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Abstract
Diabetes affects at least 382 million people worldwide 
and the incidence is expected to reach 592 million by 
2035. The incidence of diabetes in youth is skyrocketing 
as evidenced by a 21% increase in type 1 diabetes and 
a 30.5% increase in type 2 diabetes in the United States 
between 2001 and 2009. The effects of toxic stress, the 
culmination of biological and environmental interactions, 
on the development of diabetes complications is gaining 
attention. Stress impacts the hypothalamus-pituitary-
adrenal axis and contributes to inflammation, a key 

biological contributor to the pathogenesis of diabetes 
and its associated complications. This review provides 
an overview of common diabetic complications such as 
neuropathy, cognitive decline, depression, nephropathy 
and cardiovascular disease. The review also provides a 
discussion of the role of inflammation and stress in the 
development and progression of chronic complications of 
diabetes, associated symptomatology and importance of 
early identification of symptoms of depression, fatigue, 
exercise intolerance and pain.
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Core tip: The incidence of diabetes and associated 
complications are increasing. Toxic stress and inflam
mation may be contributors to the development and 
progression of diabetes complications. Current evidence 
supports early identification of symptoms of toxic 
stress for preventative strategies of associated risks 
for diabetes complications as well as assessment of 
the exacerbation of symptoms related to neuropathy, 
cardiovascular disease and nephropathy.
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INTRODUCTION
The notion that exposure to chronic stressors pre­
disposes individuals to developing diabetes or succu­
mbing to worsening diabetes complications has gained 

REVIEW

554 May 15, 2015|Volume 6|Issue 4|WJD|www.wjgnet.com

Toxic stress, inflammation and symptomatology of chronic 
complications in diabetes

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4239/wjd.v6.i4.554

World J Diabetes  2015 May 15; 6(4): 554-565
ISSN 1948-9358 (online) 

© 2015 Baishideng Publishing Group Inc. All rights reserved.



attention in recent years[1-4]. The global epidemic of 
both type 1 and type 2 diabetes[5-7] is occurring in an 
era of worldwide threats to personal, organizational 
and societal security due to psychosocial and economic 
burdens. According to the International Diabetes 
Federation, diabetes affects at least 382 million people 
worldwide, and that number is expected to reach 592 
million by the year 2035[8]. Although it is well-known 
that type 2 diabetes comprises the largest proportion 
of affected individuals, the number of individuals with 
type 1 diabetes around the world is increasing as well. 
Worldwide estimates for type 1 diabetes are unknown, 
but are estimated to be up to 3 million in the United 
States[9]. A recent report on the prevalence of type 1 
diabetes in youth in the United States indicated a 21 
percent increase between 2001 and 2009. At the same 
time, rates of type 2 diabetes in youth rose 30.5%[10].

In the midst of this public health crisis, there is 
tremendous need to embrace the impact of “toxic 
stress” from biological and environmental interactions 
on the development of chronic complications in 
persons living with diabetes. Toxic stress can result 
from strong, frequent, or prolonged activation of the 
body’s stress response systems, particularly in the 
absence of protective mechanisms through daily coping 
strategies and healthy interpersonal relationships[11]. 
The impact of toxic stress is apparent in current society 
and is garnering a paradigm shift regarding a more 
comprehensive understanding of health and disease 
across the lifespan[11,12]. Toxic stress can be viewed as 
the catalyst of a physiological memory that confers life-
long risk for disease, especially due to inflammatory 
processes, well beyond its time of origin[13]. How 
individuals, institutions, and governments respond to 
these stressors can have an enormous effect on the 
collective health of a nation. Health care clinicians 
serve on the front line of care delivery for identifying 
the most vulnerable individuals for the ravages of 
diabetes complications through an understanding of 
underlying etiologies associated with toxic stress and 
recognition of resultant symptomatology.  

With the growing numbers of individuals diagnosed 
with diabetes, particularly in younger cohorts, the 
disease burden is ever apparent, as is the importance 
of minimizing the role of toxic stress on associated 
diabetes complications. According to Shonkoff[14], 
the future consequences of significant adversity 
and chronic stress in early childhood extend beyond 
socioemotional and cognitive development. They also 
have significant implications for the pathogenesis of 
adult disease[15], including biological manifestations 
of alterations in immune function[16] and measurable 
increases in inflammatory markers[17,18] that are known 
to be associated with poor health outcomes such as 
cardiovascular disease[19-21], liver cancer[22], asthma[23], 
chronic obstructive pulmonary disease[24], autoimmune 
diseases[25], poor dental health[26], and depression[27-29]. 
Although there is no absolute evidence that chronic 
stress has a direct effect on the development of 

diabetes in adults or children, stress can influence 
the onset of type 2 diabetes secondary to obesity and 
metabolic syndrome[2].

With regard to the effects of stress on the neuroen­
docrine system, the hypothalamus-pituitary-adrenal  
(HPA) axis exerts considerable importance[30]. Upon 
experiencing a stressor, the hypothalamus secretes 
corticotropin-releasing factor, which causes the 
release of adrenocorticotropin (i.e., ACTH). This in 
turn stimulates the adrenal cortex, which leads to the 
secretion of glucocorticoid hormones, in particular cor­
tisol. Under normal circumstances, cortisol is secreted 
according to a circadian rhythm, with cortisol levels 
highest in the morning and lowest in the evening. 
However, exposures to stress stimulate the HPA axis 
to release additional amounts of cortisol to maintain 
homeostasis and reduce the effects of stress. Cortisol 
influences a wide range of processes, including the 
breakdown of carbohydrates, lipids, and proteins to 
provide the body with energy. Cortisol has an immu­
nosuppressive effect and therefore plays a role in the 
regulation of immune and inflammatory processes.

The relationship between inflammation and the 
HPA axis is a complex one since pro-inflammatory 
cytokines also stimulate the HPA axis and contribute 
to stress-induced elevation in cortisol[31]. Cortisol in 
turn, normally plays a fundamental role in limiting the 
further production of pro-inflammatory cytokines via 
the important cytokine-glucocorticoid feedback cycle. 
This occurs through cortisol binding to glucocorticoid 
receptors in the white blood cells (WBCs), which once 
activated, leads the activated receptor [e.g., Nuclear 
factor-kB (NF-kB)], to block intracellular cytokine 
signaling pathways, ultimately stopping the further 
production of pro-inflammatory cytokines[32] and 
promotion of anti-inflammatory cytokines[33]. NF-
kB consists of a family of transcription factors that 
play critical roles in inflammatory processes, immune 
regulation, cell proliferation, differentiation, and 
survival[34].

With toxic stress, chronic exposure of the WBCs 
to high cortisol leads to down regulation of the glu­
cocorticoid receptors, resulting in their resistance to 
cortisol. This stops the cytokine-glucocorticoid feedback 
cycle, leading to dysregulated cytokine production 
and chronically elevated cortisol; two states known to 
worsen disease outcomes. Thus, toxic stress has been 
associated with inflammation due to glucocorticoid 
receptor resistance, a mechanism of dysfunctional 
inflammation regulation that allows proinflammatory 
mediators to be uncontrolled, adding to stress-related 
morbidity[35]. 

ROLE OF INFLAMMATION IN 
THE PHYSIOLOGY OF DIABETIC 
COMPLICATIONS
Chronic inflammation contributes to diabetes and its 
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complications. Features of chronic inflammation include 
an up-regulation of proinflammatory cytokines, such 
as TNF-α, interleukin (IL)-1, IL-6, IL-8, monocyte 
chemo attractant protein-1, and C-reactive protein 
that are produced by activated immune cells, resident 
macrophages and adipocytes[36]. Production of these 
proinflammatory cytokines functions to amplify the 
immune response. It is recognized that a chronic, 
low-grade inflammatory response that occurs with 
an activated immune system is involved in the patho­
genesis of obesity-related insulin resistance and type 2 
diabetes[37].

Markers of systemic inflammation correlate with risk 
for the development of diabetes related macrovascular 
complications[38]. For example, in obesity-related type 
2 diabetes, adipose tissue, liver, muscle and pancreatic 
tissues are sites of inflammation. There is an infiltration 
of macrophages and other immune cells coupled with 
a shift in cell population from anti-inflammatory to a 
pro-inflammatory profile. The shift in the inflammatory 
profile promotes insulin dysfunction leading to hyperg
lycemia[39].

One complication of hyperglycemia is the formation 
and accumulation of advanced glycation endproducts 
(AGEs), ubiquitous irreversible end products of protein 
glycation which are formed from Amadori protein 
products[40]. AGEs crosslink proteins to form stable 
complexes that are resistant to enzymatic degradation. 
In addition to hyperglycemia, oxidative stress ap­
pears to increase AGE formation. AGEs ligate with 
their receptor, RAGE, to amplify and perpetuate the 
inflammatory response through nuclear factor κβ (NF-
κβ), cAMP regulated element binding protein (CREB), 
and activator protein-1 (AP-1) signaling pathways. RAGE 
is a promiscuous receptor and has multiple ligands 
including lipopolysaccharide, S100/calcium binding 
proteins, High Mobility Group Box Protein 1 (HMGB1) 
and Amyloid-βpeptide (Aβ), as well as many others[40,41]. 
Data from multiple studies demonstrate that AGEs and 
their receptor, RAGE, are important contributors to the 
development of diabetes related complications[40,42]. 

Oxidative stress, an alteration in redox regulation 
and control, occurs in response to excessive reactive 
species production that overwhelms antioxidant de­
fenses[43]. Reactive species may modify glucose, free 
fatty acids, oxysterols or lipids through oxidation-
reduction reactions. For example, oxidize glucose is 
involved in the formation of AGEs. AGEs ligate with 
their receptor RAGE to promote an inflammatory 
response; modification of lipids has been shown to 
affect mitochondrial metabolic pathways leading to 
mitochondrial damage[44,45]. Inflammation and mito­
chondrial damage result in oxidative stress thereby 
producing an autocrine feedback pathway to perpetuate 
inflammation and oxidative stress[46]. This pathway has 
been described in the macrovasculature as well as in 
peripheral neurons and is recognized as a contributor to 
the complications of diabetes[47,48]. 

Vascular dysfunction characterized by an activated 

endothelium that is primed to facilitate immune cell 
migration into tissue also occurs in diabetes. Indeed 
vascular dysfunction is a key contributor of neuropathy, 
impaired cognition, nephropathy and cardiovascular 
diseases (e.g., atherosclerosis, cardiomyopathy, etc.) 
that underlie complications of diabetes.

DIABETIC NEUROPATHY
Peripheral neuropathy (PN) affects up to 50% of people 
with diabetes and the diffuse peripheral neuropathies 
(distal sensori-motor polyneuropathy and autonomic 
neuropathy) are major risk factors for foot ulceration 
and amputation[49]. The etiology of PN is complex; 
however, studies show that altered blood flow, hyperg
lycemia and alterations in metabolics (oxidative/
nitrative stress, advanced glycation end products and a 
pro-inflammatory response) are involved. 

In animal models of diabetes, evidence of reduced 
blood flow to the nerve is seen within the first few 
days of the induction of diabetes with a chemical agent 
such as streptozosin (STZ). These changes often 
precede changes in nerve conduction velocity[50-52]. 
However, the loss of blood flow results in neuronal 
hypoxia sufficient to compromise nerve function and 
initiate neurodegeneration[53]. This effect has also been 
described in autonomic ganglia, dorsal root ganglia and 
in the hippocampus[54-56]. 

Hypoxia also induces the expression of numerous 
pro-angiogenic and pro-inflammatory genes in macro
phages[57]. Alterations in the microvasculature effect 
associated peripheral nerves[58]. Indeed capillary 
occlusion induces ischemia to the nerve producing 
ischemic nerve fiber damage and perineural capillary 
luminal occlusion (due to endothelial cell hypertrophy 
and hyperplasia)[59]. In rats, hypoxic conditions reduced 
nerve velocity conduction, and within the context 
of hyperglycemic hypoxia, blockade of potassium 
channels leads to intra-axonal acidification by anaerobic 
glycolysis. This suggests that hypoxia induced neuronal 
changes may play a role in the development of neuro­
pathy[60,61]. However, reversal of hypoxia in the ischemic 
limbs of individuals with diabetes does not improve 
nerve function[62]. 

Hyperglycemia appears to contribute to the patho­
genesis of diabetic neuropathy. Within the first month 
of inducing diabetes in rats, hyperglycemia resulted in 
slowing of sensory[63-65] and motor[66,67] nerve conduction 
velocity coupled with hyperalgesia[68,69]  and allodynia[70]. 
Over time prolonged hyperglycemia produces axon­
pathy, demyelination and nerve degeneration in diabetic 
animals[71,72].

Metabolic alterations are thought to play a central 
role in the development of neuropathy in diabetes.  
Elevation in polyol pathway activity, oxidative stress, 
the formation of advanced glycation end products 
and a persistent pro-inflammatory response  through 
activation of the NF-κβ and p38 mitogen activated 
protein kinase signaling have been consistently shown 
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spinothalamic tract, thalamus, and subsequently, the 
cortex where pain is interpreted and perceived.

Nociceptive pain is the normal response to noxi­
ous stimuli and nociceptive pain usually subsides 
upon removal of the stimulus (e.g., healing of injured 
tissue). Neuropathic pain occurs in the absence of 
noxious stimuli and represents a pathological change 
affecting the somatosensory system. Neuropathic 
pain is characterized by the activation of abnormal 
pathways of pain at the peripheral nerve and posterior 
nerve roots. Neuropathic pain is a critical feature in 
diabetic neuropathy.

The development of painful diabetic neuropathy 
is complex and not completely understood. How­
ever, evidence suggests that glycemic shifts, inflam­
mation and oxidative stress are important contri­
butors. Hyperglycemia affects glial cells leading to 
demyelination and impaired neurotrophism that 
culminates in impaired regeneration and decreases 
nerve conduction velocity; ultimately this results in 
pain. Hyperglycemia also activated the microvascular 
endothelium causing endothelial hypertrophy affect­
ing downstream endoneurial circulation to promote 
hypoxia and ischemia of the nerve. Hyperglycemia and 
hypoxia affects neurons by promoting axonopathy 
and neuronal degeneration. Hyperglycemia may also 
contribute to painful diabetic neuropathy through the 
polyol pathway[85], advanced glycation end-products[86], 
hexosamin flux[87], mitogen-activate protein kinases[73], 
altered activity of the Na+/K+-ATPase[88], poly-ADP 
ribose polymerase (PARP) over activation[89], and 
cyclooxygenase-2 activation[90]. Nerve cells are prone to 
hyperglycemic injury as the neuronal glucose uptake is 
based on glucose concentration.

The expression of voltage-gated sodium and 
calcium channels and voltage-independent potassium 
channels in the DRG has a significant role in the 
generation of nociceptive sensation and peripheral 
sensitization. Indeed voltage gated sodium channels 
are active following nerve injury and demonstrate 
continued generation of ectopic impulses; similar 
findings have been observed from some voltage-gated 
calcium channels suggesting that voltage-gated calcium 
channels play a role in neuropathic pain. Calcium entry 
through voltage-gated calcium channels causes the 
release of substance P and glutamate, which results in 
the modulation of pain at the dorsal horn. The transient 
receptor potential vanilloid 1 (TRPV1) channel has been 
found to be associated with neuropathic pain as well. 
Methylglyoxal, a reactive intracellular by-productive of 
glycolysis and hyperglycemia, depolarizes the sensory 
neuron by activating the TRPV1 channel[91] in the DRG 
and also induces posttranslational modification of the 
voltage-gated sodium channel Nav1.8[92]. In addition, 
these changes increase electrical excitability and 
facilitate firing of nociceptive neurons.

Neuroplasticity is the brain’s response to changes 
within the body or the external environment. In 
response to chronic neuropathic pain, neuroplasticity 

to contribute to diabetic neuropathy[73-75]. 
There is considerable evidence that pro-inflam­

matory cytokines such as TNF-α, IL-1β and IL-6 are 
involved in the pathogenesis of diabetic neuropathy. 
TNF-α is a potent proinflammatory cytokine that 
appears to play a role in the pathogenesis of diabetic 
neuropathy and have a central role in central and 
peripheral sensitization of neuropathic pain[76]. Phar­
macologically inhibiting TNF-α in mice ameliorates the 
electrophysiological and biochemical effects of the 
cytokine[77].  

IL-1β is an important cytokine that induces the 
production of a wide variety of cytokines thorough NF-
κβ activation. Studies show an increase in the mRNA 
expression of TNF-α and Il-1β in the spinal cords of 
STZ-diabetic rats[78]. Activated astrocytes in the spine 
increase IL-1β expression, which may induce N-methyl-
D-aspartic acid receptor phosphorylation in spinal 
dorsal horn neurons to enhance pain transmission[79]. 
Hyperglycemia induces the production of IL-1β through 
the NOD-leucine-rich repeats-and pyrin domain con­
taining inflammasome[80]. In the spinal dorsal horns of 
db/db mice, increased IL-1β, TNF-α and IL-6 levels are 
inhibited by anti-high-mobility group box protein-1, a 
known RAGE ligand[81].

IL-6 is a member of the neuropoietic cytokine 
family that participates in neuronal development and 
has neurotrophic activity. IL-6 is a sensitive marker 
of diabetic neuropathy and predicts progression and 
severity of type 1 diabetes[82]. Increased levels of 
IL-6, IL-1 and TNF-α correlated with the progression 
of nerve degeneration in diabetic neuropathy[83]. It is 
believed that these proinflammatory cytokines affect 
glial cells and neurons to set the pathological process 
of diabetic neuropathy in motion. However, the role of 
these cytokines in diabetic peripheral neuropathic pain 
is unclear[84]. It is clear that inflammation is a complex 
scenario. To that end other signaling molecules such 
as interferon-γ, IL-10, C-reactive protein, adhesion 
molecules, chemokines and adipokines may also play 
a role in the inflammatory process associated with 
diabetic neuropathy and neuropathic pain.

NEUROPATHIC PAIN
Pain is the body’s perception of actual or potential 
damage to the nerve or tissue by noxious stimuli. Large 
A-delta myelinated fibers and small C unmyelinated 
fibers are sensory afferent nerves that are mainly 
responsible for carrying nociceptive sensation from 
the skin, joints, and viscera. Tissue damage results 
in the release of inflammatory mediators such as 
prostaglandins, bradykinins, and histamines at the 
site of injury, which triggers the depolarization of 
nocioceptors, thereby generating an action potential. 
The action potential transmits the nociceptive sensation, 
via the dorsal root ganglion (DRG) to the dorsal horn of 
the spinal cord. The release of glutamate and substance 
P results in the relay of nocioceptive sensations to the 
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is associated with somatosensory cortex remodeling, 
reorganization, and hyperexcitibility in the absence 
of external stimuli. Provoked pain and spontaneous 
stimuli may reverse the remodeling and reorganization 
at the somatosensory cortex[93]. In a study of patients 
with chronic neuropathic pain and nonneuropathic pain 
Gustin et al[93] found using functional and anatomical 
resonance imaging cortical reorganization and changes 
in somatosensory activity in patients with neuropathic 
pain.

IMPAIRED COGNITION AND DEPRESSION
Diabetes can lead to a number of secondary compli­
cations, and the most common brain complications 
include cognitive decline and depression. The incidence 
of cognitive decline, measured by behavioral testing 
may be as high as 40% in people with diabetes[94]. 
Subjective feelings of cognitive decline have also been 
reported from persons with diabetes[95], which illustrates 
the impact of diabetes on the individuals perception of 
how well their brain  functions. Indeed multiple studies 
have reported that diabetic patients have a 2-5 fold 
increased risk for Alzheimer’s Disease compared to 
non-diabetic subjects[96,97]. Furthermore, alterations in 
cognitive functioning in type 1 diabetic children (less 
than 5 years old)  has been reported[98,99], as well as 
evidence of changes in white matter structure[100].  

The mechanisms responsible for the development 
of high rates of cognitive decline in diabetics are not 
well understood, although evidence suggests that 
neuroplasticity may play an important role. The dentate 
gyrus of the hippocampus and the subventricular 
zone are two important areas in neurogenesis[101], 
the process of proliferation of progenitor cells or their 
differentiation into astrocytes, oligodendrocytes or 
neurons and survival and incorporation of the newborn 
cells into target regions. Hippocampal neurogenesis is 
diminished by exposure to environmental stress, HPA 
axis hyperactivity and increased inflammation[102,103]. 
Changes in neurogenesis alter a number of key fun­
ctions of the hippocampus, such as learning and 
memory, affective expression and regulation of the HPA 
axis[104,105].

Wide variations in glucose levels and oxidative 
stress may also play an important role in the deve­
lopment of cognitive decline in diabetics. In animal 
models, studies show that repeated bouts of hy­
poglycemia inhibits hippocampal neurogenesis, 
presumably through oxidative injury to hippocampal 
CA1 dendrites[106]. Hyperglycemia also promotes 
oxidative stress and neurodegeneration[107]. Prolonged 
hyperglycemia promotes the development of AGEs 
which bind to their receptor, RAGE, to promote and 
sustain an inflammatory response through NF-κβ, 
AP-1 and CREB signaling pathways. RAGE ligation also 
promotes increases expression through an autocrine 
feedback mechanism[108]. RAGE is also responsible 

for the transport of amyloid-β (Aβ) across the blood-
brain barrier. Aβ contributes to the development of Alzhei­
mer’s Disease[109,110] by participating in the formation 
and accumulation of amyloid plaques and fibrils that 
facilitate neurodegeneration and impair cognition[107]. 
Also, Aβ and hyperglycemia have been shown to 
activate microglia to induce oxidative injury[111].

The relationship between diabetes and depression 
is reciprocal as either is known to be a risk factor for 
the other[112]. The importance of depression is diabetes 
is highlight by studies consistently report a higher 
prevalence rate for depression among type 1 and type 
2 diabetics compared to the general population[113]. 
Comorbid depression and diabetes is associated with 
poor self-care, lack of exercise, and nonadherence to 
dietary or medication routines, leading to inadequate 
glycemic control.

The mechanisms responsible for the development 
of depression in diabetics is unclear, although there 
is likely overlap between physiological and non-
physiological factors to account for the pathogenesis 
of their comorbidity. Non-physiological factors such 
as sedentary life style, lack of self-care, and diet, as 
well as the emotion burden of managing diabetes, 
contribute to the development and progression of 
diabetes. Insulin resistance is gaining attention as a 
potential link between diabetes and depression and 
cognitive decline[114,115]. Neuroendocrine signaling, 
through hyperactivity of the HPA axis, is thought to 
cause or exacerbate depression in diabetics[116]. Indeed 
antidepressant treatment has been shown to abrogate 
abnormal HPA responses while facilitating recovery from 
depression[117]. 

Stress has been shown to decrease brain derived 
neurotrophic factor (BDNF) in the hippocampus. Stress 
also appears to decrease the expression of other types 
of neurotrophic and growth factors such as nerve growth 
factor and neurotrophin-3[118], which could lead to the 
alteration in the structure and function of hippocampal 
neurons. Stress also decreases the expression of 
vascular endothelial cell growth factor, a growth 
factor that influences vascular permeability and the 
proliferation of endothelial cells, in the hippocampus[119]. 
The significance is that antidepressant treatment 
increases expression of BDNF and other growth factors 
in individuals recovering from depression[120-122].

There is also considerable evidence that inflam­
mation plays an important role in the pathogenesis 
of depression and diabetes[123]. Many studies describe 
an increase in peripheral cytokine of individuals with 
depression that is often comorbid with other chronic 
diseases such as coronary artery disease and chronic 
obstructive pulmonary disease[124]. Interestingly, 
cytokines have been shown to be associated with 
suicidality and depression[125]. Diabetes and inflam­
mation have been associated with alterations of 
dopamine, serotonin, brain derived neurotrophic factor 
and insulin growth factor-1 which have been implicated 
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in depression[126].

CARDIOVASCULAR DISEASE, 
NEPHROPATHY AND ASSOCIATED 
SYMPTOMS
Given the worldwide increase in the incidence of 
diabetes, the dual complications associated with 
cardiovascular disease and nephropathy heighten 
the importance of preventive therapies through early 
identification of biomarkers of inflammation and 
causative etiologies for stress responses regardless 
of age or type of diabetes[127]. In 2010, high blood 
pressure was the leading risk factor for deaths due to 
cardiovascular diseases, chronic kidney disease, and 
diabetes in every region of the world, causing more 
than 40% of worldwide deaths from these diseases[128].  
The National Diabetes Statistics Report: Estimates of 
Diabetes and Its Burden in the United States, 2014[129], 
indicated that from 2003-2006 after adjusting for 
population age differences, cardiovascular disease 
(CVD) death rates were approximately 1.7 times higher 
among adults (≥ 18 years) with diabetes than among 
adults without diabetes. Regardless of the type of 
diabetes, the risk of CVD is evident and likely begins at 
an earlier age for those diagnosed with type 1 diabetes. 
Endothelial dysfunction is an integral part of the 
pathogenesis underlying the increased cardiovascular 
complications seen in individuals with T1D but it is 
unclear how early it appears[130].

Results from the Epidemiology of Diabetes Interven­
tions and Complications study, a long term follow up 
study of the Diabetes Control and Complications Trial 
(DCCT), showed that adults with T1D had increased 
carotid intima medial thickness (CIMT) compared 
to a healthy non-diabetic population 6 years into 
the study. Individuals receiving intensive insulin 
treatment during the DCCT had much less progression 
in their CIMT compared to those who had received 
conventional treatment. However there was not a 
significant difference in their percent HbA1C at that 
time, suggesting the effect of “metabolic memory”[131]. 
These data suggest that glycemic control may have 
long lasting effects on cardiovascular morphology and 
function[130]. Hence, there exists a caveat to minimize 
exposure to toxic stressors in early life and at the 
onset of T1D that may aggravate optimal glycemic 
targets.

Cardiovascular morbidity related to diabetes is 
associated with vascular changes due to inflammation, 
resulting in both macrovascular (i.e., atherosclerosis)[132] 
and microvascular (i.e., cardiovascular autonomic 
neuropathy)[133] alterations. In type 1 diabetes, several 
causative factors are implicated in these inflammatory 
vascular changes[134]. The oxidative modification of 
LDL and associated immune responses[135] may be 
one of these key factors, resulting in damage to the 
endothelium[136], activation of macrophages, adherence 

of monocytes[137] and impairment of nitric oxide action 
with resulting vascular cell cytotoxicity[138]. Although 
markers of inflammation have not been extensively 
studied in the development of CAD in T1D, the 
Eurodiab study group, using a standard score based 
on combined levels of C-reactive protein, IL-6, and 
TNF-α, reported a significant difference between those 
with and without CAD (P < 0.001) after adjusting for 
age, gender, HbA1c, diabetes duration, and systolic 
blood pressure[139]. Research has also indicated that 
in subjects with known coronary atherosclerosis, low-
degree inflammatory activity (i.e., C-reactive protein, 
fibrinogen, erythrocyte sedimentation rate and white 
blood cell count) is not only increased in patients 
with T1D and T2D diabetes, but also increased with 
increasing HbA1c in non-diabetic individuals. This later 
finding indicates an early association between degree 
of glycaemia, inflammation and atherosclerosis prior to 
the development of diabetes[140].

Cardiovascular autonomic neuropathy is a com­
mon form of autonomic neuropathy and one of the 
most overlooked of all serious complications of dia­
betes, resulting from microvascular damage to parasy­
mpathetic and sympathetic fibers and increased risks 
for cardiovascular arrhythmias, sudden death, and 
myocardial infarction in adults with diabetes[141]. There 
are multiple etiologies of diabetic neuropathy, including 
hyperglycemic activation of the polyol pathway leading 
to accumulation of sorbitol causing direct neuronal 
damage and/or decreased nerve blood flow[142], oxida­
tive stress with increased free radical production 
leading to vascular endothelium damage and reduced 
nitric oxide bioavailability[143,144], and the formation 
of advanced glycosylated end products with reduced 
blood flow, activation of inflammatory cytokines 
(e.g., IL-6, TNF-α), nerve hypoxia and altered nerve 
function[141].

Cardiovascular autonomic neuropathy has been 
linked to postural hypotension, exercise intolerance, 
enhanced intraoperative cardiovascular lability, incre­
ased incidence of asymptomatic (i.e., painless) isch­
emia, myocardial infarction, and decreased likelihood 
of survival after myocardial infarction[145]. The presence 
of palpitations and tachycardia at rest due to loss of 
parasympathetic modulation can be present early 
in the development of this complication prior the 
onset of other associated symptoms. Cardiovascular 
autonomic neuropathy occurs in approximately 17% 
of patients with T1D and 22% of those with T2D. An 
additional 9% of T1D and 12% of T2D have borderline 
dysfunction[133].  Since the 1970s, the seminal work 
by Ewing et al[146] unveiled the predictive relationship 
between cardiovascular autonomic neuropathy and 
mortality in adults with T1D. The Hoorn Study also 
found increased mortality in adults with T2D who had 
decreased cardiovascular autonomic function[147]. Within 
the pediatric literature, heart rate variability (a measure 
of cardiovascular autonomic function) was lower in 
adolescents with T1D compared with healthy control 
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subjects[148,149] and lower in youth with T2D vs T1D[150].
New pathways in the development of diabetic 

nephropathy also implicate inflammatory processes 
due to hyperglycemia, renin-angiotensin system and 
oxidative stress, involving infiltration of the kidneys 
with monocytes and lymphocytes that increase pro-
inflammatory cytokine production, reactive oxygen 
species and tissue damage[151,152]. This leukocyte 
activity amplifies the inflammatory response and 
promotes cell injury and organ tissue fibrosis. Improved 
future understanding of the inflammatory response 
in diabetic kidneys is expected to identify novel anti-
inflammatory strategies for the potential treatment 
of diabetic nephropathy. Familial predisposition to 
disease, including risks for toxic stress, race and other 
environmental factors interact with hemodynamic 
changes producing advanced glycation end products, 
glucose reduction and sorbitol accumulation into the 
cell, and overproduction of reactive oxygen species[151]. 
For individuals exposed to toxic stress that may further 
exacerbate dysglycemia, glycemic control is of upmost 
importance for preventing the onset and progression of 
nephropathy by influencing both hyperglycemia itself 
and hyperglycemia induced metabolic abnormalities. 
Evidence for this premise is supported by randomized 
controlled clinical trials in both type 1 and type 2 
diabetes[153,154].

CLINICAL IMPLICATIONS FOR SYMPTOM 
RECOGNITION
The complications of diabetes related to neuropathy, 
nephropathy and cardiovascular disease are the 
major contributors to morbidity and mortality in 
this population. Given the projected increase in the 
worldwide numbers of individuals to develop diabetes 
in the coming years, the potential additional burden 
of toxic stress on the development of disease related 
complications is of tremendous concern. Key symptoms 
that warrant clinician recognition during routine assess­
ment in persons with diabetes include signs of cognitive 
decline, depression, fatigue (including disturbed sleep 
patterns), exercise intolerance and pain associated 
with peripheral neuropathy. Although the emphasis 
in diabetes management is achievement of glycemic 
targets, weight, lipid and blood pressure control, 
the environmental and physiological effects of daily 
stress may be “ticking away” at the emergence of 
subtle inflammatory changes leading to devastating 
complications. Therefore, diabetes care management 
should emphasize symptom palliation as well as 
cardiometabolic control[155].

Chronic low-grade inflammation in metabolic dis­
orders such as diabetes contributes to behavioral 
symptoms, including depression, cognitive impairment, 
fatigue, sleep disturbance and pain[156]. The quality 
and quantity of sleep may play a key role in the infla
mmatory processes associated with diabetes and 

related cardiovascular disease[157]. Additionally, several 
biomarkers of inflammation, specifically IL-6 and 
CRP, have been found to be associated with fatigue, 
poor concentration and sleep quality in a healthy 
adult cohort[158], which has implication for the stress-
induced inflammatory effect on individuals prior to the 
development of diabetes. There is increasing evidence 
that hypercytokinemia and activated innate immunity 
affect the pathogenesis of T2D and related symptoms 
of fatigue, sleep disturbance and depression[159].

CONCLUSION
Toxic stress exposes individuals at all ages to chronic, 
low-grade inflammation that is a risk for the development 
of diabetes and may increase the physiological alterations 
leading to neuropathy, nephropathy and cardiovascular 
disease that are so prevalent in diabetes. Evidence 
supports the importance of minimizing toxic stress to 
promote glycemic control and lessening immune and 
inflammatory responses in an attempt to prevent the 
emergence or worsening of diabetes complications. At a 
time when the evaluation of immune and inflammatory 
biomarkers is not standard clinical practice, routine 
examination strategies are essential for the assessment 
of stressful life experiences and the effects of these 
experiences that contribute to the symptoms related to 
neuropathy, nephropathy and cardiovascular disease 
and overall quality of life.
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