
or gender are programmed. This may explain the higher 
propensity to develop obesity and diabetes in later life.
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INTRODUCTION
Before describing and discussing the involvement of  the 
mitochondria in the fetal programming of  adult diseases, 
a brief  introduction on the biogenesis and function of  
mitochondria will be presented.

Mitochondria, their biogenesis and function
It is only recently that the mitochondrial proteome has 
been considered as a dynamic system generated by the 
nuclear DNA (nDNA) and the mitochondrial DNA (mt­
DNA). In most human cells, mitochondria contain 103-104 
copies of  a circular genome of  16 569 base-pairs without 
introns. It contains 37 genes encoding 2 ribosomal RNAs, 
22 tRNAs required for mitochondrial protein synthesis 
and 13 polypeptides[1]. These include 7 of  the 46 poly­
peptides of  the complex Ⅰ (NADH dehydrogenase; ND 
1, 2, 3, 4L, 4, 5, 6), one of  the 11 proteins of  complex Ⅲ 
(cytochrome b), 3 of  the 13 polypeptides of  complex Ⅳ 
(cytochrome c oxidase; COX-1, -2, -3) and 2 of  the 16 
proteins of  complex Ⅴ (ATP synthase; ATPase-6, -8)[2]. 

Mitochondrial biogenesis requires a tight coordination 
between the nDNA and mtDNA to transcribe the genes 
in the nucleus, as well as in mitochondria. The nDNA-

TOPIC HIGHLIGHT

�49 September 15, 2011|Volume 2|Issue 9|WJD|www.wjgnet.com

Online Submissions: http://www.wjgnet.com/1948-9358office
wjd@wjgnet.com
doi:10.4239/wjd.v2.i9.�49

World J Diabetes  2011 September 15; 2(9): �49-157
ISSN 1948-9358 (online) 

© 2011 Baishideng. All rights reserved.

Didier Vieau, Professor, Series Editor



Reusens B et al . Programming of mitochondrial alteration

encoded mitochondrial proteins are translated by using 
cytosolic ribosomes and selectively imported into the 
mitochondrion through various import systems[3,4]. These 
proteins include the four units of  the complex Ⅱ, the 
mtDNA polymerase γ, mitochondrial RNA polymerase, 
the mitochondrial transcription factor (Tfam), the mito­
chondrial ribosomal proteins and elongation factors, and 
the mitochondrial metabolic enzymes[5].

Three factors, i.e. peroxisome proliferator activated re­
ceptor γ (PPARγ) coactivator-1α (PGC-1α), nuclear respi­
ratory factor 1 (NRF-1) and Tfam provide a molecular ba­
sis for the connection between environmental stimuli and 
mitochondrial biogenesis. PGC-1α is part of  the PGC-1 
coactivator family which, in addition to its role in the mi­
tochondrial biogenesis and through its interaction with the 
PPARγ[6], regulates several functions, including adaptive 
thermogenesis, glucidic metabolism, fatty acid oxidation 
and mitochondrial anabolic and catabolic function. NRF-1 
and -2 bind to the promoter region of  a broad range of  
mitochondrial genes encoded in the nucleus, including 
Tfam. NRF-1 turns on Tfam, a key transcriptional fac­
tor that translocates into the mitochondria and activates 
mitochondrial biogenesis and function through mtDNA 
replication and transcription (Figure 1)[7]. NRF-1 may also 
affect expression of  mitochondrial and metabolic genes[8]. 

In addition, PGC-1α may promote the mitochondrial 
biogenesis in a cell type-specific manner with the co-activa­
tion of  PPARγ. It seems that PPARγ affects mitochondrial 
biogenesis indirectly by enhancing the expression of  PGC-
1α since the agonist of  PPARγ rosiglitazone, induced 
endogenous expression of  PGC-1α in adipose tissue[9,10]. 
Through this way, PGC-1α may drive PPARγ[6] and ame­
liorate symptoms of  metabolic disease. In a cell-selective 
manner, the efficiency of  the oxidative phosphorylation 
process may also be regulated by PGC-1α through the 
transcriptional control of  uncoupling proteins (UCP)[11].

There is a great variation in the mtDNA across differ­
ent cell types. Whereas somatic cells contain up to 4 000 
copies, maternal oocytes may contain as many as 200 000 
copies and sperm as few as 100[12]. This is the reason why 
it is usually accepted that mtDNA is exclusively mater­
nally inherited.

Mitochondria are responsible for the production of  
energy by oxidizing pyruvate through the tricarboxylic 
acid (TCA) cycle and lipids through -oxydation. These 
processes produce reducing equivalents that then drive 
the electron transport chain (ETC) enclosed within the 
inner membrane to produce ATP. Inevitably, by the prod­
ucts of  oxidative phosphorylation, mitochondria are also 
the major source of  reactive oxygen/nitrogen species 
(ROS/RNS). Electrons leaking into the mitochondrial 
matrix can react with molecular oxygen. ROS can occur 
when electrons are in excess in case of  inhibition of  oxi­
dative phosphorylation and they can damage macromol­
ecules[13]. ROS can also inhibit the activity of  the ETC, 
specifically the iron-sulfur center-containing enzymes of  
the complex Ⅰ and Ⅲ, and mitochondrial aconitase of  
the TCA cycle[5]. Mitochondria also possesses a major 

role in the regulation of  apoptosis. Indeed, several pro­
apoptotic proteins reside in the intermembrane space, 
including cytochrome c and apoptosis inducing factor[14]. 
Due to the absence of  protective histone proteins, to the 
close vicinity and the limited DNA repair mechanism, 
mtDNA is a sensitive target for oxidative DNA damage 
by ROS[15]. The mutation rate of  mtDNA is at least 10 
times higher than that of  nuclear DNA[5,16].

Equally important, the TCA cycle is critical for several 
metabolic functions, where its intermediates are used as 
substrates for de novo synthesis of  biomolecules[17]. Beside 
this anabolic process, the TCA cycle also plays a critical 
role in the catabolism where non-essential as well as es­
sential amino acids are broken down to TCA cycle inter­
mediates and fatty acids are oxidized to acetyl-CoA. So, 
the different anabolic and catabolic functions of  the mi­
tochondria are tightly regulated in response to nutrients 
such as glucose, amino acids and fatty acids. As shown in 
case of  caloric restriction, adipose tissue features a strong 
down-regulation of  genes involved in energy-generating 
process such as the TCA cycle and oxidative phosphory­
lation[18,19]. In the liver, which participates to maintain an 
adequate level of  sugar in the blood, an up-regulation 
of  genes involved in glucogenesis and β-oxidation was 
noted, whereas genes involved in the TCA cycle and 
oxidative phosphorylation were down regulated[19]. In the 
muscle, caloric restriction increased mitochondrial activ­
ity, at least in human[20].

Impaired mitochondrial function in metabolic diseases
Given the crucial role of  mitochondria for multiple 
metabolic pathways, tight control of  mitochondrial abun­
dance and function is imperative for cellular homeostasis. 
Therefore, it is not surprising that a link exists between 
mitochondrial alteration and various diseases including 
diabetes, cancer and precocious aging[5]. Polymorphic 
variation in mtDNA has been associated with metabolic 
diseases. It should be noted that several studies indicate 
that genomic variation in the 37 mitochondrial genes 
plays a critical role in apoptotic and metabolic pathways 
in many tissues including the brain. It is only recently that 
the mitochondrial proteome has been seen as a dynamic 
cross talking system generated to adapt the mitochondrial 
functional capacity to meet the specific needs of  the tis­
sue or the disease state[21]. According to the tissue and 
depending of  the functional requirements, the nuclear 
transcriptional programming of  the mitochondrial pro­
teome may vary. This is also true for disease state. For in­
stance, in type 1 diabetes, an adaptation of  the liver mito­
chondrial proteome to support ATP production and fatty 
acid oxidation was observed[21]. The posttranscriptional 
modifications are also tissue and disease specific and may 
modify the localization and function of  the mitochon­
drial proteins and enzymes. 

During the process of  reduction of  oxygen to water 
by the ETC, ROS/RNS, such as superoxide, hydrogen 
peroxide, the hydroxyl radical and nitric oxide are gener­
ated and cause oxidative damage to target structures. An 
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imbalance between the production of  ROS/RNS and 
antioxidant defenses plays a major role in inducing altera­
tions in insulin signaling pathways[22].

ROS and RNS are formed during both pro-inflamma­
tory cytokines-mediated β-cell aggression in type 1 diabe­
tes and glucolipotoxicity-mediated β-cell dysfunction in 
type 2 diabetes[23-26]. 

At least 1.5% of  diabetic patients exhibit mutations 
in mtDNA[27]. Many studies suggest that mitochondrial 
dysfunction is critical in insulin-linked pathologies. Fewer 
mitochondria, lower expression of  mitochondrial genes, 
abnormal mitochondrial morphology and disturbed 
oxidative phosphorylation are commonly described in 
insulin target tissues such as the liver, muscle and adi­
pose tissue in the case of  type 2 diabetes[28] or obesity[29]. 
Decrease in the number of  mitochondria causes mito­
chondrial dysfunction[30] and mtDNA density is closely 
associated with oxidative function which itself  is linked 
to insulin sensitivity. Indeed, it has been shown that a 
decrease in mtDNA density in peripheral blood cells pre­
ceded the development of  type 2 diabetes[31]. Moreover, 
mtDNA density was also associated with abnormal obe­
sity before the onset of  type 2 diabetes[32,33]. Mitochon­
drial dysfunction results in an accumulation of  fatty acid 
metabolites, diacylglycerol and long chain fatty acid CoA 
which will induce insulin resistance via the activation of  
the phosphokinase C. These changes are accompanied 
by a decrease in both mitochondrial oxidative activity and 
ATP biosynthesis. 

As already mentioned, several studies with type 2 
diabetic patients and non-diabetic subjects with a family 
history of  diabetes featured down regulation of  nDNA-
encoded mitochondrial genes. For some authors, this 
may lead to alteration at the level of  the mitochondrial 
biogenesis like the control by PGC-1α and NRF-1[34-36]. 
However, Morino et al[30] did not observe any difference 
in such factors and suspected a confounding influence 
such as being overweight. Disruption of  the nuclear gene 
Tfam in cells reproduced pathophysiological features of  
diabetes[37]. Moreover, maternally inherited alterations in 
mtDNA that disrupt mitochondrial function are known 
to cause an insulin-deficient form of  diabetes resembling 
type 1 diabetes[38].

FETAL MITOCHONDRIAL PROGRAM-
MING
Intrauterine environment is a major contributor to the 
future of  individuals and disturbance at a critical period 
of  development may compromise their health. After the 
observation made by Hales et al[39] in 1991 that men with 
low birth weight had increased susceptibility to develop 
type 2 diabetes and cardio-vascular disease, the same as­
sociation was found throughout the world. Therefore, 
the concept of  “the thrifty phenotype hypothesis” sug­
gested 19 years ago by Hales et al[40] is now accepted by 
the scientific community as being involved in several 
pathologies such as obesity, insulin resistance, diabetes, 

hypertension, cardiovascular disease and even cancer and 
precocious aging. The term “thrifty phenotype” sug­
gests that in case of  poor fetal nutrition, resulting from 
either poor maternal nutrition or poor delivery of  nu­
trients to the fetus due to other causes such as placental 
dysfunction, an adaptive response is set up by the fetus 
to optimize the growth of  key organs like the brain at 
the expense of  other tissues such as muscles, kidneys 
and endocrine pancreas. It is also accompanied by pro­
grammed changes in metabolism, enabling the organisms 
to efficiently use and store nutrients. Such adaptations 
are beneficial for the survival of  the fetus but may be 
detrimental later in life, namely when a mismatch occurs 
between the environment predicted and that one encoun­
tered after birth. Then, the concept evolved, introducing 
the notion of  “developmental plasticity” and “predictive 
adaptive response”[41]. If  the insufficient metabolic and 
nutritional environment is the same during fetal life and 
early after birth, the adaptation set up by the fetus will 
be efficient to cope with it but if  not, the adaptations are 
not appropriate and further enhance the risk of  develop­
ing metabolic diseases later in life.

It is only recently that attention was paid to the in­
volvement of  the mitochondria as putative targets for the 
fetal programming of  adult disease. Indeed, it has been 
proposed that a key adaptation enabling a fetus to survive 
in a limited energy environment may be a programming 
of  mitochondrial function[42].

The Simmons’ group was the first to show in rat that 
utero-placental insufficiency provoked by uterine artery 
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Figure 1  Mitochondrial gene expression and biogenesis. Environmental 
factors induce PKA and p38  MAPK pathways. PKA phosphorylates CREB 
transcription factor, which is involved in the induction of peroxisome proliferator-
activated receptor γ coactivator (PGC)-1α gene expression. Activation of p38 
MAPK phosphorylates PGC-1α protein, resulting in its stabilization and activa-
tion. PGC-1α activates the expression of the subunits of mitochondrial electron 
transport chain and Tfam, one of the major regulatory factors for mitochondrial 
transcription and replication, through the co-activation of nuclear respiratory 
factor 1-mediated transcription. Tfam subsequently translocates in the mito-
chondrion and directly increases the transcription and replication of mitochon-
drial DNA (Adapted from Remacle et al [45], 2007).
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ligation targeted the mitochondria because it induced a 
lower pyruvate oxidation in the muscle[43] and liver[44] of  
young adult offspring. In muscle, this defect leads to a 
chronic reduction of  ATP available from oxidative phos­
phorylation, which compromises glucose transporter 4 
(GLUT4) recruitment, glucose transport and glycogen 
synthesis, contributing to insulin resistance and hyper­
glycaemia of  type 2 diabetes[43]. The concept of  mito­
chondrial programming could be especially true for cells 
that have a high energy requirement, such as the β-cells. 
Indeed, uteroplacental insufficiency also induces mito­
chondrial dysfunction in fetal β-cells leading to increased 
production of  ROS, reduced ATP production and de­
cline in mitochondrial ETC complex Ⅰ and Ⅲ. In turn, 
this drives damage to mtDNA that may progressively 
deteriorate the mitochondrial and β-cell function and dia­
betes may ensue[42].

Although the model of  placental insufficiency in­
duced severe fetal growth restriction due to reduction of  
transfer of  nutrients as well as of  oxygen to the fetus, 
more subtle nutritional disturbances in the intrauterine 
environment have also been shown to program key organ 
during development. In a general population, nutritional 
imbalance in the presence of  an adequate quantity of  cal­
ories and oxygen is obviously less drastic but is probably 
more frequent and may have substantial consequence for 
the progeny.

For many years we have investigated several mod­
els of  early malnutrition in rats to understand by which 
mechanism developmental programming could occur. 
Most of  our research focused on the β-cell development 
in the fetus and newborn and we have evaluated long-
term consequences in offspring of  mother fed a low pro­
tein diet (LP). We pointed to an alteration at the level of  
the mitochondria but because insulin resistance, diabetes 
and obesity are burning throughout the world, we also 
investigated if  a mitochondrial programming could be a 
common mechanism for several types of  nutrient imbal­
ance, including calorie restriction or HF. 

If  the quantity of  calories is adequate during develop­
ment but the proteins are low, the development of  many 
organs is altered and the islet cell is specifically targeted 
as reported in several reviews[45] and in some articles 
of  this book. Briefly, although the fetal growth of  the 
offspring from dams fed a LP diet was only reduced by 
5%-10%, the fetal β-cell mass was smaller. Such a reduc­
tion was demonstrated to be due to a low β-cell prolifera­
tion, a reduced islet vascularisation[46-49] and an increased 
susceptibility of  the insulin secreting cell to be destroyed 
by apoptosis in response to aggressive molecules[50,51]. In 
addition, these fetal islets secreted less insulin in response 
to glucose and amino acids[52]. The lower insulin secretion 
was maintained in young adulthood[51,53]. Later in life, the 
LP offspring featured also an increased vulnerability to 
cytokines, ROS[51] and poor capacity to regenerate after 
streptozotocin destruction (unpublished data). On the 
basis of  such pathological characteristics, we investigated 
by proteome and microarray analysis if  a common path­

way could be found and we demonstrated that the mi­
tochondrion through its TCA cycle was the main target. 
Indeed, 11% of  the altered genes founded in the LP fetal 
islets coded for mitochondrial protein and the expres­
sion of  almost every gene involved in the TCA cycle was 
changed by the maternal LP diet[54,55]. 

Antioxidants defenses
We knew from the literature that the normal adult β-cells 
possess particularly weak antioxidant defenses activity 
compared to other organs such as the liver[56,57], but no 
data were available for fetal and neonatal pancreatic islets. 
With their first breath, newborns are directly exposed to 
an increase in oxygen concentration. A few hours later 
when lactation starts, they are also exposed to another 
type of  nutrition, switching from a diet rich in glucose 
and amino acids in utero to a fatty diet during lactation. 
A microarray analysis performed on mtRNA from cord 
whole blood collected after human cesarean section re­
vealed a higher expression of  genes involved oxidative 
stress pathways such as superoxide dismutase (SOD), cat­
alase, peroxiredoxins and UCP[58]. Thus, we investigated 
the islet antioxidant activity at birth and after weaning in 
normal rats. While SOD and catalase activity were much 
lower in islets than in the liver, we found an as efficient 
glutathione peroxidase activity (GPX) but that, however, 
decreased thereafter when compared to the liver, weaken­
ing the general antioxidant capacity in normal rats post­
natally[59]. GPX removes H2O2 produced through the dis­
mutation by SOD of  the superoxide anion to O2. When 
the mother was fed the LP diet we found that the GPX 
activity was decreased in fetal islets[59]. Then, a temporary 
efficient GPX activity counterbalancing SOD activity that 
occurs in normal islets was not possible in LP fetal islets. 
This alteration may be one explanation for the increased 
susceptibility of  these fetal islets to cytotoxic aggres­
sion. If  a switch to a normal diet is given to the mother 
after birth, a reduction of  islet antioxidant capacity was 
observed in the newborn. If  the LP diet was maintained 
until weaning such lowering was not reported. This ob­
servation supports the concept of  the detrimental effect 
of  a mismatch between a suboptimal environment and a 
richer environment after birth[60]. 

We were the first to measure the oxidative stress (OS) 
and the antioxidant capacity in the islets of  3-month old 
adult offspring from LP mother. Nitrotyrosine levels 
were significantly higher in the plasma of  offspring when 
the LP diet was present during fetal life or during fetal 
life and lactation[59]. Adult islets expressed higher iNOS 
levels and consequently secreted large amounts of  NO[61]. 
The best way to verify the antioxidant potential of  a cell 
is to measure the activity of  the antioxidant enzymes. 
Maternal LP diet provoked an increased SOD activity 
in adult islets which should increase the level of  H2O2, 
but no concomitant activation of  catalase and GPX was 
observed. This imbalance could lead to higher hydrogen 
peroxide production that may concur to increased oxida­
tive stress contributing to the alteration of  the insulin se­
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cretion and the increased vulnerability of  the β-cell later 
in life[51,59].When total SOD activity was measured, the 
analysis did not allow making a difference between the 
manganese superoxide dismutase (MnSOD) and the Cu/
ZnSOD. An increased expression of  Cu/ZnSOD gene 
but not of  MnSOD was observed in the offspring that 
received a LP diet during gestation or during gestation 
and lactation. When the LP offspring was analyzed at 15 
mo, the expression of  both Cu/Zn and MnSOD genes 
was decreased in the islets[62].

Mitochondrial biogenesis and function  
As mentioned above, the participation of  mitochondria in 
the programming of  β-cell dysfunction observed in off­
spring submitted to environmental disorders during early 
life was proposed recently[27]. Simmons et al[42] found that 
uteroplacental insufficiency during late gestation, which 
implies nutrient as well as oxygen depletion, induced OS 
and marked mitochondrial dysfunction in pancreatic islets 
of  the intrauterine growth retardation (IUGR) progeny. 
Showing that mitochondrial dysfunction was not limited 
to pancreatic islets[43,44], they proposed that a key factor 
enabling a fetus to survive in a limited energy environ­
ment is a reprogramming of  mitochondrial function, 
which can lead to deleterious effects. 

In order to assess whether maternal malnutrition, 
without restriction of  the oxygen supply, should lead to 
mitochondrial programming in islets, we analyzed param­
eters of  mitochondrial biogenesis and function in adult 
offspring of  dams fed either a protein restriction (LP), a 
high fat diet (HF) or exposed to a global food restriction 
(GFR) during gestation. 

We found that, independently of  the type of  prena­
tal malnutrition, mitochondrial function was affected in 
pancreatic islets of  the adult offspring[53,63]. Thus, mater­
nal malnutrition itself  caused mitochondrial dysfunction 
in pancreatic islets from 3-month old progeny that may 
predispose to glucose intolerance later in life, namely by 
affecting insulin secretion[64,65]. In vitro, male and female 
islets from control offspring increased their insulin se­
cretion in response to glucose. This enhancement was 
less marked in LP offspring and absent in GFR and HF 
3-month old animals. This could be associated with dys­
functions in energy metabolism, located for a large part 
in mitochondria because ATP production was blunted af­
ter glucose challenge in islets of  male and female progeny 
from malnourished dams.

It is becoming obvious that the programming is a sex-
specific phenomenon[53,63]. Although the common altera­
tion cited above exists, some changes were specific to the 
maternal diet as well as to the sex of  the progeny (Figure 2).  
For instance, in male progeny, the restriction of  nutrients 
seemed to have more consequences since β-cell mass, as 
well as the expression of  genes coding for proteins in­
volved in energy metabolism and TCA cycle, were found 
altered to a greater extent in LP and GFR rats than in 
HF male animals (Figure 2A). Conversely, a maternal diet 

enriched with animal fat was more pernicious for females 
because HF females presented much more damage than 
LP and GFR females (Figure 2B). Also, independently 
of  the type of  early malnutrition, the pathway leading to 
blunted ATP production in malnourished offspring ap­
peared differently in males and females. Indeed, increased 
basal production of  ROS was found only in males of  the 
3 groups (Figure 2A). This latter long-term consequence 
of  prenatal malnutrition could be a determinant for in­
ducing sex-specific cellular and molecular effects since 
ROS are known to be able to inactivate the iron-sulfur 
centers of  the ETC complexes and TCA cycle enzymes, 
resulting in shutdown of  mitochondrial energy produc­
tion[66]. It should be noted that higher ROS production 
in male islets from LP offspring was congruent with our 
previous observation showing the influence of  early mal­
nutrition on adult antioxidant potential[59]. Manifestation 
of  progression of  OS was also reported by others for 
IUGR male offspring of  rats exposed to uteroplacental 
insufficiency[42]. In these rats, OS was linked to accumu­
lation of  mtDNA mutations in islets and blunted ATP 
production. Indeed, IUGR males presented a reduction 
by 50% of  the activities of  both complexes Ⅰ and Ⅲ 
at 7-week of  age that dropped at 15-week to less than 
25% of  those of  controls[42]. In female offspring that 
were exposed to low protein, low calorie or HF during 
prenatal life, we reported that the poor capacity of  ATP 
biosynthesis directly involved a down regulation of  cru­
cial factors. Indeed, independently of  the type of  early 
malnutrition, each female group showed a reduction in 
the expression of  both malate dehydrogenase and ATP6 
which could decrease the mitochondrial energy produc­
tion through the TCA cycle and the ETC (Figure 2B). 

The effect of  altered nutrient availability to the fetus 
on β-cell mitochondrial DNA is puzzling. While reduc­
tion of  placental blood flow first provoked an increase in 
the number of  mtDNA copies at fetal stage, this number 
decreased with age under the normal value[42]. We did 
not find any modification in LP progeny mtDNA but an 
increase in offspring of  mothers 50% underfed or fed a 
HF during gestation. 

Another consequence of  early malnutrition which is 
sex specific was the over expression of  PPARγ in islets 
from LP, GFR and HF males. This strong PPARγ expres­
sion might increase ROS production, via an enhanced 
lipid uptake in cells that are not metabolically adjusted to 
handle this challenge[67]. Moderate amounts of  PPARγ 
are known to be expressed in normal pancreatic β-cell 
but its fundamental role in these cells is not fully under­
stood[68]. PPARγ appears to be important for glucose ho­
meostasis since PPARγ ligands reduced insulin levels by 
targeting the insulin gene transcription[69]. Improvement 
of  mitochondrial biogenesis was also associated with 
enhanced PPARγ function in adipose tissue[9]. Emerging 
evidence suggests that PPARγ ligands, named thiazoli­
dinediones, offer benefits for preventing or delaying the 
decline in β-cell function[70,71] through effects on lipid 

1�3 September 15, 2011|Volume 2|Issue 9|WJD|www.wjgnet.com

Reusens B et al . Programming of mitochondrial alteration



transport and metabolism, by modulating the expression 
of  genes involved in glucose sensing[68,72] and by reducing 
ER stress[69]. Although activation of  PPARγ results from 
ligand-dependent heterodimerization of  PPARγ with 
RXR, over expression of  PPARγ may induce by itself  an 
increase in GSIS in the absence of  exogenous PPARγ 
ligand[68]. These data could also help to explain that LP 
males maintained insulin release despite a blunted ATP 

biosynthesis after glucose challenge. However, we did not 
show the same correlation for GFR and HF, suggesting 
that the excessive level of  over expression of  PPARγ in 
LP rats could be determinant to GSIS. PPARγ has been 
reported to induce expression of  UCP-2 in β-cells[73], as 
observed in LP male islets. Thus, as postulated above, the 
particularly high level of  PPARγ expression could be a 
key factor inducing UCP-2 transcription in LP male islets. 
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UCP: Uncoupling proteins species.
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Mitochondrial programming in other organs
Mitochondrial dysfunction is not limited to the pancre­
atic islets. In the liver, a marked resistance to insulin was 
observed in the young IUGR progeny prior to the occur­
rence of  diabetes. Oxidation rates of  pyruvate, glutamate 
and succinate were blunted in isolated hepatic mitochon­
dria of  very young IUGR offspring. Increased MnSOD 
protein expression as well as high levels of  4-hydroxynon­
enal was found already at fetal stage and maintained later 
in life[44]. We also reported a programming that was sex-
specific, at the level of  mitochondria in the liver of  off­
spring of  malnourished mother[53,63]. After a maternal LP 
diet, although mtDNA content was reduced in male liver, 
no expression of  genes involved in mitochondrial biogen­
esis, function and metabolism was found altered while the 
female offspring presented a lower expression of  citrate 
synthesis and malate dehydrogenase, suggesting that the 
ATP production could be affected[53]. The liver of  GFR 
and HF males featured a higher expression of  ND4L and 
COX-1, respectively subunits of  complexes Ⅰ and Ⅳ of  
the ETC encoded by the mtDNA and a reduced level of  
citrate synthase and malate dehydrogenase mRNA[63]. In 
the LP offspring, key enzymes that regulate glucose ho­
meostasis were found altered in the young and adult prog­
eny[74]. An increase in hepatic carbonyl concentration and 
an up-regulation of  GPX were also observed in the LP 
adult progeny which may be indicative of  higher oxidative 
stress[75].

In muscle, the reduced pyruvate oxidation provoked 
by uteroplacental insufficiency results in a chronic reduc­
tion in the supply of  ATP available from oxidative phos­
phorylations, which compromises GLUT4 recruitment, 
glucose transport and glycogen synthesis, contributing to 
insulin resistance and hyperglycemia of  type 2 diabetes[43].

Park et al[76] found that the offspring of  dams fed a LP 
diet during pregnancy and weaning have a lower mtDNA 
content as well as mtDNA-encoded gene expression in 
the liver and skeletal muscle. They also reported lower 
mtDNA levels in the total pancreas[76] which was, howev­
er, not corroborated by us when only endocrine pancreas 
was analyzed[53].

Several reports documented that vascular structure 
and function can be programmed in early life. It was 
shown that maternal low protein diet impaired vascu­
larization in the islets[46-49] as well as in the brain[77] and 
muscle[78]. The vascular change may be associated or not 
with hypertension later in life. A clear mitochondrial 
programming at the level of  endothelial cell is not yet 
demonstrated. What is known is that growth restricted 
neonates exhibited endothelial dysfunction very early in 
life, predisposing them to atherosclerosis. Higher mito­
chondrial ROS generation and function are associated 
with cardio-vascular disease. In neonates with IUGR, 
increased lipid peroxidation was observed in association 
with low levels of  antioxidants and antioxidant enzyme 
activity[79]. It is possible that excessive ROS production by 
placental mitochondria may be released in the fetal cir­
culation and may alter vascular mtDNA[80]. Taylor et al[81] 

searched for mitochondrial abnormalities in the aorta of  
adult offspring from a mother fed a HF during gesta­
tion and lactation and revealed a lower expression of  the 
mitochondrial genome. Four genes of  the mitochondrial 
encoded mRNA were down regulated among which was 
ATPase-6 and six genes of  the nuclear mRNA encoding 
mitochondrial proteins were under expressed, among 
which was MnSOD. 

CONCLUSION
In conclusion, an alteration in the metabolism and the 
nutrition of  the mother affects the mitochondria in sev­
eral organs of  the progeny. Alterations are observed at 
birth but aggravate with age. More specifically, imbalance 
or less availability of  nutrients to the β cell, small re­
peated increases in ROS production, lower ATP synthesis 
and inadequate antioxidant balance may predispose to β 
cell dysfunction. Some of  these mitochondrial alterations 
seem more dramatic in male animals than in females in 
cases of  nutritional restriction contributing to the early 
development of  a prediabetic state in male progeny. 
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