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Abstract
Müller cells are macroglia and play many essential 
roles as supporting cells in the retina. To respond to 
pathological changes in diabetic retinopathy (DR), a 
major complication in the eye of diabetic patients, 
retinal Müller glia produce a high level of vascular 
endothelial growth factor (VEGF or VEGF-A). As VEGF 
is expressed by multiple retinal cell-types and Müller 
glia comprise only a small portion of cells in the retina, 
it has been a great challenge to reveal the function of 
VEGF or other globally expressed proteins produced by 
Müller cells. With the development of conditional gene 
targeting tools, it is now possible to dissect the function 
of Müller cell-derived VEGF in vivo . By using conditional 
gene targeting approach, we demonstrate that Müller 
glia are a major source of retinal VEGF in diabetic mice 
and Müller cell-derived VEGF plays a significant role in 
the alteration of protein expression and peroxynitration, 
which leads to retinal inflammation, neovascularization, 
vascular leakage, and vascular lesion, key pathological 
changes in DR. Therefore, Müller glia are a potential 
cellular target for the treatment of DR, a leading cause 
of blindness.
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Core tip: Diabetic retinopathy is a disorder of blood-
retina barriers (BRBs) and neurons. Anti-vascular 
endothelial growth factor (VEGF) drugs are explored 
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for treating BRB breakdown in the disease. As VEGF is 
also potentially beneficial, it is essential to understand 
the cellular and molecular mechanisms of VEGF action 
in the retina. Discussion is centered on the usefulness 
of conditional gene targeting mice in dissecting the 
function of globally expressed VEGF and in identifying 
significant roles for Müller glia-derived VEGF in diabetes-
induced changes in protein expression/modification, 
inflammation, and BRB lesions and leakage. 
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INTRODUCTION
Müller cells, the principal macroglia of mammalian 
retina, span from the vitreal surface to subretinal space 
and cover all retinal layers. This structural arrange
ment is ideal for them to serve as major supporting 
cells in regulating physiological and pathological 
responses in retinal vasculature and neurons. In 
the retina, Müller glia play many essential roles in 
metabolism, functions, maintenance, and protection 
by providing trophic factors, removing metabolic 
wastes, controlling extracellular space volumes and 
ion and water homeostasis, participating visual 
cycles, releasing neurotransmitters, regulating blood
retina barrier (BRB) function, and modulating innate 
immunity[1]. Müller glia is also a major respondent 
to various stresses by reactive gliosis which involves 
in morphological, biochemical, and physiological 
changes. Under some pathological conditions, uncon
trollable alteration in growth factor production, such 
as overexpression of vascular endothelial growth 
factor (VEGFA or VEGF) in diabetic retinopathy (DR), 
results in a detrimental effect and causes vision loss. 
In this minireview, we will discuss the general role 
of VEGF in DR and the function of Müller cellderived
VEGF (MCD-VEGF) in protein expression/modification, 
inflammation, BRB function, and vascular and neuronal 
integrity in diabetic animals.

DIABETIC RETINOPATHY
DR is a leading cause of blindness in workingage 
people in industrialized countries and is traditionally 
regarded as a microvascular complication in the eye 
of diabetic patients due to an apparent breakdown 
of the endothelial barrier, which is formed by orderly 
arranged tight junction proteins. The structural 
interactions between these tight junction proteins 
control the fluid flow through the barrier[2]. Patients 
with endothelial barrier breakdown demonstrate 
the following key clinical characteristics: retinal 

hemorrhages, microaneurysms, cottonwool spots, 
lipid exudates, macular edema, capillary occlusion, 
and retinal neovascularization[2]. Studies with retinal 
pigment epithelium (RPE) barrier by others and us 
suggest that the breakdown of the tight junctions 
in the RPE barrier may contribute substantially to 
diabetesinduced bloodcontent leakage[35], which is 
responsible for at least some form of macular edema[6]. 
Therefore, DR is not just a microvascular disease, but 
rather a disorder of BRB. Macular edema resulted 
from BRB breakdown and retinal neovascularization 
are two most devastating causes of vision loss in 
diabetic patients. On the other hand, it is increasingly 
recognized that the loss of retinal neuronal function 
and viability occurs before the onset of BRB abnor
malities in diabetic patients and in experimental ani
mals[711]. Perhaps neuronal and BRB disorder is a more 
appropriate description for DR. 

VEGF IN REGULATING BLOOD-RETINA 
BARRIER FUNCTION
VEGFA or VEGF, a heparinbinding homodimeric 
glycoprotein[12,13], belongs to a family of seven 
members, including VEGFA to F and placental 
growth factor and (PlGF). Each of them may also 
have several isoforms due to alternative splicing, 
which affects their solubility, and thus is responsible 
for their cellular localization. The most intensively 
studied and predominant isoform of VEGFA in 
humans is VEGFA165. VEGFs exert their function 
through complicated receptor and coreceptor
mediated signaling cascades, which involves VEGF 
receptor1 (VEGFR1), VEGFR2, VEGFR3, neuropilin1, 
neuropilin2, vascular endothelial cadherin, and 
integrin[14]. Much of the literature information regarding 
VEGFs in the eye is centered on the pathobiology of 
VEGFA due to its high relevance to the pathogenesis 
of DR, retinopathy of prematurity (ROP), and age
related macular degeneration (AMD), leading causes of 
blindness. 

VEGF is a potent mitogenic factor for endothelial 
proliferation and migration and tube formation during 
vessel development and is a major stimulator for 
embryogenesis, vasculogenesis, and angiogenesis[13,15]. 
Disruption of a single VEGF allele is lethal in mice at 
embryonic day 1112[16,17]. VEGF is a major regulator 
of pathological neovascularization in proliferative 
DR[18]. VEGF blockade has been shown to inhibit 
hypoxiainduced retinal angiogenesis[1921]. Due to 
its potent activity in inducing blood barrier hyper
permeability[2225], VEGF is regarded as a major 
contributor to the high level of bloodcontent leakage 
in DR[26,27]. Overexpression of VEGF or its receptors, 
which causes disorganization of endothelial and RPE 
tight junctions[25,28,29], is associated with diabetic 
macular edema[30].

A major regulator for VEGF signaling is oxygen 
tension and VEGF expression is induced by hypoxia, 
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a pathological condition occurrs after early stages of 
DR[31]. While hypoxiainducible factor1 (HIF1) is a 
critical regulator in this response[32], its degradation 
is controlled by vonHippelLindhal (VHL) suppressor 
protein[33]. Therefore, HIF1 (perhaps other HIFs) 
and VHL are key upstream regulators for VEGF
induced BRB breakdown in DR through VEGFR2[13,15,34]. 
Although VEGF signaling may be a major pathogenic 
mechanism for DR, various growth factors, inflam
matory cytokines, and prostaglandins may also affect 
the disease through VEGF signalingdependent or 
independent mechanisms[3538]. As a result of intensive 
effort in VEGF pathobiology and pharmacology, anti
VEGF agents are utilized as a major strategy for 
the treatment of retinal neovascularization, BRB 
breakdown, and macula edema in DR. 

CONDITIONAL VEGF DISRUPTION IN 
MÜLLER GLIA 
VEGF is produced by several retinal celltypes. Müller 
glia and RPE cells are thought to produce high levels 
of VEGF[39]. Indirect evidences obtained from in vivo 
localization and molecular biology approach with 
cell cultures suggest a significant role for VEGF in 
regulating BRB function in DR[40,41]. However, the 
importance of MCDVEGF in DR remained unclear for 
a long time after the initial discovery of VEGF as a 
potential pathogenic factor in DR. A major reason for 
this is that Müller glia only comprise a small portion 
of retinal cells and VEGF is expressed by multiple cell
types, which makes it difficult to detect Müller cell
specific VEGF expression by immunohistochemistry 
(IHC) or immunoblotting (IB). Additionally, more 
and more “new” VEGF functions have been identified 
since the discovery of its involvement in BRB function 
in the mid1990s[27,42]. While other retinal cells may 
not produce a high level of VEGF at a given time, it is 
almost impossible to pinpoint the local effect of VEGF 
produced by these cells, if VEGF action is blocked 
globally by genetic, immunological, biochemical, or 
pharmacological approaches. Therefore, cellspecific 
approach may be the “only” way to delineate the 
precise function of Müller cellderived VEGF (MCD
VEGF). As Müller glia play such a critical role in 
general health and functions of the retina, a better 
understanding of their biology is paramount to the 
prevention and treatment of retinal diseases[43]. For 
this purpose, several laboratories developed cell
specific genetic tools for Müller glia[44], which is very 
helpful for dissecting the specific function of globally 
expressed proteins, such as VEGF, in Müller cells. 

In a serendipity fashion while developing inducible 
Cre/lox system for the RPE using the promoter of human 
vitelliform macular dystrophy2 (Vmd2) gene[45,46], 
we identified one transgenic founder mouse that was 
capable of carrying out productive Cremediated excisive 
recombination in Müller glia. This transgenic Credrive 
line provides an opportunity to generate conditional VEGF 

knockout (CVKO) mice that disrupt VEGF expression 
mainly in Müller glia. The CVKO mice were generated 
by breeding this Müller glial Credrive line with a mouse 
line carrying loxPflanked VEGF gene (VEGFff), called 
floxed VEGF mice[45,47,48]. The degree of VEGF disruption 
in the Müller glia was assessed by IB with primary 
Müller cell cultures derived from the CVKO mice, which 
reduced VEGF production by 66%. This degree of VEGF 
knockout (KO) caused a near 50% reduction of total 
retinal VEGF in CVKO mice under normal conditions[48,49]. 
To ascertain whether the production of MCDVEGF 
was substantially decreased in CVKO mice in disease 
models[49], we examined VEGF expression in diabetic and 
hypoxic models (see detail below). While diabetes and 
hypoxia doubled retinal VEGF in WT mice, the deletion 
of MCDVEGF caused a near 50% decrease of VEGF 
overexpression in the retina under hypoxic or diabetic 
conditions (Table 1). These data were corroborated by 
IHC with CVKO mice[48,49]. Considering the fact that Müller 
cells only comprise a small portion of retinal cells, our 
data undisputedly suggest that Müller glia are a major 
cellular origin of VEGF in mouse retinas. 

MÜLLER CELL-DERIVED VEGF IN 
PROTEIN EXPRESSION/MODIFICATION 
AND RETINAL INFLAMMATION
To determine whether deletion of MCDVEGF resulted 
in any significant changes in DRassociated gene 
expression, we performed IB analysis with retinal 
extracts from CVKO mice after diabetes was induced 
with streptozotocin (STZ). HIF1α is a major parameter 
for oxygen tension and the induction of HIF1α contri
butes to the increase in VEGF[50]. To delineate the 
regulatory mechanisms between HIF1α and VEGF, we 
examined the expression level of HIF1α in hypoxic 
and diabetic CVKO mice. Although HIF1α was up
regulated significantly in hypoxic retinas at P14 (see 
detail below) and diabetic retinas (two month post
STZ injection) in WT controls, there was no apparent 
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Table 1  Alteration in protein expression/modification in 
diabetic or hypoxic Müller cell-specific KO mice

Model/time Proteins/modification Alteration

STZ-induced diabetes/6 mo Albumin Decrease (59%)
STZ-induced diabetes/2 mo ICAM1 Decrease (62%)
STZ-induced diabetes/2 mo Nitrotyrosine Decrease (19%)
STZ-induced diabetes/6 mo Occludin Increase (60%)
STZ-induced diabetes/2 mo pNF-κB p65 Decrease (48%)
STZ-induced diabetes/2 mo TNF1α Decrease (53%)
STZ-induced diabetes/6 mo VEGF Decrease (51%)
STZ-induced diabetes/6 mo ZO1 Increase (130%)
Oxygen-induced retinopathy Albumin Decrease (56%)
Oxygen-induced retinopathy VEGF Decrease (45%)
Oxygen-induced retinopathy Occludin Increase (35%)

STZ: Streptozotocin; VEGF: Vascular endothelial growth factor; ICAM1: 
Intercellular adhesion molecule-1; TNFα: Tumor necrosis factor-α; NF: 
Nuclear factor; ZO1: Zonula occludens-1.
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showing a 75.0% reduction of adherent leukocytes, a 
cardinal feature of retinal inflammation in DR, in the 
retinal microvasculature of the CVKO mice 2 mo after 
STZ injection (Table 2). Collectively, these data point to 
a major role for MCD-VEGF in developing inflammation 
in DR.

MÜLLER CELL-DERIVED VEGF IN BRB 
FUNCTION AND INTEGRITY
As diabetic rodents usually do not develop retinal 
neovascularization[58], the closest way to investigate this 
is to utilize oxygen induced retinopathy (OIR), a model 
mimicking an infant blinding disease, ROP. To examine 
the effect of MCDVEGF on BRB function, the severity 
of retinal neovascularization was examined in CVKO 
mice subjected to OIR. The CVKO mice were placed 
in hyperoxia (75% oxygen) from postnatal day 7 (P7) 
to P12 and were then kept under normoxia for up to 
5 d. In OIR model, the retina was relatively hypoxic 
at P14 (compared with that at P712), as judged by 
the abundance of HIF1α. The level of retinal VEGF in 
hypoxic CVKO mice was decreased by 45% (Table 
1). At P17, fluorescein angiography was performed 
and OIRtreated CVKO mice demonstrated 40% 
and 30% reductions in areas of retinal neovasculari
zation and of vasoobliteration, respectively (Table 
2). Retinal sections from OIRtreated CVKO mice also 
showed a 34% reduction in the number of preretinal 
neovascular endothelia (Table 2). As a consequence 
of decreasing retinal neovascularization and unhealthy 
microvasculature, we observed a 56% reduction of 
OIRinduced vascular leakage in CVKO mice (Table 
1), judged by IB for albumin. This observation was 
supported by IHC data[48]. 

IB analysis with retinal and vitreous extracts prepared 
from PBSperfused diabetic WT mice demonstrated a 
1.5fold increase in extravascular albumin 6 mo after 
STZinjection. However, the disruption of MCDVEGF 
caused a near 60% reduction of albumin leakage in 
agematched diabetic mice (Table 1). Such a reduction 
can be visualized in the retinal flat-mounts of diabetic 
CVKO mice by intravenously injected fluorescein 
isothiocyanatelabeled albumin[49].

To delineate the mechanistic insights of MCDVEGF 
in diabetesinduced vascular leakage, we analyzed 
the levels of occludin and Zonula occludens1 (ZO1), 
two major tight junction proteins, in the retina[49]. 
While diabetes resulted in 39% and 58% decreases 
of occludin and ZO1, respectively, in WT animals, 
no alteration in occludin and ZO1 expression was 
observed in diabetic CVKO mice. As a result, the 
diabetic CVKO mice had 60% and 130% upregulation 
of occludin and ZO1 (Table 1), compared with that 
of diabetic WT controls. Our data indicated that the 
disruption of MCDVEGF resulted in a significant 
reduction of diabetesinduced retinal vascular leakage 
by attenuating the depletion of occludin and ZO1. This 
result was supported by a 36% increase in the level 

difference in the levels of retinal HIF1α between 
the CVKO mice and WT controls under hypoxic and 
diabetic conditions[48,49], suggesting that hypoxia/HIF1α 
is an upstream regulator of VEGF produced by Müller 
glia. 

Nuclear factorkappaB (NFκB) is a transcription 
factor and a major player in inducing early pathological 
changes, such as inflammation, in DR[51,52]. To explore 
if MCDVEGF regulated NFκB in diabetic retina, we 
examined the expression/phosphorylation of NFκB 
p65 subunit. While there was no detectable change 
in the total NFκB p65 level between the CVKO mice 
and WT controls, the loss of MCDVEGF caused a 
dramatic decrease (48%) of phosphorylated (activated) 
NFκB p65 in the retina 2 mo after STZinjection 
(Table 1). This result suggests that activated p65 is 
downstream of MCDVEGF in DR[49]. Nitric oxide (NO) 
is an important inflammatory mediator and its level 
is a representation of oxidative stress in the retina 
of diabetic patients and animals[5355]. Peroxynitrite 
is a highly reactive oxidant, which is formed by the 
rapid combination of NO with superoxide. Increased 
peroxynitrite formation may be directly linked to 
diabetesinduced VEGF overexpression and there 
is a possible loop effect of VEGF signaling and 
peroxynitrite formation[56,57]. To determine the role 
of MCDVEGF in protein nitration, we examined the 
level of nitrotyrosine, a biomarker of peroxynitrite, in 
retinal protein extracts from CVKO and control mice 
2 mo after STZinjection. The retinal extracts from 
diabetic CVKO mice demonstrated a 19% decrease of 
proteins with nitrotyrosine (Table 1), indicating that the 
disruption of MCDVEGF reduced oxidative stress. 

Inflammation is an early pathological response 
in DR. To identify the role of MCDVEGF in retinal 
inflammation in DR, we examined the levels of pro
inflammatory markers in CVKO mice by IB analysis 
for intercellular adhesion molecule1 (ICAM1) and 
tumor necrosis factorα (TNFα), 2 mo after STZ
injection. Compared with controls, the CVKO mice 
showed 62.3% and 52.9% reduction of ICAM1 and 
TNFα (Table 1), respectively. These results suggest 
that the deletion of MCDVEGF substantially inhibits 
inflammation in diabetic retinas[49]. This notion is 
reinforced by the result from the leukostasis assay 
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Table 2  Pathological changes in diabetic or hypoxic Müller 
cell-specific KO mice

Model Pathological changes Alteration

STZ-induced diabetes Leukocytosis Decrease (75%)
STZ-induced diabetes Vascular leakage Decrease (60%)
STZ-induced diabetes Acellular capillaries Decrease (45%)
STZ-induced diabetes Vascular leakage Decrease (60.0%)
Oxygen-induced retinopathy Pre-retinal 

neovascularization 
 Decrease (34%)

Oxygen-induced retinopathy Neovascularization 
area 

Decrease (40%)

Oxygen-induced retinopathy Vaso-obliteration area Decrease (30%)

STZ: Streptozotocin.
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of occludin in the retina (Table 1) and by qualitative 
evidence from IHC in hypoxic CVKO mice generated 
with OIR[48]. Collectively, our data suggest that MCD
VEGF was a major inducer of vascular leakage in OIR
treated hypoxic mice and in diabetic mice through 
VEGF signalinginduced decrease of tight junction 
integrity.

To assess retinal vascular lesions in diabetic CVKO 
mice, the number of acellular capillaries in trypsin 
digested retinal flat-mounts was examined 6 mo after 
diabetes was induced[49]. The diabetic CVKO mice had 
45% fewer acellular capillaries than that in controls 
(Table 2), suggesting that the loss of MCDVEGF had 
a protective effect on retinal microvasculatures, which 
reduced vascular leakage through the endothelial 
barrier in DR.

MÜLLER CELL-DERIVED VEGF IN RETINAL 
DEVELOPMENT AND INTEGRITY
Disruption of MCDVEGF in the CVKO mice did not 
affect the development of retinal and choroidal 
vasculatures and overall retina[48], as determined by 
morphological analysis in retinal sections with light 
microscopy, functional test with electroretinography, 
and retinal and choroidal vascular density and mor
phological examination in retinal and RPE/choroidal 
flatmounts with IHC and fluorescein angiography. 
Although negative results from conditional gene KO 
studies are not conclusive, our observation is somewhat 
expected as Müller glia are one of the last few cell
types to develop and KO of VEGF in neural retina during 
embryonic development results in abnormal retinal 
vessels[59]. In our study, the loss of MCDVEGF did not 

affect retinal integrity in the aging CVKO mice under 
normal and diabetic mice[49]. This result is seemly 
contradictory to the observation that VEGF is a survival 
factor for retinal ganglion cells, photoreceptors, and 
Müller glia[60,61]. The following may account for the 
“discrepancy”: the disruption of MCDVEGF in the 
CVKO mice did not remove VEGF completely as several 
types of retinal cells produce permeable VEGF and a 
basal level of VEGF may be sufficient for physiological 
VEGF function, such as neuronal function and integrity 
in the retina. In addition, our studies did not blocked 
VEGF signaling in any retinal cells. However, the 
result that MCDVEGF had no apparent role in retinal 
development and integrity provides an advantage to 
investigating the role of MCDVEGF in CVKO mice. 
Since there was no distinguishable defect in the 
animals under normal conditions, any phenotypical 
difference between the CVKO and control mice can be 
attributed to the defects from deleting MCDVEGF. 

CONCLUSION
Work from others and our laboratories demonstrated 
a major role for MCDVEGF in DR, as summarized in 
Figure 1. Our data clearly pinpoint that MCDVEGF 
plays a major role in protein alteration/modification, 
inflammation, neovascularization, vascular leakage, 
and vascular lesion in DR. Our study also suggests 
that MCDVEGF may be a downstream regulator of 
DRrelated master regulator, such as HIF1α/hypoxia, 
but upstream regulator for others, such as NFκB and 
peroxynitrite. We also need to keep in mind that DR 
is a multifactorial disease. Other growth factors and 
pro-inflammatory mediators may be involved in devel-
oping DR in a VEGFindependent manner. A better 
understanding of VEGFdependent and independent 
pathways is the key to new therapeutic strategies 
for intervening multiple drug targets simultaneously, 
since antiVEGF strategy alone cannot prevent DR 
completely. The CVKO mice provide an excellent 
animal model in this new endeavor.   

VEGF is a neural protectant and it has been 
shown to modulate neuronal function in the brain[62]. 
Potentially, MCDVEGF may also be involved in regu
lating neuronal integrity. With the development of tools 
in studying Müller glia and their relationship with 
neuronal survival in diabetes and hypoxia[44,63,64], 
the role of MCDVEGF in neuroprotection in the retina 
should be sorted out shortly. Current literature sug
gests that MCDVEGF may have a critical role in 
maintaining Müller glia through autocrine in hypoxia 
and diabetes. However, it is not clear whether MCD
VEGF acts solely as trophic factor in the maintenance 
of Müller glia. Other mechanism, such as proliferation 
(Müller cell selfrenew), may also be potentially 
important to the maintenance of retinal integrity. In 
principles, mammalian Müller cells are capable of 
dedifferentiation, proliferation, and differentiation into 
various retinal neurons under various conditions and 
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Müller cell-derived VEGF 

VEGFRs
VEGF-coRs?

Protein expression and 
modification

BRB function
Angiogenesis

BRB permeability
Vascular lesions 

Retinal alteration

Neuronal function? 
Neuronal survival

Inflammation
Leukostasis

Müller cell survival
Müller cell self-renew?

Figure 1  A simplified schematic diagram for the potential roles of Müller 
cell-derived-vascular endothelial growth factor in diabetic retinopathy. 
Alteration in pathological characteristics caused by MCD-VEGF is indicated in 
italic. Potential functions without direct proof by experimental and clinical data 
are indicated with a question marker. MCD-VEGF plays a significant role in 
causing retinal inflammation, neovascularization, vascular leakage, vascular 
lesion, and protein alteration and modification in the pathogenesis of DR. MCD-
VEGF: Müller cell-derived-VEGF; DR: Diabetic retinopathy; VEGF: Vascular 
endothelial growth factor.

Wang JJ et al . Müller cell-derived VEGF in diabetic retinopathy



are considered as a major retinal stem cell[65]. It will 
be fascinating if MCDVEGF can act similarly as other 
growth factors in differentiating Müller cells to neurons 
for neuroprotection[66].

Although there are many publications on VEGF 
or MCDVEGF in DR, little is known about its actually 
signaling pathways. As discussed earlier, the pre
sence of at least seven VEGF receptors and co
receptors accounts for the difficulties in revealing 
their mechanisms. Additionally, VEGF is a secreted 
protein and loss of VEGF produced by a single celltype 
can be compensated by others. Delineating detailed 
mechanisms may greatly enhance our understanding 
to the pathogenesis, treatment, and neuronal function 
in DR, which is critical to the improvement and safety 
of current antiVEGF strategy and to the design of new 
treatments for the disease. 
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