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Abstract
Redox balance is fundamentally important for physi-
ological homeostasis. Pathological factors that disturb 
this dedicated balance may result in oxidative stress, 
leading to the development or aggravation of a variety 
of diseases, including diabetes mellitus, cardiovascular 
diseases, metabolic syndrome as well as inflammation, 
aging and cancer. Thus, the capacity of endogenous 
free radical clearance can be of patho-physiological 
importance; in this regard, the major reactive oxy-
gen species defense machinery, the nuclear factor 
(erythroid-derived 2)-like 2 (Nrf2) system needs to be 

precisely modulated in response to pathological altera-
tions. While oxidative stress is among the early events 
that lead to the development of insulin resistance, the 
activation of Nrf2 scavenging capacity leads to insulin 
sensitization. Furthermore, Nrf2 is evidently involved in 
regulating lipid metabolism. Here we summarize recent 
findings that link the Nrf2 system to metabolic homeo-
stasis and insulin action and present our view that Nrf2 
may serve as a novel drug target for diabetes and its 
complications.
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INTRODUCTION
The association between oxidative stress and insulin re-
sistance has been recognized for more than a decade[1,2]. 
While the initial interpretation of  this phenomenon was 
that oxidative stress was among the consequences of  
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impaired insulin action during hyperglycemia[1,2], further 
studies have revealed the causative role of  oxidative stress 
in insulin resistance[3,4]. More recently, the initiation of  
oxidative stress in inducing insulin resistance has been 
more specifically linked to the elevated mitochondrial re-
active oxidative species (ROS) production[5]. The progress 
in the research on the etiological role of  oxidative stress 
in insulin resistance has deepened our knowledge of  the 
patho-physiological alterations in metabolic disorders, in-
cluding type 2 diabetes mellitus (T2D).

The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 
system was originally discovered as one of  the important 
antioxidant machineries[6,7]. In the middle of  the 1990s, 
two teams independently isolated the cDNA that en-
codes Nrf2[6,8]. The function of  Nrf2 in regulating redox 
balance was identified following the discovery of  Nrf2 
in up-regulating genes encoding antioxidant enzymes[9]. 
In addition, another major function of  the Nrf2 system 
in detoxification was revealed[10,11]. The function of  this 
system as a master regulator of  redox balance in cellular 
cytoprotective response is now widely accepted[12].

From practical point of  view, Nrf2 has drawn our at-
tention as a promising drug target. Several Nrf2 activators 
have already been developed for treating diseases, includ-
ing tumors and inflammatory diseases[13,14]. Interestingly, 
Nrf2 activators have been shown to modulate insulin 
action[15]. In addition, certain natural chemicals, including 
those in the category of  Chinese herbal medicine, were 
shown to both up-regulate Nrf2 action and sensitize insu-
lin action[16]. Further exploration of  mechanisms underly-
ing the function of  Nrf2 will not only help the proper 
utilization of  traditional medicines in treating metabolic 
diseases, but also lead to the discovery of  novel therapeu-
tic targets for various diseases.

In the past few years, a number of  excellent reviews 
have updated our knowledge about the molecular basis 
of  the Nrf2 system, the crosstalk between Nrf2 and other 
cell signaling pathways, as well as its capability in repress-
ing inflammation, tumorigenesis and promoting longev-
ity[17-20]. Here we review recent findings which link the 
Nrf2 system to metabolic homeostasis and insulin action. 
In addition, we present our view that Nrf2 may serve as a 
novel drug target for diabetes and its complications.

OXIDATIVE STRESS MAY LEAD TO THE 
DEVELOPMENT OF INSULIN RESISTANCE
Insulin resistance, i.e., impaired insulin action in its sensi-
tive tissues (muscles, liver and adipose tissue), was recog-
nized as a common feature of  obesity and diabetes more 
than half  a century ago[21]. This abnormality is also associ-
ated with other prevalent metabolic diseases, including 
hypertension, dyslipidemia and cardiovascular disorders[22]. 
The spectrum of  insulin resistant syndrome causes a 
broad health hazard and enormous financial burden, 
which make the pharmacological combat of  insulin resis-
tance an urgent task. 

For effective drug intervention of  insulin resistance 
and related diseases, the first important task is to identify 
a proper drug target. This is based on our understanding 
the molecular mechanisms underlying insulin insensitiv-
ity. Great efforts have been made in the exploration of  
the cellular aberrant related to insulin resistance. Early 
observations suggested that the defect in insulin signal-
ing, including insulin receptor substrate-1 (IRS-1), is ap-
parently involved[23]. We have then gradually recognized 
that the impairment in IRS-1 signaling is not primary but 
secondary to other alterations[24], including the inflam-
matory responses (kinase complex IKK-β activation)[25], 
endoplasmic reticulum (ER) stress[26] and mitochondrial 
dysfunction[27]. These abnormalities can blunt IRS-1 ty-
rosine phosphorylation and subsequent insulin signaling 
transduction[24].

Currently, it is still not known which pathological fac-
tor initiates insulin resistance. Several pioneer studies in-
dicated that an apparent impairment of  insulin signaling 
is not prerequisite for the occurrence of  insulin resistance 
in the early stage. A study by Dr. Hoehn et al[28] found that 
treatment of  insulin sensitive cells with a variety of  insu-
lin resistance inducers, such as tumor necrosis factor-α 
(TNF-α), oxidative stressor and dexamethasone, did not 
always impair the insulin signaling transduction, but still 
produced the impairment in insulin action. Moreover, in 
mice fed with a high fat diet, leading eventually to initial 
insulin resistance, there was no insulin signaling alteration 
involved[28]. This is reinforced by a recent study show-
ing that mitochondrial derived oxidative stress is tightly 
linked to impaired insulin action, while the traditionally 
defined insulin signaling transduction appears to be in-
tact[29]. Moreover, in high fat-induced insulin resistance, 
oxidative stress is evident in adipose tissue at the initial 
stage of  insulin resistance[4,30]. Thus, oxidative stress de-
rived from mitochondrial ROS overproduction after ex-
cessive nutrient uptake is likely to be the early aberrance 
that causes insulin resistance[5]. Furthermore, antioxidants 
were shown to ameliorate insulin resistance[3]. These 
findings collectively support the notion that oxidative 
stress plays an initial role in the development of  insulin 
resistance. This theory also makes sense if  considering 
that insulin resistance is actually an adaptive response to 
block energy over supply and the mitochondria is a major 
energy producer responding to energy overwhelming by 
producing ROS, causing a negative feedback to block in-
sulin action. 

Although at this stage we do not fully understand 
mechanistically how oxidative stress causes insulin resis-
tance, existing scientific evidence has indicated a few po-
tential pathways by which oxidative stress interferes with 
insulin action. Experimental data indicate that oxidative 
stress may lead to a direct impairment of  insulin signaling 
molecules via modifying their oxidative status[31]. More 
importantly, oxidative stress can interact with inflamma-
tion, ER stress and mitochondrial dysfunction, which 
are among the causative factors of  insulin resistance[25-27]. 
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While over-nutrition may promote mitochondrial oxidant 
production and oxidative stress[5], inflammatory signals 
can be activated by oxidative stress[32]. ER is an initial 
stress sensing organelle. Responding to oxidative stress, 
it can also promote the oxidant production by an unfold 
protein reaction which produces ROS, leading to activa-
tion of  redox sensitive kinases, such as NF-κB, to initial 
inflammatory responses[33]. NF-κB-regulated cytokine 
production in turn negatively affects the function of  ER 
via various routes including the increase of  TNF-α[34]. 
One of  the fundamental consequences of  ER stress re-
sponse is the inhibition of  protein synthesis, which will 
ultimately affect mitochondrial biogenesis and function[35]. 
Furthermore, oxidative stress may damage mitochondrial 
DNA directly and further impair its function[36]. There-
fore, oxidative stress is linked to a variety of  pathological 
factors that are important for impairing insulin action. 

NRF2 IS AN IMPORTANT ANTIOXIDANT 
SYSTEM IN EUKORYOTIC ORGANISMS
One of  the most important antioxidant machineries is 
the Nrf2 system, with the transcription factor Nrf2 as 
the central component[37]. Nrf2 binds to the nucleotide 
sequence, namely antioxidant response element (ARE), 
in the promoter region of  a battery of  genes that en-
code antioxidant enzymes. The major Nrf2 regulated 
antioxidant enzymes include heme oxygenase-1, Mn-su-
peroxide dismutase, sequestosome 1, NAD(P)H quinone 
oxidoreductase 1, glutathione peroxidase, glutathione 
S-transferase A1 and glutamate-cysteine ligase[37]. Without 
stimulation, Nrf2 molecules mainly reside in the cyto-
plasm, anchored with Kelch-like ECH-associated protein 
1 (Keap1). The association between Nrf2 and Keap1 

may trigger Nrf2 ubiquitination and subsequent protea-
some degradation. In response to oxidative stress, certain 
lysine residues in Keap1 are modified, resulting in the 
disruption of  the complex and the increase of  free Nrf2 
molecules. Nrf2 free molecules will then be translocated 
into the nucleus to stimulate gene transcription (Figure 
1). Nrf2 nuclear translocation can also be triggered by 
other signaling kinases. For example, an early study found 
that ARE-directed transcription was activated by the 
protein kinase C (PKC) activator, phorbol 12-myristate 
13-acetate, while the PKC catalytic subunit was also able 
to phosphorylate Nrf2 directly in vitro, indicating a direct 
regulation of  PKC on Nrf2 translocation and activa-
tion[38]. Several other protein kinases, including MARK, 
PERK and Akt, may also be able to phosphorylate Nrf2 
and stimulate its nuclear translocation and action[38-41].

The Nrf2 system is evolutionally conserved and ubiq-
uitously expressed in a variety of  cell lineages and systems. 
This, along with the large spectrum of  Nrf2 regulated en-
zymes, renders it with a great capacity to prevent oxidative 
stress-induced damage. In addition to its role in regulating 
redox balance[17,42], recent evidence suggests that the Nrf2 
system is involved in certain other important functions, 
including regulating lipid metabolism and insulin action, 
which will be detailed in the following sections.

ROLE OF THE NRF2 SYSTEM IN 
REGULATING INSULIN SIGNALING AND 
METABOLIC HOMEOSTASIS
The interaction of  the Nrf2 system with insulin ac-
tion is an emerging research theme. In one way, insulin 
and its effector Akt/PKB were shown to modulate the 
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Figure 1  Oxidative stress promotes anti-oxidative gene expression via nuclear factor (erythroid-derived 2)-like 2 activation. In a basal state, free Nrf2 level 
is very low because it forms a complex with Keap1 and the E3 ligase Cul3-Rbx-1, leading to its proteasome degradation. Under the stimulation of oxidative stress, 
the level of free Nrf2 increases as it is dissociated with Keap1. Free Nrf2 molecules will then enter the nuclei, bind to the cis-element ARE and stimulate the expres-
sion of Nrf2 target genes[7]. ARE: Antioxidant response element; Cul3: Cullin 3; E3: Ubiquitin ligase; Keap1: Kelch-like ECH-associated protein 1; Nrf2: Nuclear factor 
(erythroid-derived 2)-like 2; Rbx-1: RING box protein 1. 
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function of  Nrf2. In Caenorhabditis elegans (C. elegans), it 
was shown that Nrf2 (SKN-1, a synonyms in C. elegans) 
can be directly phosphorylated by Akt, leading to the 
repression of  its nuclear translocation[43]. Since oxidative 
stress is associated with aging and Akt/insulin signaling 
is a critical signaling that causes aging[44], this repression 
may be among the mechanisms for insulin signaling in 
accelerating aging. However, in mammals, a number 
of  studies have actually shown that insulin signaling 
is required for Nrf2 activation[45,46]. Interestingly, Nrf2 
function was found to be defective in aged mice[47] 
and aging is usually accompanied by insulin resistance. 
Whether impaired insulin signaling blunts Nrf2 function 
or the reverse in mammals remains to be examined.

On the other hand, the modulation of  the Nrf2 system 
to insulin signaling in mammals has just been recognized 
recently, particularly in conditions of  insulin resistance. 
In fact, oxidants are not always detrimental and a certain 
amount of  ROS is important to maintain normal insulin 
signaling transduction as redox balance is dedicatedly 
regulated in physiological conditions[48]. However, ROS 
overproduction will destroy this balance, resulting in 
oxidative stress and impaired insulin action. To combat 
oxidative stress, the Nrf2 system may directly or indirectly 
interact with insulin signaling via several potential 
pathways to sensitize insulin action (Figure 2). It has been 
demonstrated that in high fat diet (HFD) fed mouse 
models, Nrf2 activation was shown to repress oxidative 
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Figure 2  The potential pathways mediate the enhancement of the Nrf2 system on insulin signaling transduction. As a protective machinery, Nrf2 activation 
promotes the expression of a variety of key anti-oxidative enzymes that scavenge reactive oxidative species, attenuate oxidative stress-induced inflammatory activa-
tion, mitochondrial damage and ER stress. Subsequently, Nrf2 enhances insulin signaling by blocking the activation of IKKβ, PKC and JNK, respectively, that pro-
motes the serine phosphorylation of IRS-1 and impairs the tyrosine phosphorylation of IRS-1 as well as subsequent insulin signaling transduction[28]. Furthermore, Nrf2 
may directly enhance insulin signaling by an unidentified mechanism[15]. On the other hand, insulin signaling components, such as GSK-3 or mTOR, can promote Nrf2 
function by regulating its content and nuclear location[49,50]. The Nrf2 activation, particularly the Nrf2-targeted gene products, heme oxygenase-1 and Mn-SOD, protects 
from oxidative stress-induced abnormalities and exerts a sensitizing action on insulin signaling[51,52]. ARE: Antioxidant response element; ER: Endoplasmic reticulum; 
GSK: Glycogen synthesis kinase; GST: Glutathione S-transferase; HO-1: Heme oxygenase-1; iNOS: Inducible nitric oxide synthase; IKK: Inhibitor of κB kinase; IRS: 
Insulin receptor substrate; JNK: C-Jun N-terminal kinase: mTOR: Mammalian target of rapamycin; Mn-SOD: Mn-superoxide dismutase; Nrf2: Nuclear factor (erythroid-
derived 2)-like 2; PKB: Protein kinase B; PKC: Protein kinase C; TNFα: Tumor necrosis factor-α. 
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stress and ameliorate blunted insulin signaling[15]. In addi-
tion, Nrf2 activation may enhance insulin signaling via in-
hibiting the inflammation signaling pathway and ER stress 
in vivo[15]. Our group reported recently that a direct deple-
tion of  Nrf2 by siRNA in the hepatic HepG2 cell line 
resulted in impaired insulin-stimulated Akt phosphoryla-
tion[15]. Furthermore, in injured liver, Nrf2 was shown to 
be required to promote liver regeneration in response to 
Akt activation[53]. 

In addition to the regulation of  redox balance, Nrf2 
activation may negatively regulate lipid synthesis and ex-
ert an antiobesity function. Several reports have revealed 
the role of  Nrf2 on lipid metabolism in adipocytes. Nrf2 
stimulation by carnosic acid and carnosol was shown to 
inhibit preadipocyte differentiation and adipogenesis[54]. 
Since adipocyte differentiation is affected by both redox 

balance and transcription factors[55], we do not know now 
whether Nrf2 affects adipocyte differentiation through 
redox modulation or by regulating key transcription fac-
tors, such as peroxisome proliferator-activated receptor 
(PPARγ)[56]. The role of  Nrf2 in regulating whole body 
weight and obesity has been investigated recently by our 
group and others. Oltipraz and oleanolic triterpenoid 
1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imid-
azole (CDDO-Im), two known activators of  Nrf2, were 
shown to prevent HFD-induced increase of  body weight, 
adipose mass and hepatic lipid accumulation[15,57]. Impor-
tantly, the effects of  CDDO-Im were dependent on the 
Nrf2 system, while no such responses were observed in 
Nrf2-disrupted mice[57].

In the liver, a recent study using proteomic analysis 
of  Nrf2 deficient transgenic mice suggests that the Nrf2 
system is responsible for inhibition of  expression of  lipid 
synthetic and metabolic enzymes, such as ATP-citrate 
lyase[58]. When the methionine- and choline-deficient 
(MCD) diet was utilized to induce fatty liver, a more 
profound hepatosteatosis was observed in the Nrf2-null 
mice, compared with that of  the wild type littermates[59]. 
In contrast, Keap1-null mice showed a delay of  onset in 
hepatosteatosis and the degree of  hepatosteatosis was 
milder than the control wild type littermates[59]. These ob-
servations collectively suggest that the Nrf2 system plays 
a role in repression of  hepatic lipid accumulation. 

Interestingly, a seemly opposite role of  Nrf2 in lipid 
metabolism and lipogenesis was observed in the analysis 
of  Nrf2-/- mice. These mice show reduced liver weight, 
hepatic fatty acid content as well as serum lipids[60]. Fur-
thermore, in hepatocytes of  the Nrf2-/- mice, the expres-
sion level of  PPARγ gamma, fatty-acid synthase, stearoyl-
CoA desaturase and regulatory-element binding protein 
that are involved in de novo lipogenesis were found to be 
reduced[60]. We suggest that the role of  the Nrf2 system 
in lipid homeostasis is certain but complex. The different 
role of  Nrf2 in lipid homeostasis may be related to the 
status of  Nrf2 activation. Permanent inactivation of  Nrf2 
by genetic modulation versus temporary Nrf2 activation 
by its chemical activators may give rise different adaptive 
mechanisms that affect lipogenic gene expression and 
lipid metabolism. 

As Nrf2 affects insulin signaling and lipid metabolism, 
it is anticipated that Nrf2 would also modulate glucose 
metabolism. Following STZ treatment, compared with 
the wild type mice, Nrf2-null mice had a higher blood 
glucose level, accompanied by enhanced hepatic gluco-
neogenesis[61]. In the high fat diet-fed C57BL/6J mouse 
model, the administration of  Nrf2 activator oltipraz sig-
nificantly attenuated glucose intolerance, accompanied by 
the blockage of  the development of  obesity and dyslip-
idemia[15]. Table 1 summarizes the recent findings of  the 
Nrf2 system on metabolic regulation.

NRF2 SYSTEM AS A POTENTIAL DRUG 
TARGET FOR DIABETES TREATMENT 
With the causal link of  oxidative stress with insulin re-
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Table 1  Nrf2 system in the regulation of metabolic homeostasis

Effect Model Ref.

Preadipocyte differentiation2 Carnosic acid and carnosol stimu-
lated Nrf2 activation in 3T3-L1 
adipocytes

[54]

Preadipocyte differentiation1 Nrf2 deficient 3T3-L1 adipocytes [56]
Adipocyte differentiation1 The Nrf2 activator CDDO-Im-

treated mouse embryonic fibro-
blasts from C57BL/6J Nrf2-/- mice

[62]

Obesity2 HFD-induced obesity in C57BL/6J 
mice fed with the Nrf2 activator 
oltipraz

[15]

Obesity2 HFD-induced obesity in C57BL/6J 
mice fed with the Nrf2 activator 
CDDO-Im

[57]

Hepatic lipogenesis1 Nrf2  mice deficient mice [58]
Hepatic steatosis1 MCD diet-induced hepatic steato-

sis in Nrf2 null mice
[59]

Hepatic steatosis2 Nrf2-/- mice [60]
Hepatic gluconeogenesis1 STZ-induced diabetes in Nrf2 null 

mice
[61]

Blood glucose1, serum lipid1 STZ-induced diabetes in Nrf2 null 
mice

[61]

Blood glucose2, serum lipid2 HFD-induced obesity in C57BL/6J 
mice fed with the Nrf2 activator 
oltipraz

[15]

Blood glucose2 STZ-induced diabetes in mice 
treated with oltipraz

[61]

Insulin signaling1 HFD-induced obesity in C57BL/6J 
mice fed with the Nrf2 activator 
oltipraz

[15]

Insulin signaling1 Oltipraz treated- mice with partial 
hepatectomy 

[63]

Insulin signaling2 Hepatectomy in Nrf2-/- mice [53]
Insulin signaling2 Nrf2 knockdown in human liver 

cell line HepG2 cells
[15]

AMPK signaling1 Oltipraz treated HepG2 cells [64]
Pancreatic β-cell damage2 Cytokine or STZ-induced RIN 

β-cell damage with the Nrf2 acti-
vator, sulforaphane

[65]

Mitochondria damage2 ROS-induced mitochondrial dam-
age in HepG2 cell with oltipraz

[64]

1Increase; 2Decrease. Nrf2: Nuclear factor (erythroid-derived 2)-like 
2; CDDO-Im: Oleanolic triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(
11)-dien-28-oyl] imidazole; HFD: High fat diet; MCD: Methionine- and 
choline-deficient; STZ: Streptozotozin; ROS: Reactive oxidative species. 
AMPK: AMP-dependent kinase.
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sistance[15,66], it is reasonable to expect that Nrf2 activa-
tion can be the potential drug target for diabetes treat-
ment[67-71]. Based on existing studies, several aspects of  
Nrf2 activation can benefit diabetic patients: (1) Nrf2 
activation protects pancreatic β-cells from damage[65] 
and subsequently prevents the onset of  diabetes; (2) The 
sensitizing action of  Nrf2 on insulin may bring benefit 
for diabetic patients with better glucose control; (3) In 
addition, hyperglycemia-induced endothelial dysfunction, 
vascular complications and cardiomyocyte damage[72,73] 
may be prevented by Nrf2 activation by reducing oxida-
tive stress[74-77]; and (4) A protective role of  the Nrf2 sys-
tem in diabetic nephropathy and neuropathy is another 
potential function for a Nrf2 modulating drug[78-81]. Cer-
tainly, to further explore its in vivo efficacy, clinical trials 
are required to prove its usefulness on glucose control 
and prevention of  diabetic complications. 

One should note that applying an anti-oxidative stress 
strategy to treat diabetes was raised a long time ago. 
However, this approach is questionable because of  the 
experimental observation that exogenous supplement 
antioxidants, such as vitamin C, do not generate effective 
and consistent results for the control of  glucose level and 
diabetic complications[81-83]. A potential problem of  long-
term vitamin C administration with its suppressing effect 
on the endogenous Nrf2 system[84], therefore, is unable 
to produce sufficient antioxidant function. The utiliza-
tion of  Nrf2 activator may provide additional advantages 
compared with external antioxidant intake to treat oxida-
tive stress and prove the effectiveness of  this strategy[81]. 

Natural compounds may provide a rich resource for 
the pharmacist to explore Nrf2 activators with sufficient 
safety. Substantial evidence indicates that many natural 
compounds or nutraceuticals can activate Nrf2[19,85,86]. 
Notably, resveratrol, curcumin and epigallocatechin-3-
gallate are all reported to act as insulin sensitizing agents, 
reverse hyperglycemia, hyperlipidemia and other symp-
toms linked to obesity[87-90]. These natural compounds 
may initially cause a depolarization of  mitochondrial 
membrane potential and ROS production, then activate 
the Nrf2 system to exert subsequent protective respons-
es[19,91-93]. Furthermore, these plant-derived polyphenols 
are electrophilic and can modulate the reactive cysteine 
residues in Keap1 molecules, leading to a dissociation of  
Nrf2 from the Nrf2-Keap complex and increasing the 
free Nrf2 level[94,95]. Therefore, released Nrf2 together 
with the inhibition of  Keap1-mediated Nrf2 degradation 
increases the free Nrf2 level, resulting in its translocation 
to the nucleus and action (Figure 1). It can be expected 
that further exploring more potent natural compounds or 
synthetic derivatives that activate Nrf2 to sensitize insulin 
action[96] could lead to a new drug generation for diabetes 
treatment.

CONCLUSION
As the major cellular defense machinery against oxidative 

stress, the Nrf2 system has drawn extensive attention. 
However, its functional alteration in metabolic diseases 
has been realized recently and needs to be explored 
further. Impaired Nrf2 function is evident in several 
pathological conditions, such as aging, neurodegeneration 
diseases and insulin resistance, that are mechanistically 
linked to oxidative stress, while Nrf2 activation reverses 
the functional abnormality of  these diseases[15,51]. There-
fore, the malfunction of  the Nrf2 system is anticipated 
to contribute to the pathological development of  these 
diseases. The characterization of  this system in the 
regulation of  glucose and lipid metabolism would evoke 
more studies to determine if  it is a promising drug target. 
The capability of  Nrf2 activation in preventing obesity, 
protecting pancreatic β cells and enhancing insulin ac-
tion makes Nrf2 activators a novel category in diabetic 
therapeutics. Particularly, natural compounds have been 
proven to be effective in insulin sensitization and pre-
venting diabetic complications in animal and pre-clinical 
human studies[97]. Further clinical trials are needed to con-
firm their benefits for diabetics and possible usefulness 
in clinical treatment. In order to develop Nrf2 activators 
as therapeutic agents in T2D, we suggest that several 
tasks need to be carried out for further exploration of  
the beneficial effects of  Nrf2 activation on insulin signal-
ing, as well as glucose and lipid homeostasis: (1) Further 
investigations are needed to clarify whether and how 
Nrf2 activation leads to insulin sensitization. Obviously, 
these investigations may lead to the recognition of  novel 
targets of  the Nrf2 system. Nrf2-null mice as well as the 
in vitro Nrf2 knockdown approach are essential tools for 
this purpose; (2) The Nrf2 system has been shown to be 
activated by mitochondrial ROS production[98] and when 
activated can protect mitochondrial function by eliminat-
ing ROS[99,100]. Whether this effect is related to its benefi-
cial action in insulin resistance requires further studies; (3) 
Many natural compounds, such as resveratrol, curcumin 
and epigallocatechin-3-gallate, have been shown to acti-
vate Nrf2, along with improved insulin sensitization. It 
is essential to determine whether their stimulatory effect 
on insulin signaling is dependent on Nrf2 activity. Again, 
the Nrf2 null mice will be the asset for these studies; (4) 
The AMP-dependent kinase activator metformin, PPARγ 
agonists and α-folic acid were shown to improve glu-
cose control and also to attenuate oxidative stress[101-104]. 
Whether these existing drugs exert these effects via Nrf2 
activation requires further investigations; and (5) Nrf2 
can upregulate CD36 expression involved in lipid uptake. 
However, this effect promotes lipid accumulation in 
blood vessels and accelerates atherosclerosis[105,106]. While 
Nrf2 activation can be beneficial to insulin action, these 
potential side effects must be carefully evaluated.
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