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Abstract
Since synthetic vitamins were used to fortify food and 
as supplements in the late 1930s, vitamin intake has 
significantly increased. This has been accompanied by an 
increased prevalence of obesity, a condition associated 
with diabetes, hypertension, cardiovascular disease, 
asthma and cancer. Paradoxically, obesity is often 
associated with low levels of fasting serum vitamins, 
such as folate and vitamin D. Recent studies on folic 
acid fortification have revealed another paradoxical 
phenomenon: obesity exhibits low fasting serum but 
high erythrocyte folate concentrations, with high levels 
of serum folate oxidation products. High erythrocyte 
folate status is known to reflect long-term excess folic 
acid intake, while increased folate oxidation products 
suggest an increased folate degradation because obesity 
shows an increased activity of cytochrome P450 2E1, 
a monooxygenase enzyme that can use folic acid as a 
substrate. There is also evidence that obesity increases 
niacin degradation, manifested by increased activity/
expression of niacin-degrading enzymes and high levels 
of niacin metabolites. Moreover, obesity most commonly 
occurs in those with a low excretory reserve capacity 
(e.g.,  due to low birth weight/preterm birth) and/or 
a low sweat gland activity (black race and physical 
inactivity). These lines of evidence raise the possibility 
that low fasting serum vitamin status in obesity may 
be a compensatory response to chronic excess vitamin 
intake, rather than vitamin deficiency, and that obesity 
could be one of the manifestations of chronic vitamin 
poisoning. In this article, we discuss vitamin paradox in 
obesity from the perspective of vitamin homeostasis.
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Core tip: Obesity rates have dramatically increased 
among the United States population, including children, 
since the 1980s. Considering the lag time between 
risk exposure and the development of child obesity, 
the risk must have been imposed on the whole United 
States population around the late 1970s. Although 
evidence suggests that the risk is high vitamin intake 
due to the update of vitamin fortification in 1974 and 
the implementation of the Infant Formula Act of 1980, 
why do obese individuals paradoxically show low levels 
of fasting serum vitamins? In this paper, we try to 
give an answer to this question based on the current 
understanding of vitamin homeostasis.
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INTRODUCTION
Obesity, a global health problem, is associated with 
co-morbidities such as metabolic syndrome, diabetes, 
hypertension, asthma, nonalcoholic fatty liver disease, 
renal disease, cardiovascular disease and cancer, which 
are thought to be of developmental origin[1]. Since 
the late 1930s, when synthetic vitamins, thiamin, 
riboflavin and niacin (nicotinic acid and nicotinamide), 
were used to fortify foods or as dietary supplements, 
the daily intake of vitamins of the United States 
population has significantly increased, especially after 
the update of mandatory fortification in 1974[2] and 
the implementation of the Infant Formula Act of 1980 
(without setting an upper limit for most vitamins)[3]. In 
fact, the introduction of synthetic vitamins into the diet 
was followed by a dramatic increase in the prevalence 
of obesity among all age groups in the United States[4,5]. 
Similar correlations between increased obesity and 
vitamin fortification were observed in other vitamin-
fortified countries, such as Canada and Saudi Arabia[2]. 
Over the past 20-30 years, China has also been 
experiencing a rapid growth in the rates of obesity[6] 
after having shifted from a low to a high vitamin intake, 
due to a combination of increased intake of animal-
derived foods (rich in vitamin B1, B2 and niacin)[7] and 
mandatory flour fortification with these vitamins, which 
was introduced in China in the late 1980s and was been 
mandatorily implemented in 1994[2]. Paradoxically, it is 
frequently reported that obesity and type 2 diabetes are 
associated with low levels of fasting serum vitamins, 
including vitamin B1, D, and folate[8-10]. Although 

the mechanism of the paradox remains unclear, it is 
generally thought that the low vitamin status in obesity 
is due to inadequate intake.

Since 1998, enriched grain products in the United 
States have been fortified with folic acid to prevent 
neural tube defects. Recent studies on folic acid 
fortification show that obese individuals also show lower 
fasting serum folate concentrations, but, paradoxically, 
their red blood cell (RBC) folate concentrations and 
MeFox (5-methyltetrahydrofolate oxidation product) 
are significantly higher, when compared with nonobese 
individuals[11,12]. Moreover, obesity is also found to be 
associated with increased activity of cytochrome P450 
(CYP) 2E1, a monooxygenase enzyme that can use folic 
acid as a substrate[13]. Folate content in RBC is known 
to reflect long-term average consumption and tissue 
stores because RBC only accumulates folate during 
erythropoiesis[14], and increased serum MeFox suggests 
increased degradation of folic acid. Moreover, recent 
evidence shows that obesity is associated with high 
fasting serum N1-methylnicotinamide without significant 
changes in nicotinamide levels[15] and that plasma N1-
methylnicotinamide correlates with increased tissue 
expression of nicotinamide N-methyltransferase (NNMT, 
a major enzyme responsible for the degradation of 
nicotinamide to N1-methylnicotinamide) and the degree 
of insulin resistance[16]. Collectively, these observations 
raise the possibility that the vitamin paradox in obesity 
may involve vitamin excess rather than deficiency. 
After more than seven decades of practice of vitamin 
fortification and painful global experience of increasing 
prevalence of obesity and related diseases worldwide, 
it is time for us to examine the relationship between 
vitamin fortification and vitamin paradox from the 
perspective of vitamin homeostasis.

VITAMIN HOMEOSTASIS AND 
OXIDATIVE STRESS
Vitamins are essential micronutrients needed by the 
body in small amounts. Vitamin homeostasis is a balance 
between vitamin intake and clearance. A deficiency 
or excess may lead to deleterious effects. Since the 
introduction of synthetic vitamins into food, high vitamin 
intake is very common during a person’s lifespan from 
conception through to old age[2]. In this case, the rem-
oval of excess vitamins becomes particularly important 
in maintaining vitamin homeostasis. This depends 
on the efficiency of both excretory organs and drug-
metabolizing enzymes.

Excretion of vitamins
The kidneys and sweat glands are the two major excr-
etory organs responsible for the elimination of water-
soluble vitamins, and the sebaceous glands excrete 
lipid-soluble vitamins in the sebum[17]. The excretion 
of vitamins is positively related to their intake. Aging 
is known to be associated with decreasing function 
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of excretory organs[18,19] and thus may reduce the 
clearance of vitamins. It is noteworthy that sweat 
excretion may be particularly important in eliminating 
excess water-soluble vitamins, because vitamins 
(e.g., folate[20], nicotinic acid and nicotinamide[2,21]) are 
barely excreted in the urine before degradation due 
to the reabsorption by the renal tubules, but they can 
be easily excreted in the sweat[22-24]. The efficiency 
of sweat excretion is determined by several factors, 
including genetic background, intrauterine and early 
postnatal development, environmental temperature and 
physical activity. Compared with whites, blacks have 
a high sweating threshold, manifested by lower skin 
conductance (i.e., low insensible perspiration)[25] and 
sweating rates[26] under the same ambient temperature 
condition, suggesting that blacks may have lower sweat 
excretion of vitamins than whites.

The formation of functional sweat glands begins 
at week 36 of gestation and completes within 10 wk 
of postnatal life[27,28]. This process is affected not only 
by gestational age but also by the environmental 
temperature during the early postnatal period. As demon-
strated in the literature, preterm birth is associated 
not only with a lower renal reserve capacity[29] but also 
with a low sweating function[30,31]. Low temperature 
may cause newborn hypothermia[32], which may occur 
even in summer season[32]. Reduced sweat gland 
function (i.e., low skin conductance) has been found to 
be associated with a winter birth in schizophrenia[33]. 
Therefore, preterm birth and newborn hypothermia may 
be associated with decreased vitamin clearance.

Ambient temperature and physical activity are two 
important factors affecting the excretion rates of sweat 
and sebum. For example, a decrease in temperature 
from 30 ℃ to 22 ℃ reduces insensible perspiration 
from about 700 mL/d to 380 mL/d in adults[34], and 
a one-degree decrease in local skin temperature 
decreases the sebum excretion rate by 10%[35]. There 
is evidence showing that the levels of plasma vitamin 
A and E are lower in summer than in winter[36], and a 
similar seasonal variation is found in blood drug con-
centrations[37]. Thus, it is conceivable that physical 
inactivity and winter or cold weather would decrease 
the tolerance to high vitamin intake.

On the other hand, it should be noted that excess 
sweat vitamin excretion may cause or worsen water-
soluble-vitamin deficiency if there is poor vitamin intake. 
A good example may be pellagra, a niacin-deficiency 
disease that affects those who live in poverty without 
sufficient animal-source foods (rich in nicotinamide), 
with the symptoms occurring during the summer[38], a 
season with the highest sweat excretion rates. However, 
over the past decades, both natural and artificial 
sources (i.e., vitamin fortification and supplementation) 
of vitamins have significantly increased[2], while sweat 
excretion has significantly decreased due to physical 
inactivity and the widespread use of air conditioning. 
These dietary and lifestyle changes may increase the 

risk of excess accumulation of vitamins in the body, 
especially in those with reduced excretory capacity and/
or activity.

Degradation of vitamins
Besides being directly excreted, vitamins also undergo 
degradation through phase Ⅰ (including oxidation, 
reduction, and hydrolysis) and phase Ⅱ metabolisms 
(e.g., sulpfation, methylation and glutathione conju-
gation), which are catalysed by phase Ⅰ and phase 
Ⅱ drug-metabolizing enzymes, respectively. After 
phase Ⅰ and/or phase Ⅱ degradation, vitamins become 
more water-soluble and then can be more easily 
excreted from the body. Excess vitamins are degraded 
very rapidly. For example, cumulative administration 
of 2000 mg nicotinic acid [166 times the estimated 
average daily requirement (EAR)] in 13 h 10 min is 
found to only increase the levels of its metabolites 
in the plasma, without significantly changing plasma 
nicotinic acid concentrations[39]. We found that, at 5 h 
after oral administration of 100 mg nicotinamide (8.3 
times the EAR), plasma nicotinamide had returned 
to near baseline levels, while its metabolite N1-
methylnicotinamide remained at high levels[24]. Thus, it 
is clear that a transient increase in vitamin intake may 
not change fasting vitamin levels.

Vitamins, xenobiotics, neurotransmitters and hor-
mones share the same drug-metabolizing enzyme 
system, so they may interact with one another in 
their metabolism by inducing and competing for the 
enzymes[3,40]. For example, CYP2E1, highly expressed 
in obesity and type 2 diabetes[13], has more than 50 
compounds, including some vitamins and ethanol[41]. 
Thus, it is conceivable that alcohol may cause low 
fasting vitamin levels by induced CYP2E1.

Phase Ⅱ metabolism of vitamins consumes detoxi-
fication resources, such as methyl-group donors, sulphate 
donors and glutathione, which are also necessary for 
the degradation of neurotransmitters and hormones. 
Therefore, excess vitamins can disturb the phase Ⅱ 
metabolism of neurotransmitters and hormones by 
competing for the limited detoxification resources[3]. Here, 
we take niacin methylation as an example to explain how 
excess vitamins affect metabolism of neurotransmitters 
and hormones. Methylation is a methyl-group transfer 
reaction from a methyl donor to a substrate, which is 
mediated by the methionine-homocysteine cycle. Methyl 
donors, including betaine and choline, are non-renewable 
resources in the body, while other components in the 
methylation system, including methionine, folate, 
vitamin B12 and relevant enzymes, can be repeatedly 
used in the reaction system. Choline can be used as a 
methyl donor only after being converted to betaine in 
the liver and kidneys. According to the relationship of 
the components in the methylation reaction system 
shown in Figure 1, it is quite clear that an increase in 
the levels of substrates will mainly increase the demand 
for betaine. Since niacin is degraded mainly through 
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stress, they show lower venous plasma norepinephrine 
and higher epinephrine[49]. Blacks are prone to low 
fasting serum vitamin D and folate levels[12,50] and need 
a higher vitamin D doses to achieve a desired serum 
25-hydroxyvitamin D concentration[51]. This suggests 
an increase in plasma vitamin clearance. Given that 
the levels of plasma and urinary vitamin metabolites 
are linked to vitamin intake and that vitamins can 
induce their own degrading enzymes, the findings that 
increased activity/expression of drug-metabolizing 
enzymes (e.g., CYP2E1[13,52] and NNMT[16]) and high 
levels of vitamin metabolites (e.g., MeFox[12], N1-
methylnicotinamide[15,16] and nicotinuric acid[53]) can be 
considered as increased compensation for decreased 
vitamin excretion in response to high vitamin intake.

The degradation of vitamins is accompanied by the 
generation of reactive oxygen species (ROS). Although 
ROS at physiological levels functions as signalling 
molecules, at large levels they can induce cellular 
toxicity and insulin resistance. In our previous study, 
we found that co-administration of nicotinamide and 
glucose (like grain fortification with niacin) can induce 
insulin resistance due to excess ROS and subsequent 
reactive hypoglycaemia, demonstrating that vitamin-
fortified grains can increase appetite[2,5]. This may 
explain the sharp increase in prevalence of obesity in 
the United States after the levels of vitamin fortification 

methylation, niacin fortification/supplementation (usually 
using its nicotinamide form) increases the demand 
for methyl groups on the one hand, and on the other 
hand, it can reduce the utilization of choline as a methyl 
donor by causing hepatic and renal oxidative injury, 
as demonstrated in a rat model[42]. As a result, excess 
nicotinamide reduces the size of betaine pool and 
subsequently inhibits the methylation of endogenous 
substrates (e.g., catecholamines and DNA), leading to 
an increase in plasma norepinephrine levels[43] and DNA 
hypomethylation, an important epigenetic alteration in 
human diseases[42,44].

Relationship between vitamin excretion and degradation
There is close cooperation between the excretory 
system and the drug-metabolizing enzyme system in 
maintaining vitamin homeostasis. If the body’s excretory 
capacity is too low to effectively eliminate excess 
vitamins, the activity/expression of the drug-metabolizing 
enzyme system will compensatorily increase due 
to induction by their substrates[45]. Blacks have a 
lower sweat rate[2], but have a higher drug/vitamin-
metabolizing activity than whites[46]. For example, 
compared with whites, blacks have a significantly higher 
catechol-O-methyltransferase (a phase Ⅱ enzyme that 
converted norepinephrine to epinephrine)[47] activity and 
norepinephrine clearance rate[48] and, during exercise 
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Figure 1  Relationship between methyl donors and mediators in the methylation of substrates. Methylation is a methyl-group transfer reaction from a methyl 
donor to a substrate, which is mediated by the methionine (Met) cycle. The deep red-arrow lines indicate the flow/transfer of methyl groups/one-carbon units from 
dietary sources to substrates. In this regard, methylation can be considered as a reaction between betaine and substrates (dashed line). An increase in the levels of 
substrates will increase the demand for betaine rather than for methylation mediators, e.g., folate and vitamin B12 (B12), because betaine is a non-renewable resource, 
while the mediators can be recycled if there is an adequate supply of methyl donors. Pathway 1: Betaine-dependent homocysteine (Hcy) remethylation; Pathway 
2: Folate-dependent Hcy remethylation. BHMT: Betaine-homocysteine-methyltransferase; CAs: Catecholamines; CH2-THF: 5,10-methylene tetrahydrofolate; CH3: 
Methyl groups; MeFox: An oxidation product of 5-methyltetrahydrofolate; MS: Methionine synthase; MTs: Methyltransferases; SAH: S-adenosylhomocysteine; SAM: 
S-adenosylmethionine; THF: Tetrahydrofolate.
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were increased in 1974[4,5]. Because decreased sweat 
excretion may increase enzymatic vitamin degradation 
and thereby ROS generation, individuals with reduced 
excretory capacity are at increased risk of insulin 
resistance, obesity and related diseases when exposed 
to identical high-vitamin diets.

As shown in Figure 2, it is clear that although vitamin 
E and C can scavenge ROS, their antioxidant effect 
actually depends on the capacity of the endogenous 
glutathione antioxidant system, by which vitamin C 
and vitamin E recycling is maintained[54]. Because 
the endogenous glutathione antioxidant system per 
se directly scavenges free radicals, high levels of 
supplementation of vitamin C and vitamin E are not only 
unnecessary but harmful due to increasing the burden 
of the glutathione antioxidant system. It is obvious 
that excess vitamin intake may provide an additional 
source of ROS. Thus, it is not surprising that some 
randomized clinical trials show that high-dosage vitamin 
E supplementation may increase, rather than decrease, 
cardiovascular events and all-cause mortality[55].

FOLIC ACID FORTIFICATION-INDUCED 
PARADOX
Although mandatory vitamin fortification has been 
implemented since the early 1940s and updated in 
1974, unfortunately it is hard to determine the relation-
ship between vitamin fortification and the increased 
prevalence of obesity, mainly because of the lack of 
studies regarding the effects of vitamin fortification and 
excess vitamin degradation on the metabolism of the 
body. Fortunately, the effects of the mandatory folic acid 
fortification that was started in 1998 in the United States 
are closely monitored based on the data from National 
Health and Nutrition Examination Surveys (NHANES). 
This provides a valuable opportunity for us to understand 
the vitamin paradox in obesity. The major results of 
studies on folic acid fortification are summarized as 

follows: (1) Blood folate concentrations in the United 
States population show first a sharp increase from pre- 
to postfortification (2.5 times for serum and 1.5 times 
for RBC folate) and then a decline over time (decreased 
by 17% for serum and 12% for RBC folate during 1999–
2010)[56]; (2) Unmetabolized folic acid was detected 
in nearly all serum samples measured, and serum 
unmetabolized folic acid concentrations > 1 nmol/L 
are associated with being older, non-Hispanic black, 
nonfasting (< 8 h), higher total folic acid intake (diet and 
supplements), and higher RBC folate concentrations[57]; 
(3) Serum and RBC total folate concentrations, including 
MeFox (an oxidation product of folate), are high in older 
adults and individuals with low renal function[12]; (4) 
Body mass index is associated negatively with serum 
unmetabolized folic acid and 5-methyltetrahydrofolate, 

but positively with serum MeFox and RBC folate 
concentrations[12]; (5) Compared with non-Hispanic 
whites, non-Hispanic blacks have lower serum and RBC 
total folate concentrations[12]; (6) In folic acid supplement 
users, it was found that non-Hispanic black users have 
lower serum 5-methyltetrahydrofolate concentrations 
than non-Hispanic-white users[57]; and (7) Alcohol intake 
is negatively associated with serum unmetabolized 
folic acid, 5-methyltetrahydrofolate and MeFox, without 
significantly affecting RBC folate concentrations[12].

Evidently, there are significant differences in response 
to folic acid fortification among the United States 
population. From the perspective of vitamin homeo-
stasis, the differences may actually reflect differences 
in folic acid excretion and degradation. Because folic 
acid is not a natural form of folate, the detection of 
unmetabolized folic acid in fasting serum suggests a 
folic acid overload. This overload is more evident in 
individuals with low excretion capacity, including either 
low renal function or sweat excretion (in non-Hispanic 
blacks), or both (in older adults).

The decline in post-fortification serum and RBC 
folate concentration over time in the United States 
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Figure 2  Glutathione-vitamin C-vitamin E interrelationship in the detoxification of reactive oxygen species. The endogenous glutathione antioxidant system 
maintains vitamin C and vitamin E recycling and actually determines the antioxidant effect of these vitamins. GSH: Reduced glutathione; a: Glutathione reductase; b: 
Glutathione peroxidase; ROS: Reactive oxygen species.
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population[56], and the association between increased 
MeFox levels and decreased renal function[12] suggests 
a compensatory increase in folic acid degradation. As 
mentioned above, blacks may have a higher drug-
metabolizing activity to compensate for their reduced 
sweat excretion. This may account for the finding that 
non-Hispanic blacks have low serum and RBC total folate 
concentrations. The association between unmetabolized 
folic acid concentrations > 1 nmol/L and non-Hispanic 
blacks[57] suggests that folic acid intake in this population 
may exceed their folic acid clearance capacity. Moreover, 
the low serum 5-methyltetrahydrofolate concentrations 
in non-Hispanic black users[57] may suggest a lack 
of one-carbon donors (due to the increased drug-
metabolizing activity in blacks), because the formation 
of 5-methyltetrahydrofolate consumes one-carbon 
donors (Figure 1).

Many obesity risk factors, such as being blacks[11], 
having a low birth weight/preterm birth[58], a winter 
(or cold weather) birth[59,60], or physical inactivity[61], 
are related to decreased sweat-gland function. This is 
also supported by the finding that an equivalent dose 
of folic acid (by body weight) caused a greater increase 
in serum folate in obese than non-obese individuals[62]. 
Given that obesity is associated with folate-degrading 
enzyme CYP2E1[13,52], the association of increased 
serum MeFox and RBC folate levels and low fasting 
serum folate levels in obesity may reflect a severe 
folic acid overload. From this point of view, the finding 
that the inverse association between body mass index 
and serum folate is no longer evident among folic 
acid supplement users in the United States[63] can be 
considered as saturation of the compensatory capacity 
of the drug-metabolizing enzyme system in obesity.

Ethanol is known to induce drug-metabolizing 
enzymes[64,65], including CYP2E1[66]. This may explain 
the association between alcohol consumption and low 
fasting serum folate status. It should be pointed out 
that alcohol consumption-induced low fasting serum 
folate does not mean folate deficiency, because there is 
no significant decrease in RBC folate concentrations[12].

Overall, four conclusions can be reached: (1) the 
current folic acid intake of Americans has exceeded their 
excretory capacity; (2) there is increased compensation 
for increased folic acid intake, especially in individuals 
with low excretion capacity; (3) further folic acid 
supplementation after fortification can saturate the drug 
metabolizing enzyme system; and (4) the production of 
MeFox suggests that excess folic acid may increase the 
consumption of one-carbon units (Figure 1) and provide 
a source of ROS.

MECHANISM BEHIND LOW VITAMIN D 
STATUS
There is also a paradox after vitamin D is used in 
fortification and as a supplement. Vitamin D, although 
considered a vitamin, can be produced in the skin by 

sun exposure. Numerous studies have documented 
an association between low serum concentrations of 
25-hydroxyvitamin D and many non-skeletal disorders. 
Many studies have examined the effect of vitamin 
D supplementation on the disorders[67], including 
obesity[68], diabetes[69], hypertension[70], dyslipidemia[71], 
cardiovascular disease[72], cancer[73], depression[74], 
and asthma[75]. Unfortunately, most, if not all, of publi-
shed meta-analyses have failed to show a significant 
benefit of vitamin D supplementation with or without 
calcium[68-75]. It is likely that low fasting serum 25-hyd-
roxyvitamin D status may be not the cause of these 
diseases.

The skin is a major determinant of 25-hydroxy-
vitamin D status. Besides synthesizing vitamin D, the 
skin also functions as a powerful excretory organ[17]. 
Notably, the skin functions fluctuate with seasonal 
temperature fluctuation, with the highest activities 
in summer and lowest activities in winter. Thus, it is 
likely that decreased skin excretory function may be a 
cause of human diseases. In fact, although not directly 
focusing on the excretory function of the skin, many 
studies have suggested a direct link of between the 
levels of plasma compounds and skin excretory function. 
For example, sebum excretion decreases in winter[76,77] 
and inhibition of sebum excretion increases the levels of 
blood triglycerides and cholesterol[78]. Sweat-inhibiting 
factors (e.g., acute cold exposure[79,80]) increases plasma 
norepinephrine levels. Decreased sweating function 
is found to be closely linked to diseases, for example, 
skin conductance non-response in schizophrenia and 
depression[81], low skin conductance in hypertension[82] 
and type 2 diabetes[83], and the association between 
psoriasis and metabolic syndrome[84]. Moreover, many 
well-known chronic disease risk factors, such as being 
of black origin, having a preterm birth or winter birth, 
or physical inactivity, are associated with decreased 
skin excretory function, as mentioned above. Taken 
together, it can be concluded that decreased skin 
excretory function may play a major role in diseases, 
and 25-hydroxyvitamin D status may be an indicator of 
skin excretory function.

Interestingly, there is a graded relationship between 
vitamin D status and body mass index[85]. Sadiya et 
al[86] found that it is difficult to achieve target levels 
of 25-hydroxyvitamin D above 75 nmol/L in type 2 
diabetic obese subjects with a relatively high daily dose 
of vitamin D3. Recently, Didriksen et al[87] performed a 
5-year intervention study with vitamin D3 at a dose of 
20000 IU (500 μg) per week vs placebo in subjects 
with impaired glucose tolerance and/or impaired fasting 
glucose, and they found that those given vitamin D3 
had significantly higher vitamin D concentration in their 
adipose tissue (about 6.5 times the placebo group), 
while their median serum 25-hydroxyvitamin D level 
only increased from the baseline of 61 to 99 nmol/L. 
This study clearly demonstrates that large amounts of 
vitamin D3 are stored in adipose tissue after vitamin D3 
supplementation, and suggests that overweight and 
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obese subjects may store more vitamin D than normal-
weight subjects because they have larger amounts of 
adipose tissue. Moreover, vitamin D is known to induce 
drug-metabolizing enzymes[88]. Thus, it seems likely 
that the prevalence of low 25-hydroxyvitamin D status 
after the introduction of vitamin D fortification may 
share a similar mechanism to that of low folate status: 
increased degradation and storage in compensation for 
excess intake.

THE CLINICAL SIGNIFICANCE OF THE 
VITAMIN PARADOX
Understanding the vitamin paradox in obesity and 
related diseases is crucial in determining how to man-
age the low vitamin status in these diseases. From the 
above analysis, it is apparent that the vitamin paradox 
in obesity may be due to increased vitamin degradation 
and storage in compensation for decreased vitamin 
excretion. This condition will continue until drug-metabo-
lizing enzymes are saturated by their substrates, in 
which high expression of vitamin-degrading enzymes 
and elevated vitamin-metabolite levels may serve as 
indicators. The vitamin paradox can be resolved by 
reducing vitamin intake and increasing sweat rates, 
rather than by giving vitamin supplementation. Indeed, 
a recent study shows that bariatric surgery (restricting 
food intake) and exercise are associated with a 
significant reduction in NNMT expression plasma MNA 
levels[16]. This can be explained by decreased niacin 
intake and increased sweat excretion.

Excess vitamins have three major detrimental effects: 
(1) increasing ROS generation and subsequently leading 
to oxidative tissue damage and insulin resistance; (2) 
disturbing the degradation of neurotransmitters and 
hormones by competing for drug metabolizing enzymes 
and detoxification resources; and (3) causing epigenetic 
changes (e.g., altered DNA methylation) by depleting 
the body’s methyl-group pool[2,89]. Thus, fortification-
induced sustained excess vitamin intake may deplete 
the drug-metabolizing system (e.g., manifested by high 
levels of unmetabolized vitamins) and the antioxidant 
system, and eventually cause a variety of metabolic 
disorders and oxidative tissue damage. This may play 
a causal role in the increased prevalence of obesity 
and related diseases, as hypothesized in our previous 
work[2,4,5].

The association between high vitamin intake and 
chronic diseases can be considered as vitamin poisoning. 
Vitamin poisoning is dose dependent. For example, 
high-dosage vitamin E may increase cardiovascular 
events and all-cause mortality[55]. Two recent large-scale 
randomized niacin trials (nicotinic acid, 1500-2000 mg/d) 
show that nicotinic acid has many adverse effects, 
including loss of glycaemic control among persons 
with diabetes, new-onset diabetes[90,91] and increased 
risk of death, with borderline statistical significance (P 
= 0.08)[90]. There are three factors that can increase 

the risk of vitamin poisoning: (1) the function of 
excretory organs is too low to effectively remove excess 
vitamins from the body, for example, due to early-
life malnutrition-induced renal insufficiency[92]; (2) the 
amount of vitamin intake has exceeded the excretory 
capacity of individuals without any developmental 
defect, which may account for excess chronic diseases 
in blacks and those with physical inactivity; and (3) the 
combination of both (1) and (2), accounting for the high 
rates of chronic diseases in subjects born preterm after 
the implementation of vitamin fortification. Because 
the reserve capacity of excretory/detoxifying organs 
has been determined in early life, whether or not 
chronic diseases occur will depend on whether there are 
chemical overloads of the excretory/detoxifying organs 
in late life. This may be the mechanism of the origin of 
chronic diseases. Excess vitamin is a kind of chemical 
overload, accounting for the association between the 
prevalence of obesity and diabetes and increased 
B-vitamin intake[4].

CONCLUSION
In summary, it can be concluded that the vitamin 
paradox in obesity may be a reflection of excess vitamin 
intake, rather than a vitamin deficiency. Given that 
there is a correlation between high vitamin intake and 
the increased prevalence of obesity, it can be assumed 
that obesity could be one of manifestations of chronic 
vitamin poisoning. Susceptible individuals to high 
vitamin intake are those with a low reserve capacity 
of excretory organs. Therefore, on an individual basis, 
prevention of obesity should focus on reducing their 
intake of vitamin-fortified foods, and for a country, 
more attention needs to be paid to the role of vitamin 
fortification and abuse in the increased prevalence of 
obesity and related diseases.
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