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Abstract
Under normal metabolic conditions insulin stimulates 
microvascular perfusion (capillary recruitment) of 
skeletal muscle and subcutaneous adipose tissue and 
thus increases blood flow mainly after meal ingestion 
or physical exercise. This helps the delivery of insulin 

itself but also that of substrates and of other signalling 
molecules to multiple tissues beds and facilitates 
glucose disposal and lipid kinetics. This effect is impair
ed in insulin resistance and type 2 diabetes early in the 
development of metabolic dysregulation and reflects 
early-onset endothelial dysfunction. Failure of insulin 
to increase muscle and adipose tissue blood flow 
results in decreased glucose handling. In fat depots, a 
blunted postprandial blood flow response will result in 
an insufficient suppression of lipolysis and an increased 
spill over of fatty acids in the circulation, leading to 
a more pronounced insulin resistant state in skeletal 
muscle. This defect in blood flow response is apparent 
even in the prediabetic state, implying that it is a 
facet of insulin resistance and exists long before overt 
hyperglycaemia develops. The following review intends 
to summarize the contribution of blood flow impairment 
to the development of the atherogenic dysglycemia and 
dyslipidaemia. 
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Core tip: Insulin resistance and type 2 diabetes present 
with diminished glucose transport and disposal in 
muscles and fat and inadequate inhibition of lipolysis 
after meal ingestion or during physical exercise. 
This defect lies mainly in the cellular and subcellular 
level of insulin action. However, the resistance in the 
haemodynamic properties of insulin is another facet of 
type 2 diabetes and the metabolic syndrome. In this 
review, we intend to summarize the contribution of 
this impairment to the development of the atherogenic 
dysglycemia and dyslipidaemia. 
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INTRODUCTION
The role of insulin in regulating glucose disposal 
in peripheral tissues, such as skeletal muscle and 
adipose tissue is well established. In the 50s, when 
it was discovered that insulin stimulated glucose 
uptake and disposal into the muscles, this effect was 
thought to be the most important way by which insulin 
regulated glycaemia in vivo. When the glucose/fatty 
acid regulatory cycle was discovered in the 60s a 
new insight of the way that insulin regulates glucose 
metabolism was introduced[1]. However, apart from 
its direct action on cells, insulin is also a vasoactive 
hormone, and it is now recognized that its vascular 
and metabolic actions are closely linked. Baron et al[2-4] 
originally introduced the concept that insulin might 
control its own access and that of other substrates - 
like glucose, lipids and several signalling molecules- 
to peripheral tissues, by increasing blood flow, and 
that this effect is compromised in states of insulin 
resistance.

In states of metabolic dysregulation, as in diabetes 
and obesity, there is deterioration in the cellular effects 
of insulin in peripheral tissues, which leads to a reduced 
ability of the latter to stimulate glucose uptake from 
the skeletal muscle and adipose tissue, as well as to 
inhibit lipolysis in fat depots[5]. Apart from the defects 
at the cellular level, the metabolic derangement could 
also be a result of the inability of insulin to cause 
vasodilatation and delivery of substrates to peripheral 
tissues especially in the postprandial period. This could 
contribute to the progression to type 2 diabetes as well 
as to the development of atherosclerosis, which is often 
evident even before overt hyperglycaemia develops[6]. 

In this review we summarize the current under
standing of insulin action on peripheral blood flow and 
its implications on metabolic impairment both under 
fasting and postprandial conditions in type 2 diabetes.

INSULIN AND THE VASCULATURE IN 
NORMAL METABOLIC PHYSIOLOGY
Skeletal muscle
In skeletal muscle, insulin promotes the rate of 
glucose transport and the activities of hexokinase and 
6-phosphofructokinase and subsequently the rate 
of glycolysis. In terms of protein metabolism, insulin 
increases synthesis and decreases degradation of 
proteins, in favour of an anabolic process[1]. Insulin 
also enhances vasodilatation and capillary recruitment, 
consequently increasing the flow of nutrients in 
peripheral tissues and especially in skeletal muscle[7]. 
It acts through traditional insulin receptors on the 
vascular endothelium to stimulate production of nitric 

oxide and induce vasodilatation[8]. The endothelial 
insulin response is mediated through a PI3-kinase 
pathway, which after several intermediate steps ends 
up activating endothelial nitric oxide synthase (eNOS)[6]. 

Blood flow is highly important for the metabolic 
function of skeletal muscle and under normal conditions 
increases after meal ingestion and during exercise and 
a correlation between the rate of insulin stimulated 
glucose uptake and the extent of vasodilatation seems 
to exist[9].

Insulin stimulates skeletal muscle glucose disposal 
and total muscle blood flow in a time- and dose-
dependent fashion. In vivo, it enhances nitric oxide 
synthase-dependent vascular actions, in order to 
increase total skeletal muscle blood flow and to recruit 
muscle capillaries (by relaxing resistance and terminal 
arterioles, respectively). It is speculated that enhancing 
blood flow in this way on resistance vessels may induce 
the delivery of glucose and insulin to peripheral tissues 
and thus contribute to overall glucose disposal. 

Capillary blood volume increases when precapillary 
arterioles dilate, thus increasing the flow to previously 
unperfused or underperfused areas, and total blood 
flow to skeletal muscle increases when larger resistance 
vessels relax[10].

Insulin increases tissue perfusion by augmenting 
microvasculature and, at normal concentrations, the rise 
in total muscle blood flow follows 60-90 min later[11,12]. 

Both haemodynamic effects of insulin, muscle blood 
flow increase and capillary recruitment seem to be 
independent of each other. Capillary recruitment occurs 
earlier in vivo, and at lower doses of insulin[13].

Insulin resistance may correlate to endothelial 
dysfunction in many ways, including dysregulation of 
sub-cellular signalling pathways that influence both 
insulin action and nitric oxide production[14,15]. 

Adipose tissue
Subcutaneous adipose tissue represents about 85% of 
whole body fat stores in subjects with various degrees 
of adiposity. Its main metabolic role is the storage of 
triglycerides which derive from energy overflow, and 
the release of stored lipids when other tissues are 
in need. Adipose tissue metabolism is under distinct 
control: usually, when a person consumes a meal, 
within the first hour postprandially, fat catabolism 
converts to fat storage, while the opposite happens in 
the case of physical activity. Adipose tissue interacts 
with the circulation by providing or drawing triglycerides 
and non-esterified fatty acids depending on metabolic 
needs. There are two kinds of triglyceride-rich lipo
proteins: (1) chylomicrons, the largest particles, 
that carry the fat from absorbed nutrients within the 
intestine; and (2) very-low-density lipoproteins, that 
carry “endogenous” triglycerides and are released 
by the liver. Chylomicron- triglycerides are preferably 
stored within adipose tissue, and the fatty acid 
composition of adipose tissue (i.e., the kind of fatty 
acids that form its triglycerides) usually represents the 
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composition of a person’s dietary fat intake, suggesting 
that adipose tissue triglycerides derive mainly from 
the ingested fat through diet. However, a proportion of 
plasma triglycerides are endogenously produced from 
non-lipid substrates (de novo lipogenesis) in adipose 
tissue[16-22]. 

In terms of metabolic regulation, adipose tissue 
can be divided into central (abdominal) and peripheral 
(lower body) depots. An unfavourable metabolic profile 
has been related to central fat accumulation (visceral 
and subcutaneous, each with distinct metabolic, endo
crine and paracrine characteristics and blood flow 
rates)[23,24]. 

Adipose tissue regulates its metabolism, at least 
in part, by increasing its blood flow rate mainly in 
the early postprandial period[16]. Capillary perfusion 
is essential for that function. In the case of increased 
energy demands, as in physical activity, blood flow 
increases to facilitate the delivery of lipolytic products 
to peripheral tissues. Furthermore, after meal consum
ption, it helps the delivery of ingested substrates to 
fat depots for storage[16]. Adipose tissue blood flow 
responses are subject to adrenergic stimulation or 
inhibition. Adrenaline administration stimulates post
prandial increases whereas beta-blockers inhibit the 
latter. Genetic studies in subcutaneous adipose tissue 
biopsies have identified expression of the type A 
receptor of A natriuretic peptide and of the synthase 
of nitric oxide, and have found an association of those 
with post-challenge blood flow responses[16,25-28]. 

Lipid kinetics and subcutaneous adipose tissue blood 
flow alterations are closely linked. More specifically, 
blood flow rises in response to an increased demand 
for lipolytic products as energy, or that for cleavage of 
free fatty acids from the circulation. In euglycaemic 
subjects with normal weight blood flow peaks within 
the first hour after a glucose load or a mixed meal. This 
facilitates the postprandial delivery of energy substrates 
and insulin to the fat depot, leading to adipose tissue 
lipoprotein lipase stimulation which stores circulating 
triglycerides and the suppression of hormone-sensitive 
lipase, which results in the inhibition of endogenous 
lipolysis[16,29-31]. 

On the other hand, visceral adiposity exerts even 
more unfavourable metabolic actions. Increased visceral 
fat has been associated with atherogenic dyslipidaemia 
and the development of atherosclerosis, even in non-
diabetic individuals[32]. Although increased abdominal 
fat is in general positively associated with markers 
of inflammation and atherosclerosis, visceral fat is 
more strongly correlated with C-reactive protein, 
monocyte chemoattractant protein-1, interleukin-6 
and isoprostanes independently of total adiposity, 
indicating a major role in systemic inflammation[33]. 
Furthermore, visceral fat has been more strongly 
related to hypertension both in men and women, and 
provides information towards the latter above BMI and 
waist circumference. However, subcutaneous adipose 
tissue is also contributing to vascular dysfunction, 

possibly through the actions of leptin apart from the 
presence of insulin resistance[34]. Both adipose tissue 
beds’ size has been found correlated to adipose tissue 
blood flow, independently of BMI, leptin or adiponectin 
concentrations[35]. 

INSULIN AND BLOOD FLOW IN TYPE 2 
DIABETES
Skeletal muscle
Insulin provokes microvascular recruitment in skeletal 
muscle[10]. Impaired muscle blood flow as a facet of 
insulin resistance in subjects with either dysglycaemia 
or diabetes is well recognized in the literature. In the 
early 90s Steinberg et al[36] have shown that obese 
insulin resistant subjects present with an endothelial 
dysfunction and during a euglycaemic hyperinsulinaemic 
clamp they fail to increase endothelium-dependent 
vasodilation. In these trials, catheterizations of the 
femoral artery was used to measure the response to an 
intra-arterial vasodilator stimulus, comparing control to 
euglycemic-hyperinsulinemic clamp conditions[36]. 

Thereafter, it was suggested that since insulin exerts 
its vasodilatory effects through endothelial nitric oxide 
release, in vivo stopping nitric oxide production could 
inhibit insulin’s vasoactive actions in skeletal muscle 
and consequently reduce glucose uptake[37]. Moreover 
in obese insulin resistant subjects, insulin resistance 
in skeletal muscle was promoted by the increased 
endogenous endothelin action[38].

A rat model of insulin resistance has shown that 
endothelial-dependent vasodilation is blunted, in 
part due to an unresponsive nitric oxide synthase to 
insulin, leading to decreased nitric oxide levels in the 
endothelial cells[39,40]. 

In type 2 diabetes and other insulin-resistant 
states, impaired suppression of adipose tissue lipolysis 
and postprandial hyperglycemia favour non-esterified 
fatty acid utilization and oxidation and increase 
glucose uptake from insulin independent tissues (like 
liver). Dyslipidaemia, usually related to lack of insulin 
sensitivity, enhances atherosclerosis and triggers 
inflammation in endothelial cells[41].

In insulin-resistant patients basal blood flow is 
generally not altered[42-44]. Laakso et al[45], demon
strated that insulin cannot effectively increase muscle 
blood flow in type 2 diabetic patients, using the 
combined euglycemic clamp and leg balance techniques 
during different insulin infusions. They also concluded 
that impaired insulin-dependent rise in skeletal muscle 
blood flow can be attributed to the diabetic milieu and 
not to obesity, in a study of obese diabetic patients[45]. 

Lambadiari et al[46] studied simultaneously lean 
subjects with insulin sensitivity varying from normo
glycaemic insulin-resistant first-degree relatives of 
diabetic subjects to prediabetic and diabetic patients 
with either isolated postprandial hyperglycaemia or 
overt diabetes[46]. They demonstrated that using a 
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thus improving glucose oxidation and insulin sensitivity 
in the muscle bed. 

However, there is not universal agreement with 
the above mentioned results, since numerous studies 
have failed to reveal a defect in insulin-mediated blood 
flow in type 2 diabetic patients[42,50]. There is a certain 
discrepancy since the literature either confirms or 
not a substantial[45,51], or an unimportant correlation 
between insulin kinetics, muscle blood flow and glucose 
disposal[52,53].

Some of these discrepancies may at least partially 
explained by the different studies populations and 
by the experimental protocol used. The commonly 
used clamp technique is not physiological, because 
these exceptionally high insulin concentrations are not 
normally present for long after meal consumption. 
Hence, one could question the physiological significance 
of such an increase in blood flow rates. A normal 
stimulus, such as a mixed meal, can provide evidence 
of a real life metabolic state[46,54]. However, not only the 
type of meal but the method for the detection of blood 
flow is important in this evaluation.

Adipose tissue
In lean insulin-sensitive subjects, abdominal adipose 
tissue blood flow increases by two- to four-times in 
response to feeding. The same seems to be true for 
blood flow in lower body fat depots (thigh) and forearm 
tissues. Physiologically, adipose tissue blood flow peaks 
within half to one hour after nutrient ingestion. This rise 

physiological mixed meal as a stimulus, the postprandial 
augmentation in forearm muscle blood flow is blunted 
throughout all stages of metabolic impairment com
pared to controls; this occurs even before overt hyper
glycaemia develops. The latter affected glucose disposal 
in muscle, which was also unresponsive after meal 
delivery and was also positively correlated to the post-
load muscle blood flow differences. Lipid substrates 
affected blood flow peak as well. Triglyceride levels had 
a negative impact on blood flow responsiveness in the 
fed as well as in the fasting period. Post-challenge non-
esterified fatty acids levels exhibited a negative effect 
on blood flow responsiveness, suggesting a possible 
mechanism for the decrease in muscle glucose clearance 
after the meal. A lower serum adiponectin level was 
also seen in the diabetic and the prediabetic insulin-
resistant subjects, with the latter being positively 
related to the decreased postload blood flow rise[46] 
(Figure 1).

In subjects with morbid obesity postprandial muscle 
blood flow was also blunted in a study by the same 
group and this contributed to the decrease in muscle 
glucose uptake postprandially[47]. The same was 
observed by the same group in another insulin resistant 
state, such as hypothyroidism, in which a decreased 
postprandial blood flow response was coupled with an 
impairment in muscle glucose uptake[48]. In a study 
by Magalhães et al[49] administration of metformin to 
non-obese type 2 diabetic patients increased post-load 
forearm muscle blood flow and lowered free fatty acids, 
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coincides with plasma insulin peak and the inhibition of 
lipolysis[23].

By studying obese or diabetic individuals in the 
90s, Jansson et al[55,56] detected impairment in adipose 
tissue blood flow response as a facet of insulin resis
tance coupled with hypertension and elevated lipolysis 
products.

Since then, numerous studies have shown that in 
states of decreased insulin sensitivity, as in “diabesity’’, 
the postprandial increase in adipose tissue blood 
flow is reduced[57-60]. Karpe et al[61] showed that the 
postprandial blood flow rise is associated with insulin 
sensitivity independently of weight. Moreover, they 
showed that hyperinsulinaemia affects adipose tissue 
blood flow indirectly by stimulation of sympathetic 
activity[61]. 

Previous reports in healthy subjects by the same 
research group have demonstrated that nitric oxide 
determines the actual rate of adipose tissue blood flow, 
whereas postprandial augmentation of it is mainly 
under adrenergic regulation in vivo, and that blood flow 
regulation and lipolysis are co-regulated[25]. 

Dimitriadis et al[62] showed an altered fasting and 
postprandial adipose tissue blood flow in all stages 
of metabolic regulation, from the prediabetic state to 
clinical diabetes, even in lean first-degree relatives of 

diabetic patients. This study, using a mixed meal as a 
stimulus, showed significant association of postprandial 
adipose tissue blood flow with insulin sensitivity. Basal 
and post-challenge triglycerides were negatively 
correlated to the responsiveness of adipose tissue blood 
flow; the same was true for postprandial non-esterified 
fatty acids but not for fasting values[62] (Figure 2).

Fatty acid overflow (mainly palmitic acid), a well 
recognized factor to interfere with insulin sensitivity, 
causes both cellular and vascular insulin dysfunction[63]. 
The increased rate of lipolysis in diabetes may result 
in increased lipid oxidation and a decreased glucose 
oxidation rate[61,64]. 

Impairment in blood flow response of adipose tissue 
has been found in other insulin resistance states. Mitrou 
et al[47] study in morbidly obese subjects, shows a drop 
in postprandial adipose tissue blood flow response and 
in glucose disposal per 100 mL fat tissue. However, 
glucose fractional extraction from subcutaneous fat 
depot was unaltered and glucose uptake per total fat 
mass was increased. Thus, it seems that although an 
expanded adipose tissue causes insulin resistance, total 
fat mass provides a buffer for glucose overflow and 
compensates for insulin resistance. 

Diabetic subjects fail to increase adipose tissue 
blood flow during prolonged exercise of moderate 
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intensity, in combination to the inability to regulate 
non-esterified fatty acid mobilization and adipose tissue 
glucose clearance[65]. Exercise augments adipose tissue 
lipolysis in diabetic patients, but due to an impaired 
blood flow response, a high proportion of free fatty 
acids that come from lipolysis cannot be released into 
the circulation. Visceral glucose release is lower than 
whole-body glucose utilisation during exercise and 
post-exercise recovery[66].

The cause of the impairment in postprandial 
adipose tissue blood flow reactivity in insulin resistance 
is still obscure. One potential explanation is the 
downregulation of the adrenergic receptor during 
chronic sympathetic stimulation in a milieu of long-
standing hyperinsulinaemia. Sympathetic nervous 
system overactivity induces oxidative stress. Increased 
levels of circulating free oxygen radicals consumes 
nitric oxide, and inhibits physiological insulin-dependent 
vasodilatation[23]. Interestingly, the transcription of eNOS 
and natriuretic peptide receptor-A, which are expressed 
in adipose tissue and interfere with vasoactive 
actions, was associated with adipose tissue blood flow 
responsiveness to feeding. This finding suggests that 
part of blood flow regulation is at a transcriptional level 
and it is independent of adiposity[28].

At the bottom line, adipose tissue is an important 
buffer against the postprandial spill-over of nonesterified 
fatty acids in the circulation, thus protecting other 
peripheral tissues. This buffering effect is dysregulated 
in states of an over-expanded inflammatory, hypoxic 
adipose tissue, where the postprandial blood flow 
response is minimized, potentially leading to atherogenic 
dyslipidaemia[67]. 

CONCLUSION
Resistance in the haemodynamic actions of insulin is 
essential for the development of type 2 diabetes and 
insulin resistant states as well as their complications, 
namely cardiovascular disease, the development of 
which often precedes overt hyperglycaemia and which 
is the primary cause of mortality within the diabetic 
population. 

Insulin normally stimulates microvascular perfusion 
(capillary recruitment) of skeletal muscle and subcu
taneous adipose tissue and thus increases blood flow 
mainly after meal ingestion or physical exercise. This 
effect is impaired in insulin resistance and type 2 
diabetes early during metabolic dysregulation develop
ment and reflects early-onset vascular dysfunction. 
Failure of insulin to increase muscle blood flow results 
in the inability to regulate its own delivery and that 
of other substrates and hormones and consequently 
to a decrease in glucose disposal. In fat depots blood 
flow is closely related to triglyceride clearance and 
non-esterified fatty acid kinetics. Therefore, we may 
speculate that dysregulation of post-challenge blood 
flow responsiveness in skeletal muscle and adipose 
tissue may together underlie some of the detrimental 

aspects of insulin resistance.
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