
Sun Shin Yi

Sun Shin Yi, Department of Biomedical Laboratory Science, 
College of Medical Sciences, Soonchunhyang University, Asan 
336-745, South Korea 
Author contributions: Yi SS solely contributed to this paper.
Supported by Fund of Soonchunhyang University, South Korea.
Conflict-of-interest: I certify that there is no conflict-of-interest 
with any other organization.
Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/
Correspondence to: Sun Shin Yi, DVM, PhD, Assistant 
Professor, Department of Biomedical Laboratory Science, 
College of Medical Sciences, Soonchunhyang University, 646, 
Eupnae-ri, Sinchang-myeon, Asan 336-745, 
South Korea. admiral96@sch.ac.kr 
Telephone: +82-41-5304873 
Fax: +82-41-5308085 
Received: October 31, 2014
Peer-review started: November 4, 2014
First decision: November 14, 2014
Revised: January 16, 2015
Accepted: February 4, 2015  
Article in press: February 9, 2015
Published online: May 15, 2015

Abstract
Human life span has dramatically increased over 
several decades, and the quality of life has been 
considered to be equally important. However, diabetes 
mellitus (DM) characterized by problems related 
to insulin secretion and recognition has become a 
serious health problem in recent years that threatens 
human health by causing decline in brain functions 
and finally leading to neurodegenerative diseases. 
Exercise is recognized as an effective therapy for DM 
without medication administration. Exercise studies 

using experimental animals are a suitable option to 
overcome this drawback, and animal studies have 
improved continuously according to the needs of the 
experimenters. Since brain health is the most significant 
factor in human life, it is very important to assess brain 
functions according to the different exercise conditions 
using experimental animal models. Generally, there 
are two types of DM; insulin-dependent type 1 DM and 
an insulin-independent type 2 DM (T2DM); however, 
the author will mostly discuss brain functions in T2DM 
animal models in this review. Additionally, many physio-
pathologic alterations are caused in the brain by DM 
such as increased adiposity, inflammation, hormonal 
dysregulation, uncontrolled hyperphagia, insulin and 
leptin resistance, and dysregulation of neurotransmitters 
and declined neurogenesis in the hippocampus and 
we describe how exercise corrects these alterations 
in animal models. The results of changes in the brain 
environment differ according to voluntary, involuntary 
running exercises and resistance exercise, and gender in 
the animal studies. These factors have been mentioned 
in this review, and this review will be a good reference 
for studying how exercise can be used with therapy for 
treating DM. 
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Core tip: Brain is a highly sensitive and vulnerable tissue 
easily influenced by diabetes mellitus (DM). Physical 
exercise has been known to be one of the best non-
pharmacologic ways to prevent and treat DM. Animal 
exercise experiments are very useful for research on 
DM because experiments cannot be performed in 
humans. Exercise has various benefits that help to 
improve brain function by reducing chronic inflammatory 
responses, accumulation of adipose tissue, appetite, 
insulin resistance, and dysfunction of the negative 
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feedback mechanism. In this review, the author reports 
a battery of animal models of exercise, and presents the 
beneficial effects of exercise on the brain.
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INTRODUCTION
Diabetes mellitus (DM) is one of the most common 
endocrine disorders and is mainly divided into two 
types according to the activity of β-cells in the pancreas: 
type 1 DM (T1DM) is characterized by degeneration 
of β-cells, while the main cause of type 2 DM (T2DM) 
is a progressive decline in insulin sensitivity resulting 
in sustained hyperglycemia[1-3]. Particularly, DM is 
known as the main factor that can cause various 
pathologic brain complications and can promote 
cognitive impairment and vascular dementia in 
humans[4-8]. A number of studies have reported that 
DM can cause hormonal dysregulation, systemic 
vascular changes, dysregulation of the plasma glucose 
level, changes in blood chemistry, and other organ 
dysfunctions such as kidney and heart failure[9-19]. 
Various medical treatments are available to regulate 
glucose dysregulation, correct hormonal changes and 
vascular conditions in DM patients; however, these 
medical treatments cannot always cure the metabolic 
disorder completely, and physicians also cannot predict 
the progression of the complications with uncontrolled 
patient’s life styles[20-24]. 

Particularly T2DM is significantly related to the 
incidence of obesity and its associated disorders[25-27]. 
Obesity is defined as a surplus of body fat accumu-
lation, with the excess of adipose tissue really being 
a well-established metabolic risk factor for the deve-
lopment of obesity-related comorbidities such as 
insulin resistance, T2DM, cardiovascular diseases, 
and some common cancers[2,28-32]. The mechanisms 
linking excess adiposity and cancer are unclear, but 
the obesity-related low-grade chronic inflammation is 
widely accepted as a critical factor in the pathogenesis 
of various diseases such as T2DM, cardiovascular 
disorders, dementia, cancers, dietary control fail-
ure[26,28,33-42]. Currently, particular attention has been 
placed on the pro-inflammatory microenvironment 
in the body associated with obesity, specifically 
underlining the involvement of obesity-associated 
hormones/growth factors in the cross-talk between 
macrophages, lymphocytes, adipocytes, and epithelial 
cells involved in the development of T2DM[28,43]. In 
addition, accumulated peripheral white adipose tissue 
(WAT) is an endocrine tissue that secretes hundreds 
of cell-signaling molecules known as cytokines, 
chemokines, and adipokines[29,32,33,44,45]. The endocrine 

function of adipose tissue might be a key factor in 
the mechanisms linking adipose tissue to insulin 
resistance, leptin resistance, dietary control failure, 
T2DM-associated dysfunction of the hypothalamic-
pituitary-adrenal (HPA) axis, neurodegenerative 
diseases, vascular diseases related to aging, cog-
nitive impairment, and dementia[27,35,45-50]. Hence, 
uncontrolled chronic obese condition can be a critical 
factor in the development of T2DM, and it also acts as 
an agent that affects normal brain functions. 

Recently many studies have shown the positive 
effects of regular physical activity on improving 
complications caused by DM, and hence regular physical 
activity intervention is regarded as a promising adjuvant 
therapy[7,37,51-62]. Exercise can affect various physical 
environments and has decisive effects on improving 
brain functions for a better quality of life[7,59-61,63-72]. 
However, the precise mechanisms responsible for the 
positive effects of exercise on brain functions under 
obesity and T2DM conditions have not yet been well 
understood, and many studies have been performed 
using animal models of different diabetic stages 
regardless of the DM type and under various kinematic 
conditions to assess the related mechanisms for 
changing the microenvironment of the brain. Thus, 
experiments with animal exercise models mimicking 
the etiology and progression of human DM have 
been actively performed and developed to assess the 
preventive and therapeutic effects of exercise on brain 
functions[1,73-81]. 

Therefore, we review recent evidences on the 
role of exercise in promoting brain functions mainly 
under T2DM conditions in animal models and provide 
practical applications for the management of T2DM.

PHYSIOPATHOLOGICAL CHANGES 
CAUSED BY DM
Most of the DM conditions gradually impair normal 
brain functions by causing excessive production of pro-
inflammatory cytokines, insulin resistance, and reactive 
oxygen species due to certain causes such as prolonged 
obese condition or hormonal dysfunction[15,27,28,31,32,35,82-88]. 
Excessive and/or compulsive overeating disturbs the 
normal blood composition, deteriorates cardiovascular 
circulation, induces insulin resistance, and increases 
the visceral fat[29,45,82,89-91]. Particularly, the infiltrated 
inflammatory immune cells such as macrophages 
and lymphocytes in adipose tissues secrete a variety 
of cytokines into the blood stream, and negatively 
influence the systemic cardiovascular system and the 
brain[32,44,82,92-94]. A number of studies have shown that 
elevations in levels of systemic inflammatory mediators 
such as adipokines, tumor necrosis factor-α, resistin, 
interleukin-6, plasminogen activator inhibitor-1, 
C-reactive protein, monocyte chemoattractant protein 
(MCP)-1 play a pivotal role in changing the physiology 
of the brain[3,45,56,82,95-98]. Particularly, results of animal 

Yi SS. Effects of exercise on brain functions

584 May 15, 2015|Volume 6|Issue 4|WJD|www.wjgnet.com



and human studies have showed that insulin passes 
via the systemic circulation to the brain and it may 
have some physiologic actions which are different 
than its peripheral metabolic effects. Insulin resistance 
in peripheral tissues leads to the elevation of pro-
inflammatory cytokines, neurotoxic ceramides, obesity-
induced NADPH oxidase-associated oxidative stress 
in the brain, and insulin action on the brain is thought 
to be a regulator of peripheral glucose homeostasis 
in rodent studies via melatonin related mechanisms, 
increased unfolded protein response activation, 
mitochondrial and ER stress related overeating, leptin 
and insulin resistance, corticotropin-releasing factor-
related islet cell control[47,67,99-102]. Recent studies of the 
mouse brain have demonstrated that degenerative 
plaque formation observed in AD (AD is the most 
prevalent form of dementia) is associated with insulin 
resistance[47,103]. Insulin regulates food intake and 
cognitive functions in the brain; however, deranged 
insulin signaling in the brain has also been implicated 
in neurodegenerative disorders[104-107]. 

Insulin action in the brain is regarded as the main 
factor for maintaining DM patients in a healthy condition 
due to the interrelationship between peripheral and 
central insulin resistance. 

ANIMAL MODELS IN DM RESEARCH
DM is a chronic disease that is characterized by a 
relative or absolute lack of insulin release, resulting in 
hyperglycemia. Since T1DM and T2DM, as endocrine 
disorders, represent quite complex diseases in which 
different organ systems are involved, animal models 
should be chosen carefully depending on what aspect 
of the disease is being investigated. On the other 
hand, for developing specific models of T1DM and 
T2DM, investigators should be aware of the different 
pathogenic mechanisms of DM that involve different 
inducible factors. 

T1DM animal models
The main characteristic of T1DM is autoimmune des-
truction of the pancreatic β cells, leading to lack of 
insulin release. In animal models, investigators can 
induce this deficiency by chemical ablation of the beta 
cells in breeding animals that spontaneously develop 
the autoimmune diabetic condition. The representative 
chemicals that induce T1DM are streptozotocin 
synthesized by Streptomycetes achromogenes[108-110], 
and alloxan[1,73,111,112] which causes poor β cell defense 
mechanisms against free radicals. Thus, these che-
micals can be used for developing new insulin, trans-
plantation models for testing treatments that may 
prevent beta cell death. However, the researchers 
should be aware that a number of studies using STZ 
did not consider the time period between chemical 
injection in animals and sacrifice. Thus, it is true 
that many researches on T1DM using STZ injection 
have ignored this factor. Shin et al[110] and Yi et al[113] 

demonstrated chronological hippocampal changes in 
the brain at different time points of animal sacrifice after 
STZ injection. Therefore, researchers should remember 
that the results of T1DM via the chemical might be 
different based on how many days or weeks have 
passed following chemical administration in animals. 

The non-obese diabetic mice, Biobreeding rats, 
and LEW. 1AR1/-iddm rats are the most commonly 
used animal models of spontaneous autoimmune 
diabetes showing beta cell destruction due to an 
autoimmune process[1,73,75]. Akita mice, a genetically 
induced insulin dependent T1DM diabetic animal 
model, are characterized by beta cell destruction via 
ER stress. Lastly, T1DM can be induced by viruses 
such as Coxsackie B virus[114], Encephalomyocarditis 
virus[115,116], and Kilham rat virus[116,117]. The virus-
induced model can be complicated as the outcome is 
dependent on replication of the virus as well as timing 
of the infection[118]. 

Several other large animal models except for 
rodent animals have been developed to study T1DM 
extensively. Since it is relatively difficult to expect the 
development of spontaneous diabetes in large animal 
models, induced models of T1DM are required. The 
most commonly used method of inducing T1DM in 
large animal models is by performing pancreatectomy 
and chemical ablation of beta cells (STZ)[119-122]. The 
T1DM rodent models are summarized in Table 1. 

T2DM animal models
The main characteristics of T2DM are insulin resistance 
and β cell dysfunction, and defective insulin secretion 
from β cells. Therefore, animal models of T2DM tend 
to include models of insulin resistance and/or β cell 
dysfunction. Most of the T2DM animal models are 
characterized by the obese phenotype, which reflects 
the human condition where obesity is closely related 
to T2DM development[1]. The T2DM animal models 
are categorized according to the type of induction 
mechanism as follows: spontaneously obese models[1], 
diet/nutrition induced obesity models[123,124], non-
obese models[125], genetically induced models of β cell 
dysfunction[126], and surgically induced diabetic animal 
models[127]. The T2DM rodent models are summarized 
in Table 2. 

DM AND THE NEURAL SYSTEM 
DM and central nervous system
Diabetes is significantly related with brain microen-
vironments and functions. Diabetes is known to 
largely affect the intensely vascular organs such as 
kidneys, liver, and brain[16,18-20,49,50,87,88,95,98,99,128-130]. 
Brain is the key organ that is involved in hormonal, 
sensory, and motor regulations so that living organisms 
can maintain homeostasis via the negative feedback 
system[46,131]. However, diabetic condition can be 
a serious chronic stress factor, and its secondary 
negative effects can exert a bad influence on the 

585 May 15, 2015|Volume 6|Issue 4|WJD|www.wjgnet.com

Yi SS. Effects of exercise on brain functions



brain orders right responses to diverse physiological 
conditions. If DM persists and/or is increased without 
any modification, the brain cannot maintain the normal 
HPA axis regulation, and the HPA axis based on the 
negative feedback system tends to be highly activated 
due to uncontrolled DM. However, sometimes exercise-
induced stress might influence the beneficial effects of 
exercise are not observed in certain behavioral test. It 
is recognized that the amount of psychological stress 
that an animal encounters determines the degree of 

body[10,46,113]. What is more important is that, since 
the brain is a very vulnerable and sensitive organ, the 
duration and severity of DM might result in serious 
neurodegenerative diseases such as Alzheimer’s disease 
and Parkinson’s disease[10,70,102]. The HPA axis regulates 
responses to various stress factors, digestion, immune 
response, mood and emotions, sexuality and energy 
expenditure/storage[11,59,104,132-134]. In addition, since 
the HPA axis is also connected with the autonomic 
nervous system[135,136], it is very important when the 
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  Induction Models Dose(s) (mg/kg) Main characteristics Model uses

  Chemicals Streptozotocin Rat 35-65 (iv or ip) 
Mice 100-200 (iv or ip)

Hamster 50 (ip) 
Dog 20-30 (iv) 

Pig 100-150 (iv) 
Primates 50-150 (iv)

New formulations of insulin transplantation 
models

Alloxan Rat 40-200 (iv or ip)
Mice 50-200 (iv or ip)

Rabbit 100-150 (iv or ip)
Dog 50-75 (iv or ip)

Hyperglycemia

Multiple low dose 
Streptozotocin

 Treatments prevent beta cell destructions

  Spontaneous 
  autoimmune 

NOD mice
BB rats

LEW.1AR1/-iddm rats

Beta cell destruction due to 
an autoimmune process

 Understanding genetics of T1DM 
 Understanding mechanism of T1DM 

 Treatments prevent beta cell destruction 
 Treatments manipulate autoimmune process 

  Genetically   
  induced

AKITA Beta cell destruction due to 
ER stress

Insulin dependent 

 New formulations of insulin
 Transplantation models

 Treatments to prevent ER stress 
  Virally-induced Coxsakie B virus

Encephalomyocarditis virus
Kilham rat virus 

Beta cell destruction induced 
by viral infection of beta 

cells

 Establish potential role of viruses in the   
 development of T1DM

Table 1  Summary of animal models of type 1 diabetes mellitus

  Induction Model Main characteristics Model uses

  Obese models ob/ob mice 
db/db mice 

KK mice
KK/Ay mice

NZO mice 
TSOD mice 

Zucker fatty rat 
Zucker diabetic fatty rat 

OLETE rat 

Obesity-induced hyperglycemia Identifying factors involved in obesity-induced 
diabetes 

Some models show diabetic complications
Treatments to improve beta cell function

  Non-obese models GK rat
Cohen diabetic rat 

Hyperglycemia induced by insufficient 
beta cell function

Treatments to improve beta cell function and 
beta cell survival 

  Diet/nutrition induced 
  obesity

High fat feeding
(mice and rat) 
Desert gerbil
Nile grass rat

Obesity-induced hyperglycemia Treatments to improve insulin resistance
Treatments to improve beta cell function

Treatments to prevent diet-induced obesity 

  Surgical diabetic 
  animals

VMH lesioned dietary 
Obese diabetic rat

Partially pancreatectomized animals 
(dog, primate, pig and rats)

Avoid cytotoxic effects of chemical 
diabetogens on other body organs
Resembles human T2DM due to 

reduced pancreatic islet beta cell mass

Occurrence of hyperphagia 
Pancreatitis 

  Transgenic/knock-out 
  diabetic animals

Uncoupling protein (UCP1) 
Knock out mice

HiAPP mice

Poor activation of thermogenesis
Amyloid deposition in islets

Treatments of obese conditions
Increase obesity (energy storage)  

Treatments to prevent amyloid deposition 

Table 2  Summary of animal model of Type 2 diabetes mellitus

iv: Intravenous injection; ip: Intraperitoneal injection; T1DM: Type 1 diabetes mellitus.
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response of the HPA axis regulation[137]. Moreover, it 
has been reported that animals performing an exercise 
at the stress-induced physiological and environmental 
factors can be strongly affected[59,137-139]. Therefore, 
there would be enough possibilities to show different 
behavioral effects under various kinds of stress factors 
in exercise animal models such as metabolic DM and 
psychological depression/anxiety disorders. Cayado 
et al[137] reported that different training showed differ-
ent exercise effects at the horse exercise training. 
Martínez-Mota et al[138] indicated that the HPA axis 
response can be different according to sex and age at 
the exercise animal model. Furthermore, since DM is 
defined as a chronic systemic inflammatory condition, 
the disease can contribute to the development of 
different metabolic disorders. The most significantly 
affected organs by the chronic inflammatory con-
dition are the vascular converged areas, and thus 
cardiovascular system is mostly vulnerable and its 
vascular microenvironment is changed leading to 
profound damage. Particularly, the occurrence of 
T2DM is generally characterized by the development 
of chronic obese condition via overnutrition and/or 
increased hyperphagia[123,124,133,140,141]. In addition, 
neuroinflammation and neurodegeneration have been 
known to be closely related with overnutrition-induced 
disease and diabetic animal models[2,4,9,99] (Figure 1).

T2DM is commonly known to be the consequence 
of chronic obesity and it is usually accompanied 
by uncontrollable hyperphagia[142-144]. Many factors 
contribute to pathologic overeating and mediate 
feeding behavior in humans and animals, and the 
most important factor is leptin[104,145,146]. Leptin, which 

is a cytokine originating mainly from white adipose 
tissue, plays an important role in regulating energy 
expenditure, food intake, and obesity[45,71,91,98,104,145,146]. 
The mechanism by which leptin modulates these 
hypothalamic neurons involves the binding of leptin to 
the long form of leptin receptor (Ob-Rb) and subsequent 
intracellular signaling, initiated by autophosphorylation 
of Janus kinase 2 (JAK2) and activation of signal 
transducer and activator of transcription (STAT3). 
Following the translocation of STAT3 to the nucleus, 
suppressor of cytokine signaling-3 is activated, exerting 
feedback inhibition on JAK2. Leptin activation of insulin 
receptor substrates and the protein kinase B pathway 
inhibits food intake and modulation of extracellular 
regulated kinases has been demonstrated to play a role 
in the control of energy homeostasis[147]. Obese patients 
and animals cannot regulate their hedonic appetite 
except for acceptable daily intake of calories. They have 
excessive WAT in the body and it secretes leptin in the 
blood; however, the appetite center does not recognize 
leptin and shows resistance to leptin. Therefore, leptin 
administration to obese rats and humans has elicited 
small effects on fat mass and appetite due to leptin 
resistance[2,53,148]. Likewise, many neuropeptides located 
in hypothalamic nuclei transmit related anorexigenic 
or orexigenic signals[104,146]. Furthermore, many kinds 
of neurotransmitters such as serotonin, dopamine, 
and norepinephrine participate in regulation of mood, 
emotions, and appetite[149]. Particularly, specific 
serotonin reuptake inhibitors (SSRIs) and serotonin-
norepinephrine reuptake inhibitors (SNRIs) have 
been introduced and used as medical treatments to 
reduce food intake of overweight patients[150-153]. These 
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Lack of insulin

DM

Obesity

Peripheral
fat accumlation

Appetite

Aerobic exercise

Voluntary exercise

Voluntary wheel running

Involuntary exercise

Forced involuntary
treadmill running

Weight lifting

Resistance exercise

Animal models

Exercise

Neurodegenerative
disorders

Hippocampal
neurogenesis

Altered
neuroplasticity

Hyperglycemia

Insulin resistance

HPA axis dysfunction

Oxidative stress

Figure 1  Exercise animal models can separate aerobic voluntary/involuntary exercises and non-aerobic resistance exercise. The exercise can attenuated 
many neuro-related disease followed DM and obesity. DM can develop many kinds of dysregulation such as hyperglycemia, increasing insulin resistance and HPA 
axis dysfunction and oxidative stress. Exercise reduces peripheral fat accumulation and appetite in animal models, and it has preventive and therapeutic effects for 
the many risks to develop obesity and DM. A number of studies about diabetes have been revealed the related mechanisms through exercise animal models. Non-
aerobic resistance exercise described in Table 3. DM: Diabetes mellitus; HPA: Hypothalamo-pituitary-adrenal.
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drugs have been modified continuously to overcome 
their side effects or toxicities[154]; however, chronic 
administration of SSRIs or SNRIs causes rebound body 
weight gain in the patients. The phenomenon has been 
observed for a while; however, the cause was not the 
patients’ psychological drug dependence, and same 
results have been obtained in many studies performing 
animal experiments[155,156]. Since these agents not 
only influence the appetite center but also the other 
areas in the brain, the environment of the brain gets 
affected[157-159]. Therefore, more specific target regions 
in the brain and promising regulatory drugs are 
required. Finally, failure of appetite control can easily 
lead to T2DM, and then the continuous progression of 
this metabolic disorder harms the neuroenvironment 
of the brain and affects learning/memory and cognitive 
functions[47,49,85,87,160]. According to the severity of DM, 
hippocampal neurogenesis in the dentate gyrus is 
significantly reduced and neuronal plasticity is also 
negatively influenced through reduction in neurotrophic 
factors[31,130,160]. Uncontrolled DM with hyperglycemia 
can cause serious brain damage; therefore, appropriate 
therapies that can slow the progression of this disease 
are needed.  

DM and peripheral nervous system 
Diabetic neuropathy affecting the peripheral nervous 
and autonomic nervous systems is the most frequent 
complication of diabetes. The most common neuropa-
thies are chronic sensorimotor distal polyneuropathy 
(DPN) and autonomic neuropathies[161]. Morpholo-
gically, DPN is characterized by alterations in peripheral 
nerve fibers as well as degeneration and regeneration 
of both myelinated and unmyelinated fibers in humans, 
decreased axonal diameter of the sciatic nerve and 
myelin sheath thickness of the sural nerve, and 
alteration of the cytoskeletal component in dorsal root 
ganglia of rats[162-164]. 

Currently, human life span has dramatically in-
creased due to advances in medical science, and 
moreover, improving the quality of life has also received 
attention. Therefore, people are feeling the need 
to maintain their brain health throughout their life. 
However, DM poses a threat to the health of people and 
therefore it has become a problem that needs to be 
conquered. 

EFFECTS OF EXERCISE ON THE BRAIN 
OF DIABETIC ANIMALS
It is already well known that regular physical activity 
has a tremendous impact on health and has protective 
effects against chronic diseases, including heart disease, 
stroke, hypertension, and DM. Over several decades, 
many evidences have demonstrated that exercise in 
human and animal models helps to maintain brain 
health such as cognitive performance, and it can 
even protect the central nervous system and improve 

learning/memory functions following chronic exercise, 
both in animal models and humans[59,61,104,165-171]. In 
recent years, many exercise and cognition studies have 
been carried out in adult rodents. These researches 
have provided insights into the underlying cellular 
mechanisms[169,172]. Both voluntary and forced exercise 
enhanced spatial memory in Morris water maze, Y-maze, 
T-maze, and radial arm maze test[65,169]. Particularly, 
running exercise improved performance in hippocampus-
dependent tasks that require limited movement, and 
there were non-hippocampal dependent benefits from 
voluntary and forced exercise. Chronic involuntary 
treadmill exercise in an T2DM animal model (ZDF rats) 
reduced blood glucose levels, caused cell proliferation 
and an increase in neuroblasts in the hippocampal 
dentate gyrus; however, the onset of treadmill exer-
cise in the severe chronic diabetic condition has a 
limitation in increasing neuroblast differentiation 
although it increases neural plasticity[77,80]. Therefore, 
for achieving effectiveness of treadmill exercise in 
increasing neuronal differentiation in the hippocampus 
and for counteracting the negative effect of DM in the 
brain, the initiation time of exercise during the early 
stage of DM may be a very critical point to achieve the 
positive effects of exercise[77]. Furthermore, Hwang et 
al[77,173] reported that Cox-2 is very important factor 
for hippocampal neurogenesis in the T2DM animal 
exercise models. Griffin et al[167] reported that voluntary 
exercise also increased volume of the hippocampus 
resulting in improved search strategies and decreased 
perseveration once the platform had been moved to 
a new location. Voluntary exercise results in elevation 
of levels of factors such as brain-derived neurotrophic 
factor (BDNF), whose levels increases with aerobic 
exercise, and enhances hippocampal function[167]. 

Interestingly, Burghardt et al[174] studied the be-
havioral effects of voluntary and involuntary running 
exercise with a battery of behavioral tests; they 
investigated the effects of 8 wk of forced treadmill 
running and voluntary wheel running on behavior me-
asures in the elevated plus maze, open field, social 
interaction and conditioned freezing paradigms. 
They found that chronic voluntary running produces 
behavioral changes in the elevated plus maze and 
open field; however, chronic treadmill running failed 
to produce behavioral changes with their running 
protocol. Changes in opioidergic[175], serotonergic[176], 
GABAergic[177], and catecholaminergic[178] systems 
have also been observed after wheel running. Regular 
running exercise is closely associated with food 
preference and appetite depending on the volitional 
wheel running and involuntary treadmill exercise. 
Recently, attention has been paid to various causes 
of food preference and consumption according to a 
wide range of conditions for overcoming the obese 
and DM conditions[179]. Diet composition may lead to 
changes in neuropeptides within brain nuclei regulating 
energy metabolism. Dietary manipulation has been 
thought to influence energy expenditure via changes in 
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central neuropeptide activity. Many studies report that 
medicines such as morphine, fenfluramine influence 
the neuro-regulatory systems and exercise can modify 
palatability in animals[175]. Blundell et al[37] asserted 
that changes in dietary preferences could be due to 
alterations in the hedonic properties of the food as a 
result of exercise in rodent models. Shin et al[144] also 
indicated a possibility that treadmill exercise in animals 
inhibits diabetes-induced increment of the desire 
for food. Hormonal (leptin and insulin) and nutrient 
signals from the periphery are mainly integrated in 
the hypothalamus, and multiple factors regulate food 
intake. AMP-activated protein kinase (AMPK) is the 
downstream component of a kinase cascade that acts 
as a sensor of cellular energy charge, being activated 
by rising AMP coupled with falling ATP[180]. Although the 
effects of AMPK on desire for food are still controversial, 
exercise may contribute to appetite suppressive actions 
in the hypothalamus due to the effects of leptin and 
in different causes in the rodent model[147,179-182]. As 
mentioned above, alterations in opioid or inhibitory ne-
urotransmission systems in both limbic and brainstem 
areas could be implicated, including the nucleus 
accumbens[183]. Multiple mechanisms of action in the 
brain could be responsible for this behavioral difference 
and lack of gross metabolic difference[171]. In humans, 
texture, temperature, color, and appearance all play 
a role in food acceptance[184,185]; however, animals 
exhibit a wide range of food preferences and animal 
studies can eliminate the points of dispute in human 
studies. In addition, an important element in the 
study of effects of exercise on food preference is sex 
differences[171,175,179]. Sex differences exist such that 
female rats tend to prefer carbohydrates over other 
macronutrients following exercise[134,175]. Unfortunately, 
there is still no clear evidence on the effect of exercise 
on macronutrient or carbohydrate selection in different 
sexes in animal or human studies. Therefore, further 
research for assessing the sex differences in food 
preference after exercise is needed. 

Chronic inflammation and increased oxidative stress 
are observed in the animals showing insulin resistance 
following diet-induced obesity[36,44,45,62,131,186,187]. Indeed, 
since the brain tissue is highly sensitive to chronic 
inflammation and oxidative stress due to its high oxygen 
consumption, iron and lipid contents, and low activity 
of antioxidant defenses[102,188], energy metabolism 
impairment and oxidative stress are important events 
that have been related to the pathogenesis of diseases 
affecting the central nervous system[47,180]. Exercise has 
been known to decrease chronic systemic inflammatory 
response, show antioxidant effects and positive effects 
on synaptic plasticity in the obese and/or diabetic 
rodents[55,60]. In the T1DM animal model, significant 
inflammatory responses are found and they showed 
different action in a time-dependent manner[113]. 
These responses induced by DM lead to mitochondrial 
dysfunction, which can progress to various pathologies 
such as neurodegenerative diseases (dementia, 

Alzheimer’s disease, Parkinson’s disease)[33,34,47,61]. Both 
T2DM and neurodegenerative diseases are associated 
with impaired glucose tolerance and cognitive decline in 
the human and animal studies, and insulin resistance 
and subsequent hyperinsulinaemia have been found to 
increase the risk of Alzheimer’s disease and promote 
decline in memory and cognitive dysfunction[3,34,61,133,189]. 
Regular exercise and dietary restriction can attenuate 
the progression of metabolic and neurodegenerative 
disorders[4,5,67,190]. Exercise (particularly vigorous aerobic 
exercise)[111,167,191-193] and energy restriction (caloric 
restriction and intermittent fasting)[143,194,195] can result in 
striking improvements in glucose and lipid metabolism, 
and can eliminate the need for medications. Exercise 
and dietary energy restriction activate a wide range 
of adaptive cellular responses in the peripheral organs 
(muscle, liver) and the brain, resulting in improved 
bioenergetics and brain function, and resistance to 
neurodegenerative disorders. 

As mentioned previously, the causes of DM belong 
to different metabolic conditions and can show 
diverse pathologic phenotypes in a time-dependent 
manner[113]. This review mainly focused on the changes 
in the brain caused by DM and exercise; however, 
changes in peripheral neuropeptides and organs 
are also significant. Adiposity, chronic inflammatory 
response, activation of oxidative stress, dysfunction 
of pancreatic islets, insulin and leptin resistance, 
dysfunction of the negative feedback mechanisms, 
and appetite disturbance constantly affect brain 
homeostasis. Indeed, exercise has been thought to 
attenuate brain damage caused by these risk factors; 
however, exercise during the early stage of diabetes is 
considered to be a critical factor for preserving brain 
function[10,80]. The risk factors listed above can be 
therapeutic targets to treat and ameliorate DM; thus, 
refinements using various animal exercise models can 
give new insights into the treatment of DM. 

It is well accepted that physical activity by con-
tracting skeletal muscles (resistance exercise) secretes 
enhanced levels of myokines which have a beneficial 
endocrine effect on other organs, presenting novel 
targets for the treatment of metabolic diseases and 
T2DM[70-72,94]. Pedersen hypothesized that physical 
inactivity leads to T2DM, depression, dementia, 
cancers, cardiovascular diseases, and asserted that 
skeletal muscle should be considered as an endocrine 
organ[70]. Cytokines and other peptides that are 
produced, expressed, and released by muscle fibers 
and exert paracrine or endocrine effects should be 
classified as myokines. Actually, since skeletal muscle 
is the largest organ in the human body, skeletal muscle 
should receive attention for identifying its new multiple 
functions in metabolic disorders and T2DM. Skeletal 
muscle has the capacity to express several myokines 
including IL-6, IL-8, IL-15, BDNF, FGF21, MCP-1, 
vascular endothelial growth factor, leukemia inhibitory 
factor, Irisin, and ANGPTL4[71]. IL-6 was discovered as 
a myokine because of the observation that it increases 
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up to 100-fold in the circulation during exercise. In 
particular, the identification of IL-6 production by 
skeletal muscle during physical exercise generated 
renewed interest in the metabolic role of IL-6 since 
it created a paradox[70]. IL-6 can also alter brain 
function after peripheral administration, moreover, 
some myokines might be able to cross the blood-
brain barrier[196,197]. IL-6 is significantly produced and 
released in the post exercise period when insulin action 
is increased; on the other hand, IL-6 has also been 
associated with obesity and reduced insulin action. 
However, many researches during the past decade 
have reported that in response to muscle contraction, 
both type 1 and type 2 muscle fibers express the 
myokine IL-6, which subsequently exerts its effects 
locally and systemically in several organs[70-72]. Within 
skeletal muscle, IL-6 acts to signal via AMPK and/
or PI3-kinase to enhance glucose uptake and fat 
oxidation. In addition, muscular derived IL-6 mediates 
anti-inflammatory responses[70]. 

A few researches on the relationship between 
myokines and the brain in animal models have just 
been published, and the effects of skeletal muscle 
derived myokines on brain function must be plausible 
enough directly and/or indirectly. Recently, Dun et al[198] 
reported that myokine Irisin was detected in three types 
of cells; skeletal muscle cells, cardiomyocytes, and 
Purkinje cells of the cerebellum. Moreover, they reported 
that Irisin not only mediates the animal’s movements 
but also regulates adipose tissue thermogenesis by 
neurons in the caudal ventrolateral medulla and rostral 
ventrolateral medulla that are an integral component of 
the medullary sympathetic circuitry and these neurons 
project their axons to spinal sympathetic premotor 
neurons[198]. Similarly, it is known that resistance 
exercise improves body and brain bioenergetics for PD 

risk reduction[4], insulin and leptin signaling in obese 
rats[2,45,82,104,199], and exerts antidepressant-like effects 
via improving the impaired neuroplasticity[101,200]. 
Aerobic exercise and non-aerobic resistance exercise 
described in the Table 3. 

Evidences of positive effects of resistance exercise 
on brain health in T2DM for therapeutic purposes with 
other aerobic exercises and pharmacologic treatments 
have been reported recently, and further studies on 
the mechanisms of treatment according to the severity 
of DM are needed.

CONCLUSION
It is confirmed that exercise is an incredible thera-
peutic option for treating DM patients. Animal exer-
cise models are significant methods to study the 
network between central and peripheral organs. 
Brain is an extremely sensitive and soft tissue that 
can be damaged due to chronic insulin resistance, 
hyperglycemia, and chronic inflammation; however, 
various kinds of exercise can attenuate the brain 
damage and delay neurodegeneration caused by the 
risk factors. Many diabetic experimental animals with 
a genetic background and nutrition induced diabetic 
animals can be used in various DM studies; however, 
many physiopathologic conditions should be considered, 
and researchers should choose the animal models after 
giving careful consideration. Many aerobic running 
exercises and resistance skeletal muscle exercises have 
been performed recently in various animal models 
to study their therapeutic effect on brain function; 
however, more careful considerations reflecting the 
clinical conditions should be added in the animal 
models. Furthermore, it is important to study the 
therapeutic effects of exercise on brain health during 
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  Exercise type Method Measurement Note1 Note2

  Aerobic 
  exercise 

Voluntary 
running 

wheel exercise

Freely access to running wheel
Exercise strength can be measured 

via digital counter. The running 
wheel was rotated by animal effort

Cognitive performance
Neurogenesis in subgranular 
zone or subventricular zone 

Improvements of learning and 
memory 

Neurophysiological 
development 

Relationship between Brain and 
Stress axis 

Feeding behavior

Involuntary 
treadmill 
exercise

Enforced running exercise
Regularly enforced running exercise 
is enforced with constant speed on a 

motorized treadmill
Forced 

swimming 
Animals are forced to swim in an 
acrylic glass cylinder filled with 

water 

This test is used to see a rodent’s response to 
the threat of drowning whose result has been 

interpreted as measuring susceptibility to negative 
mood. It is commonly used to measure the 

effectiveness of antidepressants
  Non-aerobic 
  resistance 
  exercise

Weight lifting Kondziela's inverted screen test The inverted screen is a 43 cm square of wire mesh 
consisting of 12 mm squares of 1 mm diameter wire

Cognition 
Neuronal plasticity changes

Anti-inflammatory response in 
brain 

Neurogenesis in subgranular 
zone and subventricular zone

Weights test Seven weights constitute the apparatus
Ranging from 20 to 98 g

Grip strength test Forelimb grip strength is accessed using a digital 
Grip Strength Meter

 Table 3  Exercise animal models on brain function

1Principal; 2Uses.
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the stages of DM in animal models; however, dramatic 
effects of more prospective methods for maintaining 
brain health during DM seem to be achieved through 
development of various combinations of animal models 
in the pre-diabetic condition. A number of target signals 
from the exercise studies can also be the candidates for 
development of pharmacologic medicines.
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