
in adipose tissue, emerging evidence indicates that 
endothelial dysfunction may represent the upstream 
event preceding peripheral impairment of insulin 
sensitivity. Indeed, suppression of reactive oxygen 
species-dependent pathways in the endothelium has 
shown to restore insulin delivery to peripheral organs 
by preserving nitric oxide (NO) availability. Here we 
describe emerging theories concerning endothelial 
insulin resistance, with particular emphasis on the role 
oxidative stress. Complex molecular circuits including 
endothelial nitric oxide synthase, prostacyclin synthase, 
mitochondrial adaptor p66Shc, nicotinamide adenine 
dinucleotide phosphate-oxidase oxidase and nuclear 
factor kappa-B are discussed. Moreover, the review 
provides insights on the effectiveness of available 
compounds (i.e. , ruboxistaurin, sildenafil, endothelin 
receptor antagonists, NO donors) in restoring endothelial 
insulin signalling. Taken together, these aspects may 
significantly contribute to design novel therapeutic 
approaches to restore glucose homeostasis in patients 
with obesity and diabetes. 

Key words: Endothelium; Insulin resistance; Oxidative 
stress; Obesity; Cardiometabolic risk; Vascular disease 
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Core tip: We present here the most recent advances 
in the understanding of endothelial insulin resistance, 
with a particular focus on the role of oxidative stress. 
The molecular pathways described may be instrumental 
for the development of mechanism-based therapeutic 
strategies to prevent maladaptive endothelial insulin 
signalling in patients with cardiometabolic disturbances.
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Abstract
The International Diabetes Federation estimates that 316 
million people are currently affected by impaired glucose 
tolerance (IGT). Most importantly, recent forecasts 
anticipate a dramatic IGT increase with more that 470 
million people affected by the year 2035. Impaired 
insulin sensitivity is major feature of obesity and diabetes 
and is strongly linked with adverse cardiometabolic 
phenotypes. However, the etiologic pathway linking 
impaired glucose tolerance and cardiovascular disease 
remains to be deciphered. Although insulin resistance 
has been attributed to inflammatory programs starting 
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PREVALENCE OF IMPAIRED GLUCOSE 
TOLERANCE 
The most recent update of the International Diabetes 
Federation shows that 6.9% of the global population 
(316 million people) is currently affected by impaired 
glucose tolerance (IGT) and, most importantly, forecasts 
anticipate a dramatic IGT increase with more that 
470 million people affected by the year 2035[1]. Such 
pandemic of metabolic syndromes and obesity-related 
disorders hints a proportional increase in the prevalence 
of type 2 diabetes (T2D), a major driver of morbidity 
and mortality worldwide[2]. Currently, 382 million 
people are affected by T2D, with a global age-adjusted 
prevalence of 10%. If these trends continue, 592 million 
people, or one adult in 10, will have diabetes by 2035[1]. 
The link between environmental factors (pollution, 
caloric intake, sedentary lifestyles), obesity and sub-
sequent dysglycemia indicates that the progression 
to diabetes is not linear and involves different cellular 
mechanisms including alterations of insulin signalling, 
changes in glucose metabolism, free fatty acids 
oxidation as well as dysregulation of genes relevant to 
endothelial integrity[3,4]. The progression from obesity to 
T2D may take many years to occur, leading to different 
intermediate phenotypes with progressive changes 
in glucose parameters and shifts in glucose tolerance 
category. Yet, the etiologic pathway linking increased 
body weight, altered insulin signaling and subsequent 
hyperglycemia remained to be understood. Novel 
insights in this area may be instrumental to identify 
novel mechanism-based therapeutic strategies for the 
preservation of insulin signaling and, hence, diabetes 
development. 

IMPACT OF INSULIN RESISTANCE ON 
CARDIOVASCULAR OUTCOME
Mortality from cardiovascular disease (CVD) is sig-
nificantly higher in subjects with T2D than in those 
without[5]. Notably, the risk of macrovascular compli-
cations seems to be proportional to the impairment of 
glucose homeostasis[6]. Among different diabetes-related 

conditions, insulin resistance (IR) and hyperglycemia are 
major precursors of atherothrombotic events and poor 
CV outcome[7]. Waist circumference, an hallmark of IR, 
is a strong independent predictor of CVD[8]. Dagenais 
et al[9] showed that subjects in the upper tertile of waist 
circumference had an increased adjusted relative risk 
of 29% for CV death, 27% for myocardial infarction, 
and 35% for total mortality, suggesting a strong 
association between abdominal obesity and CV events 
(Figure 1). Along this line, elevated insulin and glucose 
concentrations are associated with increased CVD risk, 
regardless of diabetes[10,11]. Impaired insulin signalling 
is a key feature of the metabolic syndrome (MetS), 
defined by the presence of hyperglycemia, central 
obesity, low high density lipoprotein cholesterol level, 
high triglyceride level and elevated blood pressure or 
antihypertensive drugs use. MetS is highly represented 
in patients with type 1 diabetes (T1DM) (38% in men 
and 40% in women) and is an important predictor of CV 
events[12]. Indeed, MetS was associated with a 2.1-fold 
increased risk of CV events and a 2.5-fold increased 
risk of CV-related mortality after 5.5 years follow-up 
in 3783 patients with T1DM[13]. The main issue when 
it comes to insulin resistance is how to measure it in 
clinical practice. The Homeostasis Model Assessment 
IR (HOMA-IR) is emerging as well-established marker 
of IR with a high predictive value for incident coronary 
events and stroke[14-16]. This is likely due to the fact that 
HOMA-IR includes in its formula both fasting glucose and 
insulin levels thus showing a stronger association with 
cardiovascular disease than glucose or insulin alone[14]. 
Despite many investigations confirmed a potential 
predictive value of IR, the mechanisms underlying this 
phenomenon still remain poorly understood. First, it 
is not clear whether IR is an active process or rather 
the consequence of the inflammatory milieu observed 
in obese and diabetic patients. Second, it remains 
unknown if the impairment of insulin signaling occurs 
simultaneously in all insulin-sensitive organs or whether 
tissue-specific IR has a primary role in triggering 
maladaptive insulin responses in other tissues. In order 
to answer these complex questions, many researchers 
are now exploring the pathophysiology of IR in different 
organs as well as its impact on metabolic features and 
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longevity. 

ENDOTHELIAL INSULIN RESISTANCE: AN 
EMERGING CONCEPT
Evidence accumulated over the last decade has 
shown that loss of insulin signaling in the endothelium 
accelerates atherosclerotic lesions and vascular dys-
function in mice[17-21]. Noteworthy, these effects occur 
regardless of concomitant CV risk factors, suggesting 
a central role of endothelial IR[4]. Although IR has 
been attributed to inflammation in adipocytes, recent 
work has overturned such “adipocentric paradigm”[22]. 
The novel concept that IR may primarily starts in the 
endothelium squares with the notion that endothelial 
cells are highly represented within the entire vascular 
system and, hence, within different organs[18,20,23]. 
Recent experimental work has demonstrated that the 
transcription factor nuclear factor kappa-B (NF-kB) is a key 
determinant of endothelial insulin resistance in mice[17]. 
NF-kB is a well known molecular complex involved 
in inflammatory programs enabling transcription of 
cytokines, activation of stress kinases and dysregulation 
of insulin-related pathways[24,25]. Of note, genetic 
disruption of IkB prevents inflammation and insulin 
resistance in obesity and T2D[26]. Hasegawa et al[17] have 
shown that mice with endothelium-specific suppression 
of NF-kB signaling (E-DNIkB) were protected against 
IR in adipose tissue and skeletal muscle. These mice 
displayed reduced oxidative stress markers, decreased 
macrophage infiltration of adipose tissue as well as 
increased blood flow and muscle mitochondrial content. 
Of note, capillary recruitment and subsequent insulin 
delivery were explained by restoration of nitric oxide (NO) 
levels in E-DNIkB animals[17]. This latter observation is 
important since endothelial nitric oxide synthase (eNOS) 
dysfunction may lead to a reduction in microcirculatory 
blood flow and, hence, reduced delivery of insulin within 
hormone-sensitive organs. Indeed, insulin-mediated 
glucose uptake is reduced in eNOS-/- as compared 
with WT mice[27]. In other words, microvascular 
dysfunction occurring in liver, adipose tissue and skeletal 
muscle explains the progressive decline of peripheral 
insulin distribution[28,29]. Of note, restoration of eNOS 
functionality due to suppression of endothelial NF-
kB signaling was capable to rescue aging-associated 
insulin resistance and, most importantly, to prolong 
lifespan in mice[17]. In line with these experimental data, 
studies in humans demonstrated that insulin-dependent 
vasodilation may represent a significant contributor to 
insulin-stimulated glucose uptake[30-32]. Muris et al[33] 
proposed that approximately 40% of insulin-mediated 
glucose uptake by skeletal muscle can be attributed 
to capillary recruitment; according to this hypothesis, 
microvascular dysfunction not only precedes and 
predicts the development of T2D but also constitutes 
one of the links between IR and hypertension in MetS. 
Consistently, improvement of insulin sensitivity in 

patients with cardiometabolic disturbances is associated 
with restoration of flow-mediated vasodilation[34,35]. 
Another study showed that disruption of endothelial 
insulin signaling by genetic deletion of insulin receptor 
substrate-2 (IRS-2) alters insulin delivery in muscle 
thus affecting glucose tolerance in mice[18]. Of interest, 
endothelial IRS-2 and ApoE knockout mice showed a 
more severe atherosclerotic disease progression as 
compared to controls[18]. Further work demonstrated that 
knockout of three major FoxO isoforms in endothelial 
cells attenuates endothelial IR and atherosclerosis 
in low density lipoprotein receptor knockout mice, 
suggesting that FoxO inhibition may represent a potential 
therapeutic approach to prevent CVD and IR in patients 
with diabetes[36]. Accordingly, activity of protein kinase 
C (PKC)β2 and NF-kB in endothelial cells isolated from 
insulin resistant subjects was markedly enhanced 
and this finding was associated with blunted eNOS 
phosphorylation, reduced nitric oxide availability and 
impaired endothelial function[23]. 

Research discussed so far implies that reprogram-
ming detrimental pathways in the vascular endothelium 
may be considered a novel approach to prevent metabolic 
disease.

ROLE OF OXIDATIVE STRESS IN 
MALADAPTIVE INSULIN SIGNALING
In obese subjects, exposure to environmental cues 
triggers many pathological processes including re-
programming of oxidant genes and subsequent redox 
changes in different tissues[37,38]. The importance of 
reactive oxygen species (ROS) has been claimed over 
the last 50 years since these mediators are likely the 
most pervasive precursors of maladaptive intracellular 
signalling[39]. Previous seminal work carried out in 
conditions of hyperglycemia has elegantly demonstrated 
how ROS accumulation can easily boost activation of 
detrimental downstream pathways such as advanced 
glycation end products (AGEs), polyol and hexosamine 
pathways as well as proinflammatory transcriptional 
programs initiated by NF-kB[40]. These ROS-sensitive 
molecular events are being translated to endothelial 
dysfunction and, hence, micro and macrovascular 
complications[7]. While the relation between hyperglycemia 
and oxidative stress has been clearly delineated, the 
etiologic path linking insulin resistance to ROS generation 
remains to be deciphered. Recent evidence suggests that 
oxidative stress may contribute to alter insulin sensitivity 
in the vascular endothelium. Du et al[19] have shown that 
enhanced oxidation of free fatty acids (FFAs) in aortic 
endothelial cells increases the production of superoxide by 
the mitochondrial electron transport chain thus triggering 
molecular pathways of maladaptive insulin signalling. 
Indeed, FFAs-induced overproduction of superoxide was 
able to activate an array of proinflammatory signals 
while hampering the activity of key anti-atherogenic 
enzymes such as prostacyclin synthase (PGIS) and 
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plasma isoprostane levels, a reliable in vivo marker of 
oxidative stress[46]. We have recently found that in vivo 
gene silencing of p66Shc restored endothelial insulin 
response by affecting the IRS-1/Akt/eNOS pathway[47]. 
Furthermore, p66Shc knockdown in endothelial cells 
isolated from obese mice attenuated ROS production, 
FFAs oxidation and prevented dysregulation of redox-
sensitive pathways such as NF-kB, AGE precursor 
methylglyoxal and PGI2 synthase. Collectively, our results 
show that p66Shc may contribute to the pathogenesis 
of IR and increased vascular risk in the context of 
obesity and T2D. Selective targeting of p66Shc may 
restore endothelial insulin sensitivity thus preventing 
adverse cardiometabolic phenotypes. In line with our 
findings, a recent work has shown that endothelium-
specific overexpression of PKCβ2, a key molecular 
event eliciting ROS production, suppressed insulin-
dependent pathways in APOE-/- mice[21]. Interestingly, 
expression of the potent vasoconstrictor endothelin-1 
was highly increased in vessels isolated from APOE-/- 
animals with PKCβ2 overexpression (Figure 2). Taken 
together, these results indicate that p66Shc stands along a 
detrimental signalling cascade involved in ROS generation, 
microvascular dysfunction and, hence, peripheral insulin 
resistance. The clinical relevance of these experimental 
findings is supported by the notion that oxidative stress 
is significantly increased in cardiometabolic disorders. A 
cross-sectional study from the LIPGENE cohort revealed 
that levels of total nitrite, lipid peroxidation products, 
hydrogen peroxide (H2O2), superoxide dismutase 

eNOS. The importance of ROS in this setting was 
outlined by experiments in obese mice showing that 
inactivation of PGIS and eNOS was prevented by 
inhibition of FFAs release from the adipose tissue[19]. For 
the first time, this study demonstrated that ROS may 
actively participate to impaired endothelial signalling thus 
favouring a pro-atherosclerotic phenotype in subjects 
with IR. Consistently, in ApoE-/- mice with endothelium-
specific IR, generation of superoxide was strongly 
linked to hampered insulin sensitivity, vasorelaxation 
and atherosclerotic lesions[41]. A further study recently 
showed that nicotinamide adenine dinucleotide 
phosphate (NADPH)-oxidase 2 (Nox2) may also be 
implicated in maladaptive insulin response by inducing 
a detrimental rearrangement of insulin receptors with 
subsequent deregulation of downstream kinase effectors, 
and eNOS dysfunction. Interestingly, obese mice with 
genetic disruption of Nox2 were protected against 
ROS accumulation and endothelial IR, suggesting that 
targeting Nox2 could represent a valuable therapeutic 
strategy in the context of prediabetes[42] (Figure 2). 
On such a background, we have recently explored the 
possibility that the mitochondrial adaptor p66Shc might 
participate to ROS-driven IR in the endothelium. The 
adaptor p66Shc is a pivotal modulator of mitochondrial 
ROS through oxidation of cytochrome c[43,44]. We have 
previously reported that genetic deletion of p66Shc 
protects against vascular dysfunction and oxidative 
stress in diabetic mice[45]. Moreover, p66Shc expression 
is increased in patients with T2D and correlates with 
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and glutathione peroxidase activities were all strongly 
associated with metabolic syndrome traits[48]. Despite 
such evidence brings enthusiasms toward the possibility 
of targeting oxidative stress in humans, we are still far 
from having achieved satisfactory results in term of 
intermediate endpoints such as endothelial function and 
atherosclerotic lesions. Indeed, available antioxidants 
may not fully scavenge cellular ROS since they are 
unable to target intracellular enzymes involved in redox 
signalling. This notion is confirmed by the negative 
results of major trials with oral supplementation of high-
dose vitamins[49]. 

FUTURE PERSPECTIVES
The possibility to target specific machineries in the vascular 
endothelium may represent an attractive challenge 
to prevent or delay systemic features of IR favouring 
adiposity and related comorbidities. There are several 
examples suggesting that mechanism-based therapeutic 
approaches might be tested over the next decades. 
High doses of salicylates have been shown to ameliorate 
IR and improve glucose tolerance by suppressing NF-
kB activity in patients with T2D[50]. Moreover, selective 
pharmacological inhibition of PKCβ with LY379196 in 
freshly isolated endothelial cells from T2D patients 
reduced basal eNOS phosphorylation and improved 
insulin-mediated eNOS activation[23]. Consistently, the 
Food and drug administration-approved PKC inhibitor 
ruboxistaurin ameliorates functional endothelial IR 
and smooth muscle cell hypersensitivity to insulin in 
experimental obesity and diabetes[51]. In conditions of 
IR also the phosphodiesterase 5 inhibitor sildenafil has 
shown to improve NOS activity in human endothelial 
cells, thus suggesting the potential therapeutic use 
of this compound to warrant glucose homeostasis[52]. 
Furthermore, preclinical work demonstrated that dual 
ET(A)/ET(B) receptor blockade enhanced endothelium-
dependent vasodilatation in individuals with IR, thus 
restoring vascular recruitment and insulin delivery to 
peripheral organs[53]. Yet, strategies to drive compounds 
specifically to the vascular endothelium are still far 
to be applied in humans. The main problem when it 
comes to tissue-specific treatment is represented by 
drug delivery. It is clear that selective rearrangement of 
maladaptive pathways in the endothelium would provide 
invaluable to restore microvascular dysfunction and 
insulin distribution to the liver, adipose tissue and skeletal 
muscle. An alternative option may be represented by 
NO donors or administration of eNOS cofactors in order 
to improve tissue capillary recruitment. Unfortunately 
this approach has failed many times due to the high 
oxidative burden in patients with metabolic disease which 
rapidly inactivates NO, thus favouring accumulation of 
peroxinitrite (ONOO-), protein nitrosylation and cellular 
dysfunction. In this respect, an example is provided 
by a recent clinical trial where oral treatment with 
eNOS cofactor tetrahydrobiopterin (BH4) has shown 

limited effectiveness on endothelial function due to 
systemic oxidation and poor uptake into the vascular 
wall[54]. These latter results highlight the need for more 
mechanistic understanding and alternative strategies 
to counteract pathways triggering eNOS dysfunction 
in patients with IR. We have recently showed that in 
vivo RNA interference may represent a valid approach 
to target specific ROS-generating enzymes in the 
endothelium[55]. Distribution studies showed that in vivo 
delivery of small interfering RNA together with a cationic 
transfection reagent is able to target the vascular 
endothelium while sparing surrounding tissues. Indeed, 
we demonstrated that in vivo gene silencing of the 
adaptor p66Shc restores insulin-dependent vasorelaxation 
in obese mice, suggesting that blunting endothelial 
oxidant pathways may be efficient for the maintenance 
of glucose homeostasis[47]. This work will be instrumental 
to understand the efficacy and safety of such technology 
in humans, and whether other candidates may be 
considered for gene therapy in the setting of endothelial 
IR. 
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