
discuss one of the major fibrotic signaling pathways, 
the AGE/RAGE signaling cascade, as well as propose an 
alternate pathway via  Rap1a that may offer insight into 
cardiovascular ECM remodeling in T2DM. In a series of 
studies, we demonstrate a role for Rap1a in the regula-
tion of fibrosis and myofibroblast differentiation in iso-
lated diabetic and non-diabetic fibroblasts. While these 
studies are still in a preliminary stage, inhibiting Rap1a 
protein expression appears to down-regulate the mo-
lecular switch used to activate the ζ isotype of protein 
kinase C thereby promote AGE/RAGE-mediated fibrosis.
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Core tip: Chronic hyperglycemia is a characteristic of 
diabetes and one of the major causal factors of diabetic 
complications. In type 2 diabetes mellitus, mechanical 
and biochemical stimuli activated profibrotic signal-
ing cascades resulting in myocardial fibrosis, impaired 
cardiac performance, and ventricular stiffness. Glucose 
nonenzymatically reacts with extracellular matrix (ECM) 
proteins forming advanced glycation end products 
(AGEs). AGE-modified collagen increases matrix ac-
cumulation and stiffness by engaging the receptor for 
AGE (RAGE), the receptor for AGE. To date, our under-
standing of the AGE/RAGE cascade remains imprecise. 
This review discusses the AGE/RAGE signaling cascade 
and proposes an alternate role for Rap1a in diabetic 
cardiovascular ECM remodeling. 
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Abstract
Chronic hyperglycemia is one of the main characteris-
tics of diabetes. Persistent exposure to elevated glu-
cose levels has been recognized as one of the major 
causal factors of diabetic complications. In pathologies, 
like type 2 diabetes mellitus (T2DM), mechanical and 
biochemical stimuli activate profibrotic signaling cas-
cades resulting in myocardial fibrosis and subsequent 
impaired cardiac performance due to ventricular stiff-
ness. High levels of glucose nonenzymatically react with 
long-lived proteins, such as collagen, to form advanced 
glycation end products (AGEs). AGE-modified collagen 
increase matrix stiffness making it resistant to hydro-
lytic turnover, resulting in an accumulation of extracel-
lular matrix (ECM) proteins. AGEs account for many 
of the diabetic cardiovascular complications through 
their engagement of the receptor for AGE (RAGE). 
AGE/RAGE activation stimulates the secretion of nu-
merous profibrotic growth factors, promotes increased 
collagen deposition leading to tissue fibrosis, as well 
as increased RAGE expression. To date, the AGE/RAGE 
cascade is not fully understood. In this review, we will 
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INTRODUCTION
Chronic hyperglycemia is one of  the main characteristics 
of  diabetes mellitus. There are two forms of  the disease, 
which are classified based upon insulin dependence: type 
1 diabetes mellitus (T1DM) or T2DM. T1DM is consid-
ered a progressive autoimmune disorder of  the pancreas 
causing the destruction of  islet β-cells and resulting in 
diminished insulin production. The subsequent insulin 
deficiency results in elevated blood glucose levels. T2DM 
is generally coupled with metabolic syndrome, which in-
cludes increased insulin resistance, hyperglycemia, obesity, 
dyslipidemia and hypertension. Persistent exposure to 
elevated glucose levels has been recognized as one of  the 
major causal factors of  diabetic complications resulting in 
pathologies, such as atherogenesis, myocardial infraction, 
stroke and diabetic cardiomyopathy[1]. In this review, we 
will discuss one of  the major fibrotic signaling pathways, 
the advanced glycation end product (AGE)/the receptor 
for AGE (RAGE) signaling cascade driven by chronic 
hyperglycemia in T2DM, as well as propose an alternate 
pathway that may offer insight into cardiovascular extra-
cellular matrix (ECM) remodeling.

FIBROBLAST MEDIATED ECM 
REMODELING
In the heart 70%-80% of  the cellular mass is composed 
of  myocytes, and the remaining 20%-30% the total cell 
number includes fibroblasts, vascular smooth muscle 
cells, and endothelial cells[2,3]. Fibroblasts are the most 
abundant cardiac cell types of  the latter group, and 
these cells are accountable for homeostatic upkeep and 
pathological ECM alterations observed in the heart[2,3]. 
Fibroblasts also function as sensory cells recognizing 
mechanical and chemical changes within the cell’s micro-
environment[4]. Fibroblasts communicate with the sur-
rounding ECM to maintain the structural arrangements 
of  the heart as well as sustain vital cellular tasks, such as 
viability, proliferation, and motility[5]. 

In pathologies, like T2DM, where biochemical and 
mechanical stimuli alter the communication between the 
ECM and fibroblasts, profibrotic signaling cascades are 
subsequently activated to elevate fibrotic accumulation 
and subsequently increased heart stiffness[4,6,7]. Increased 
ECM deposition and accumulation may result from ei-
ther enhanced matrix protein synthesis and/or decreased 
structural degradation. With elevated matrix production 
and accumulation structural ECM rearrangements would 
cause alterations in fibroblast-matrix interactions. These 
changes often result in transformations in fibroblast 
phenotype. Fibroblast isolates from hypertensive animals 
as well as from infarcted regions of  the heart exhibit in-
creased matrix production and accumulation, reduced cell 
migration, and greater contractility[8-10]. In these instances, 
changes in fibroblast phenotype correspond to increases 
in fibroblast to myofibroblast differentiation. Myofibro-
blasts are defined as a “stressed” fibroblast having in-

creased matrix production as well as enhanced contractile 
properties[11-13]. 

This cell type is not commonly found in healthy 
myocardium, however upon pathological cardiac injury, 
myofibroblast populations will increase in the myocar-
dium from differentiated interstitial and adventitial fibro-
blasts[13]. While initially beneficial in pathologies requiring 
enhanced scar formation to maintain organ integrity (e.g., 
myocardial infarction), myofibroblasts become detrimen-
tal to organ function if  an increased population of  myo-
fibroblasts persists. Due to the high glucose levels seen in 
diabetic patients, studies have demonstrated an elevated 
synthesis and accumulation of  the ECM, otherwise 
known as fibrosis, to increase ventricular stiffness to neg-
atively impact heart function[14,15]. Ultimately, myofibro-
blasts are detrimental due to their critical role in cardiac 
pathology and remodeling, and in certain environments, 
such as diabetes mellitus, improper regulation of  myofi-
broblasts leads to maladaptive tissue remodeling[13,16].

HYPERGLYCEMIA AND AGE
Numerous reports have documented chronic hypergly-
cemia is the causative agent responsible nonenzymatic 
formation of  AGEs on substrates resistant to turnover, 
such as collagen[13]. These modifications will not only 
reinforce the ECM by adding surplus collagen structural 
crosslinks but also as a RAGE agonist. Chronic hyper-
glycemia, as observed in T2DM patients, increases the 
generation of  AGEs. High levels of  glucose nonenzy-
matically react with long-lived proteins forming revers-
ible Schiff  base intermediates and eventually, Amadori 
compounds[17]. Amadori products will undergo additional 
chemical alterations to be converted to nonreversible 
crosslinked AGES[17]. AGEs are also found to accumulate 
in normoglycemic patients as a result of  longevity. Under 
high glucose settings observed in diabetics, AGE forma-
tion is accelerated, resulting in cardiac dysfunction as well 
as interstitial fibrosis[17-20]. AGE-modified collagen causes 
an increase in matrix stiffness causing it be resistance 
to hydrolytic turnover, resulting in an accumulation of  
ECM[17,21]. 

In vivo and in vitro studies demonstrate that AGEs ac-
count for many of  the diabetic cardiovascular complica-
tions through their engagement of  RAGE[22]. RAGE is 
capable of  binding to multiple ligands. Under normogly-
cemic conditions the receptor is ordinarily expressed at 
reduced basal levels, however due to aging and to chronic 
hyperglycemia, RAGE expression is increased[17,20]. AGE/
RAGE cascade activation promotes fibrosis growth fac-
tor secretion, increased matrix deposition progressing to 
multi-organ fibrosis, as well as increased RAGE expres-
sion[21,23-25]. Increased AGE crosslinks, AGE/RAGE cas-
cade activation, and increased matrix accumulation have 
been correlated with the development of  cardiovascular 
complications by increasing diastolic left ventricular stiff-
ness[21,25,26]. AGEs have been demonstrated to increase 
expression of  multiple collagen types, decrease proteo-
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glycans synthesis, as well as generate ECM crosslinking. 
Interestingly, AGEs can be bound to other macromol-
ecules to compound their negative impacts on a number 
tissues[15,27,28]. Also, they have been shown to perturb 
cell-matrix interactions, alter cell adhesion, and vascular 
permeability. Many of  the maladaptive ECM alterations 
have been shown to be relatively corrected by disrupt-
ing the AGE/RAGE signaling cascade[29]. Therefore, the 
AGE/RAGE cascade provides a hypothetical focus for 
the management of  diabetes-mediated ECM related car-
diovascular diseases.

AGE/RAGE SIGNALING PATHWAY
Increased AGE/RAGE signaling has been demonstrated 
to promote key pathways that upregulate ECM protein 
expression and accumulation. In addition, activation of  
downstream signaling kinases such as p38, extracellular 
signal-regulated kinase 1/2 (ERK 1/2), nuclear factor-
kappaB (NF-κB), and c-Jun N-terminal kinase (JNK), 
have been shown to mobilize multiple transcription fac-
tors to stimulate expression of  growth factors and ECM 
protein accumulation[30-33]. Numerous studies have sug-
gested that AGE/RAGE signaling pathways are ligand- 
and cell type dependent. For example, in endothelial 
progenitor cells, AGE/RAGE cascade activation inhib-
ited migration while promoting apoptosis to further ath-
erosclerosis in diabetic patients[34,35]. Upon treatment with 
anti-RAGE peptide antibodies, AGE/RAGE signaling 
pathway was down regulated and diabetic atherosclerotic 
lesions and vascular injury was significantly attenuated[34]. 
It also has been reported that AGE/RAGE is implicated 
in diabetic related macrovascular complications, arterial 
injury, as well as the progression of  diabetic nephropathy 
and retinopathy[36]. In a T2DM leptin receptor deficient 
(db/db) mouse model, using RAGE blocking antibody, 
left ventricular diastolic chamber stiffness and the car-
diac systolic function was attenuated in conjunction 
with reduced fibrosis. It has been proposed the multiple 
outcomes of  AGE/RAGE signaling operate through 
protein kinase C (PKC). Utilizing cell culture experiments 
to model T1DM and T2DM hyperglycemic growth con-
ditions in vitro, PKC activity was increased and followed 
by subsequent activation of  various prostaglandins, cyto-
kines, and increased ECM protein expression[22]. Immu-
noblotting experiments using of  cellular lysates revealed 
PKC-α, -βⅠ, -βⅡ, -δ, -ε, and -ζ isoform activity was 
increased in endothelial cells[37].

The PKC kinase family is defined based upon their 
second messenger requirements. The conventional PKC 
family, which includes PKC-α, -βⅠ, -βⅡ, and -γ, is 
stimulated by calcium, phosphatidylserine, diacylglycerol, 
or phorbol-12-myristate-13-acetate. Members of  the 
novel PKC group, which includes -δ, -ε, -θ and -η are 
also activated by the above ligands with the exception of  
calcium. The atypical PKC family, which includes -ζ and 
-ι/λ, cannot be activated by any of  the above second 
messengers[38]. To date, PKC isoform activation has been 

associated with vascular alterations, including increased 
permeability, contractility, ECM synthesis, cell growth, 
and apoptosis[37], and these perturbations in vascular cell 
homeostasis have been shown to be mediated by differing 
PKC isoforms[37]. Of  these isoforms, PKC-β and PKC-ζ 
emerged as a preferred substrate in the aortic and cardiac 
tissue of  diabetic mice[39,40]. Additional examination of  
multiple PKC isoforms has identified of  PKC-ζ as the 
most plausible target for RAGE phosphorylation[41].

PKC-ζ is involved in propagating a multiple of  cas-
cade pathways that lead to mitogen-activated protein 
kinase (MAPK) activation. The MAPK family plays a 
pivotal role in numerous cellular processes, including de-
velopment, phenotype differentiation, and ECM protein 
synthesis. In a study by Koya et al[37], ERKs were dem-
onstrated to be activated in a PKC-dependent manner. 
ERKs are a subfamily of  MAPKs involved in signaling 
cascades responsible for multiple cellular functions, such 
as differentiation and proliferation. Stimulation of  ERK 
signaling cascades involve activation of  a molecular 
switch, Raf, to trigger a stepwise serine kinase cascade 
through activation of  Raf, MAPK kinase kinase, MAPK 
kinase, MAPK, and ERK[42]. Activated ERK will translo-
cate into the nucleus to activate transcription factors to 
initiate cellular proliferation, differentiation, and matrix 
accumulation[43-45]. 

AGE/RAGE and PKC-ζ signaling cascades have 
been demonstrated to increase ERK activation, both 
independently as well as synergistically; thereby PKC-ζ 
serves as a common molecular mediator between these 
two different cascades[46,47]. Phosphorylation of  RAGE at 
Ser391 is a ligand-dependent mechanism that is required 
to perpetuate AGE/RAGE signaling[41]. PKC-ζ has been 
demonstrated to phosphorylate Ser391 of  the intracel-
lular RAGE domain. However in order for this to occur, 
PKC-ζ must be activated by Ras, a small GTPase, to 
initiate the cascade[41]. Recently, our lab and others have 
found that Rap1a, a small Ras-like GTPase, may also play 
a role in AGE/RAGE signaling in diabetes.

RAP1A: A MOLECULAR SWITCH
Rap1a, member of  the Ras superfamily, operates as a 
binary molecular switch. This relay system is capable 
of  transmitting a number of  diverse signals from mem-
bers of  the Ras superfamily to effect changes in nuclear 
transcription, thus coupling extracellular stimulation to 
intracellular signaling cascades. In fact, Rap1a has been 
demonstrated to participate in hypertrophic pathways, 
integrin-mediated adhesion, cell attachment, migration, 
and cell junction formation. Studies have shown that 
Rap1a induced-ERK1/2 activation contributes to vascu-
lar pathologies as well as plays a role in the cardiovascular 
ion channels responsible for rhythmic heart function[48].

Rap1a utilizes a guanine nucleotide exchange factors 
(GEFs), that causes the dissociation of  a bound GDP 
allowing for a new GTP molecule to bind. GTPase-
activating proteins (GAPs) will then hydrolyze the newly 
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specifically Epac (Exchange Protein directly Activated 
by cAMP). Epac proteins have been demonstrated to 
bind cAMP and activate Rap1a GTPases[50]. Conversely, 
Rap1a-GAP will hydrolyze GTP at the asparagine side 
chain, thereby rendering Rap1a inactive.

The dynamic control of  Rap1a activation has been 
shown to be facilitated by protein kinase A (PKA) and 
Epac through cAMP-dependent cascades[51]. Both PKA 
and Epac proteins contain a cAMP binding domain and 
are sensitive to fluctuations to mediate Rap1a activa-
tion[48]. While PKA can phosphorylate the C-terminus 
of  Rap1a, PKA-mediated activation is not necessary 
for cAMP stimulation of  Rap1 by Epac. In fact, there 
have been extensive studies that have established Epac’s 
involvement in various cAMP-related cellular functions, 
such as cellular adhesion, that were previously attributed 
to PKA[52,53]. These cAMP sensitive proteins may act in-
dependently, synergistically, or possible antagonistically 
depending upon cellular distribution, concentration, and 
location to regulate Rap1a-mediated cellular functions. 
Our understanding of  the Rap1a pathway is centered 
on the biological responses elicited by PKA-dependent 
pathways triggering downstream ERK1/2 activation[30]. 
However, recent studies have suggested a PKA-indepen-
dent pathway for Epac-Rap1a activation of  downstream 
signaling effectors[54]. Precise investigation of  the discrete 
role and involvement of  Rap1a is necessary within a 
number of  signaling model systems. 

AGE/RAGE and Rap1a-induced ECM accumulation in 
diabetes 
To date, there is paucity in the literature describing the 
interactions between Rap1a and the AGE/RAGE signal 
pathway in T2DM. Early studies described Rap as being 
up-regulated in multiple organs of  diabetic rats[55]. Of  
note, these studies also demonstrated that diacylglycerol 
can activate a Rap/Raf/MAPK-mediated signal cascade 
through PKC, however no specific PKC isoform was 
identified[55]. Furthermore, in a study by Panchatcharam et 
al[56], increased Rap1 expression was reported in smooth 
muscle cells under hyperglycemic conditions, yet no dis-
tinction between Rap1a or Rap1b subtypes was made. 
Taken together, there is evidence that Rap1a under hy-
perglycemic conditions will increase downstream kinase 
activity via ERK1/2 activation, and these events would 
ultimately influence other signaling pathways, including 
the AGE/RAGE cascade, to promote ECM accumula-
tion to contribute to cardiac complications in diabetic 
patients. 

Both the AGE/RAGE signaling cascade and Rap1a 
utilize and activate similar signaling pathways, such as 
ERK1/2 MAPK, NF-κB and JNK, which are involved in 
cell growth, ECM synthesis and myofibroblasts differen-
tiation. It has been demonstrated that fibroblasts treated 
with transforming growth factor-β, a known fibrosis me-
diator, myofibroblasts differentiation and ECM deposi-
tion is increased[17,57]. Furthermore, studies by Yan et al[57], 
showed that major molecular mediators, like ERK1/2 

bound GTP to GDP forcing the cycle to run in one 
direction. In this capacity, Rap1a rotates between the in-
active GDP-bound and the active GTP-bound substrate. 
In addition, Rap1a has been demonstrated to be activated 
by at three second messengers, specifically cyclic AMP 
(cAMP), calcium, and diacylglycerol[49]. It is now recog-
nized that a number of  GEFs can be directly activated by 
cAMP whereby cAMP binding causes a conformational 
change in the GEF permitting nucleotide exchange. Of  
particular interest are the GEFs known to activate Rap1a. 
These are commonly referred to as cAMP-GEF or more 
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MAPK, involved in fibroblast growth factor-2 mediated 
angiogenesis were down regulated when Rap1a was de-
pleted. Lastly, Jeyaraj et al[48] implicated Rap1a in roles that 
were intimately associated with the ECM remodeling pro-
cess. Taken together, Rap1a and AGE/RAGE have been 
demonstrated to associate with increased myofibroblast 
formation and interstitial fibrosis independently. Figure 1 
illustrates Rap1a’s potential role in mediating the AGE/
RAGE signaling pathway as discussed in the context of  
this review. While there is some evidence of  a functional 
interplay between AGE/RAGE and Rap1a, the exact 
molecular interactions have not been fully characterized.

A series of  studies by our laboratory suggest that 
Rap1a plays a role in fibrosis and myofibroblast differen-
tiation in isolated diabetic and non-diabetic fibroblasts. 
Silencing Rap1a mRNA in diabetic fibroblasts returned 
profibrotic markers to nondiabetic levels. Isolated cardiac 
fibroblasts from 16 wk-old non-diabetic (heterozygous, 

wt/db) and diabetic (homozygous, db/db) mice were 
treated with siRNA targeted to Rap1a and a negative 
control of  scrambled siRNA (data not shown) was used. 
48-h post siRNA treatment, noticeable decreases were 
measured, not only in Rap1a expression, but also RAGE, 
collagen Ⅰ, phospho-PKC-ζ, and α-smooth muscle actin 
protein expression (Figure 2). Inhibiting Rap1a protein ex-
pression down-regulated the molecular switch used to ac-
tivate PKC-ζ to promote AGE/RAGE-mediated fibrosis. 
While these studies are still in a preliminary stage, we are 
working to expand our understanding of  the significance 
of  these alterations using not only siRNA technology, but 
also generating a double knockout mouse model to ascer-
tain the role Rap1a plays in diabetic cardiomyopathy.

CONCLUSION
From the evidence that is presented, a cellular and mo-
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lecular mechanism for Rap1a-mediated activation of  
AGE/RAGE-dependent myocardial remodeling exists. 
This review is the first of  its kind to provide Rap1a as a 
unique target for therapeutic strategies aimed at reducing 
chronic hyperglycemia-mediated ECM production and 
accumulation in diabetic patients. While much still needs 
to be performed to increase our understanding of  this 
causal relationship, our laboratory is working towards 
defining the signaling cascade involving Rap1a and PKA 
in the AGE/RAGE signaling cascade which ultimately 
mediates fibroblast myocardial remodeling. These studies 
provide insight into the inter-signaling components of  
this cascade that could ultimately help in reducing ECM 
production and accumulation during hyperglycemia in 
T2DM patients. 
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