
and randomized studies with patient follow-up have 
confirmed the importance of human  enterovirus  
in the pathogenesis of T1DM. The genetic risk of 
T1DM and particular innate and acquired immune 
responses to enterovirus infection contribute to a 
tolerance to T1DM-related autoantigens. However, 
the frequency, mechanisms, and pathways of virally 
induced autoimmunity and β-cell destruction in T1DM 
remain to be determined. It is difficult to investigate 
the role of enterovirus infection in T1DM because of 
several concomitant mechanisms by which the virus 
damages pancreatic β-cells, which, consequently, may 
lead to T1DM establishment. Advances in molecular 
and genomic studies may facilitate the identification 
of pathways at earlier stages of autoimmunity when 
preventive and therapeutic approaches may be more 
effective.
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Core tip: A complex interaction of genetic and en
vironmental factors can trigger the immune-mediated 
mechanism responsible for type 1 diabetes mellitus 
(T1DM) establishment. The role of environmental 
factors in this process has been exhaustive studied and 
viruses are among the most probable ones, especially 
enteroviruses. Improvements in enterovirus detection 
methods and randomized studies with patient follow-
up have confirmed the importance of these viruses in 
the pathogenesis of T1DM. However the frequency of 
viruses induces autoimmunity or β-cell destruction and 
the mechanisms and pathways how they increment 
the autoimmunity in T1DM still to be determined. 
Here, we review these mechanisms and all evolution in 
enterovirus studies and T1DM. Advances in molecular 
and genomic studies may facilitate the identification 
of pathways at earlier stages of autoimmunity when 
preventive and therapeutic approaches may be more 
effective.
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Abstract
A complex interaction of genetic and environmental 
factors can trigger the immune-mediated mechanism 
responsible for type 1 diabetes mellitus (T1DM) 
establishment. Environmental factors may initiate and 
possibly sustain, accelerate, or retard damage to β-cells. 
The role of environmental factors in this process 
has been exhaustive studied and viruses are among 
the most probable ones, especially enteroviruses. 
Improvements in enterovirus  detection methods 
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INTRODUCTION
Type 1 diabetes mellitus (T1DM) is a chronic endocrine 
disorder that is caused by the progressive destruction 
of pancreatic β-cells, which results in insulin de
ficiency. A complex interaction between genetic and 
environmental factors may trigger this immune-
mediated mechanism[1]. The most important T1DM 
susceptibility genes are located in the HLA-DR and 
DQ loci[2]. However, T1DM is not induced by genetic 
susceptibility alone, and environmental factors may 
initiate and possibly sustain, accelerate, or retard the 
damage to β-cells[3,4]. The role of environmental factors 
in the development of T1DM has been suggested 
because of the seasonal variation in the incidence of 
T1DM[5] and the conspicuous variation in the incidence 
of T1DM between different countries[6,7]. Immigrants 
often acquire a level of risk for developing T1DM that 
is typical for their new home country[8]. In addition, 
the incidence of T1DM has rapidly increased during the 
last decade[9-11] despite the increased prevalence of 
protector genes for T1DM and a concomitant decrease 
in high-risk genes[12,13]. Changes in the environment 
and how individuals respond to these variations have 
been indicated as being responsible for this increase in 
T1DM. 

The following environmental factors have been 
suspected to contribute to the development of T1DM: 
dietary factors, such as cow’s milk proteins[14,15], 
vitamin D deficiency[16,17] and gluten[18]; pancreatic 
toxins[19,20], such as streptozotocin and nitrites; 
psychological factors[21]; and viral infection factors[22]. 
Viruses are among the most probable environmental 
factors in the development of T1DM, including rubella 
virus[23], rotavirus[24], mumps virus, cytomegalovirus 
and enteroviruses[25-27]. Recent studies using dif
ferent approaches have suggested that the most 
promising candidates for viral triggers with clinically 
significant associations with T1DM development are 
enteroviruses[28-31].

However, it has been difficult to establish viruses 
as the inducers of T1DM. First, the link between 
infections and autoimmunity is multifactorial[32]. Several 
infections may act together or in an appropriate 
temporal sequence to trigger clinical autoimmunity. 
Furthermore, the particular virus that is involved in 
triggering T1DM may be hard to detect systemically 
or in the target organ after the initiation of the auto
immune response[33]. Second, the long duration of 
time between the possible triggering effect and the 
onset of the clinical symptoms of diabetes makes it 
difficult to establish a direct relationship. Third, T1DM 

patients and healthy individuals undergo multiple viral 
infections during their lifetime, and several of these 
viruses may even protect individuals from autoimmune 
disease[34,35]. Fourth, the “fertile field hypothesis” 
suggests that viral infections render tissue a “fertile 
ground” for autoaggressive lymphocytes to invade 
and expand, which leads to T1DM[36,37]. Therefore, the 
activation of the immune system may have a role in 
the pathogenesis of this disease[38].

In this review, the potential mechanisms of ente
rovirus infections in the establishment of T1DM will be 
discussed. 

ENTEROVIRUSES
The Enterovirus genus of the Picornaviridae family 
consists of small, non-enveloped, positive, single-
strand RNA viruses, including polio viruses (PVs), 
Coxsackie viruses A and B (CVA and CVB), echoviruses 
(EVs) and new enteroviruses. Three different PVs (types 
1-3) and more than 60 non-polio enteroviruses cause 
disease in humans. These human enteroviruses (HEVs) 
include 23 CVAs (types 1-24; type 23 does not exist), 
6 CVBs (types 1-6), 28 EVs (types 1-33; types 10, 22, 
23 and 28 do not exist) and 4 other enteroviruses (EV 
68-71)[39].

Enterovirus infections are transmitted from person 
to person by fecal-oral and, less commonly, respiratory 
routes, which indicates that these infections usually 
begin in the gastrointestinal or respiratory mucosa. 
After replicating in the mucosa, the virus spreads 
through the lymphatic system into the circulation after 
a brief viremic phase at secondary replication sites, 
which determines the types of symptoms[40]. 

Most enterovirus infections are asymptomatic 
or produce subclinical or mild symptoms, such as 
nonspecific febrile disease, muscle pain, sore throat, 
gastrointestinal distress, headache and abdominal 
discomfort. However, a wide variety of symptoms that 
affect various organs may occur, such as hand, foot 
and mouth disease; acute hemorrhagic conjunctivitis; 
aseptic meningitis; myocarditis; severe neonatal 
sepsis-like disease; and acute flaccid paralysis[41].

Independent of location and symptom intensity, 
viral replication is continuous in the lymphatic tissue. 
The incubation period varies from 2-30 d, and ente
roviruses can be detected in various types of biological 
specimens from humans. Enteroviruses may be 
detected most readily in stools for up to 3-4 wk but 
rarely more than 2-3 mo. Serologic diagnoses in the 
acute phase are difficult because most cases are 
asymptomatic[42].

Systemic enterovirus infection may lead to viral 
dissemination to other target organs, and enterovirus 
RNA and protein may be detected in intestinal, heart or 
pancreatic tissues by reverse transcription-polymerase 
chain reaction (RT-PCR), immunohistochemistry or in 
situ hybridization[43].
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Association between 
EnterovirusES and T1DM: A 
HISTORICAL OVERVIEW
This are convincing experimental results for the role 
of EV infection in T1DM development using mouse 
models[44-46], and some mechanisms of beta cell 
damage have been proposed based on experiments 
with non-obese diabetic (NOD) mice[47].

In humans, enterovirus infection has been sus
pected to be involved in the pathogenesis of T1DM 
since the late 1960s, when Gamble et al[5] described a 
seasonal variation in the incidence of T1DM following 
enterovirus infection[48] and demonstrated that the 
frequency of neutralizing antibodies against the CVB4 
serotype was increased in newly diagnosed T1DM 
patients[49]. A CVB4 virus was subsequently isolated 
from the pancreas of a child who died from diabetic 
ketoacidosis, and this virus strain caused diabetes in 
a susceptible mouse strain[50]. However, subsequent 
studies failed to replicate this result.

In many serological studies, enterovirus antibodies 
have been more prevalent in diabetic patients than in 
healthy children[51]. However, critics have questioned 
these data because control patients were not matched 
for HLA risk alleles, and the detection methods 
for enterovirus cannot differentiate between HEV 
types. Several reports have not presented the same 
outcome, and the role of enterovirus infection in the 
development of T1DM has remained controversial[52].

Oikarinen et al[53] analyzed the role of past 
exposure to different CVB serotypes by measuring 
neutralizing antibodies specifically against each of 
the six serotypes in 249 children who were newly 
diagnosed with T1DM and in 249 control subjects from 
five European countries. Antibodies against CVB1 were 
more frequently detected in diabetic children than in 
the control group. This study suggests that coxsackie 
virus B may include a diabetogenic virus group and 
indicates that CVB1 may be a member of this group. 
However, because of the cross-sectional study design, 
the findings do not support a causality link between 
enterovirus infection and T1DM. Nevertheless, the 
same virus type has recently been observed to in
crease the risk of T1DM in the prospective Diabetes 
Prediction and Prevention (DIPP) study as a potential 
initiator of the β-cell-damaging process[54].  

Much attention has been paid to the possible 
immunological cross-reactivity that is induced by a 
homology sequence in the 2C non-structural CVB 
protein and a principal diabetes autoantigen glutamic 
acid decarboxylase (GAD65), which share a common 
amino acid sequence[55,56]. GAD65 is an important 
target antigen in the pathogenic process of diabetes. In 
mice, the insulitis establishment coincides with GAD65 
specific reactivity, and tolerance induction to GAD65 
can prevent the disease[57,58]. Humoral and cellular 
responses have been detected against GAD65 before 

the onset of clinical diabetes[59], and auto antibodies 
are positive several years before diagnosis[60]. The 
importance of this homology in T1DM pathogenesis is 
supported by data showing that T cells that respond to 
this sequence are present both in NOD mice and T1DM 
patients[61,62]. This mechanism will be discussed below. 

In more recent studies, RT-PCR has been used to 
detect CVB-specific RNA in the sera of newly diagnosed 
T1DM patients[63]. Yeung et al[64] conducted a useful 
systematic review and meta-analysis of observational 
molecular studies on the detection of enterovirus in 
T1DM patients. Observational case-control studies 
measured enterovirus RNA or viral protein in the 
blood, stool or tissue of prediabetic and diabetic 
patients by molecular methods. The 24 selected 
papers and two abstracts demonstrated a clinically 
significant association between enterovirus infection 
and autoimmunity/T1DM (odds ratios ranging from 5.5 
to 17.4).

Human studies on the relationship between ente
rovirus and T1DM have been retrospective and based 
on the detection of virus infections in newly diagnosed 
T1DM patients. However, this study design does not 
allow for the evaluation of possible causal associations. 
To overcome this issue, several prospective studies 
have been performed to assess the role of CVB and 
other HEV infections in the induction and acceleration 
of T1DM and islet autoimmunity. These studies include 
the Childhood Diabetes in Finland (DiMe) study[65,66], 
the DIPP study[67,68], and the Trial to Reduce T1DM 
in the Genetically at Risk (TRIGR)[69], which were 
conducted in Finland; the BABYDIAB[70] and Babydiet[71] 
studies in Germany; the Diabetes and Autoimmunity 
Study in the Young (DAISY)[72,73] in Colorado, United 
States; and the Environmental Triggers of Type 1 
Diabetes (MIDIA)[74] in Norway. These studies included 
children with an increased risk of T1DM, which was 
defined as a first-degree family history of T1DM, HLA 
susceptibility genes or both. The sampling frequency 
and the method of enterovirus detection varied 
between these studies (Table 1).

A positive association between EV infections and 
a rapid progression from autoimmunity to clinical 
T1DM was observed both in the DiMe study as well 
as in the DAISY follow-up study (human longitudinal 
studies). However, there was no agreement in the 
studies’ conclusions between EV infection and islet 
autoimmunity development. 

The results of these prospective studies may 
be controversial due to heterogeneity in the study 
design, the small number of patients in each study 
and the low sensitivity of the methods used to detect 
enterovirus infection. Another important confounding 
factor is the frequency of sampling because EV RNA 
can rarely be found continuously in stool samples for 
more than 3 mo, and it is found for a shorter time in 
serum samples[75]. The studies that indicated a positive 
association between enterovirus infection and T1DM 
used smaller sampling intervals and a wider panel 
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children develop an efficient immune response to these 
viruses, and when they are exposed in the future, 
the effects are not exacerbated or harmful. This may 
explain the rising worldwide incidence of T1DM over 
the last decade, mainly in developed societies where 
enterovirus infections are less prevalent[81-83].  

The age when individuals are first exposed to 
enteroviruses may be critical in determining how 
the virus interacts with the host immune system (as 
recently demonstrated in a NOD mouse model[84]) 
and ultimately, whether T1DM develops. Enterovirus 
infections during the first year of life have been 
correlated with protection from the onset of T1DM[85]. 
A study of enterovirus-specific cellular immunity in 
Estonian and Finnish children at 9 mo of age found that 
enterovirus infections were inversely correlated with 
T1DM risk[86]. Estonian children who were immunized 
with live-attenuated PV at early ages had stronger T 
cell responses to CVB4 and PV type 1 compared with 
Finnish children who were immunized with inactivated 
PV. This stronger T cell immunity led to higher cross-
reactivity with other enterovirus serotypes. Despite the 
higher incidence of enterovirus infections in Estonia, 
the incidence of T1DM is five times lower than that in 
Finland[87]. In addition, the frequency of T1DM is higher 
in the firstborns of multiplex families than in younger 
children, which could be explained by a lower exposure 
of firstborns than siblings to infections[88]. Therefore, 
viral infections during childhood may protect individuals 
from developing T1DM or may delay disease onset. 

Implication of HEV in T1DM
CVB infections may have two different roles in the 
etiology of T1DM in humans: protective or triggering[89]. 
These proposed models are based on observations 
that CVBs do not replicate productively in healthy, 
non-inflamed pancreatic islets from NOD mice[90]. In 
individuals who are genetically predisposed to T1DM but 
not to insulitis, CVB infection may induce a protective 

of enterovirus assays than the studies that indicated 
no association. Similarly, most enterovirus infections 
are asymptomatic, and a negative result for the virus 
at diagnosis does not mean that its contribution is 
meaningless. 

The prevalence of EV infections varies in popu
lations, and independent of this, the vast majority 
of people infected will not develop autoimmunity 
or T1DM, as illustrated by Sarmineto[76]. This study 
showed that in Cubans that were exposed to an 
echovirus epidemic, a large number of patients 
seroconverted to islet autoantibody positivity, but 
T1DM prevalence has not increased. It remains to 
be determined how often enteroviruses induce β cell 
damage, autoimmunity development and clinical 
diabetes.

ENTEROVIRUSES AND THE 
DEVELOPMENT OF T1DM
Hygiene hypothesis
The hygiene hypothesis was first proposed by Strachan[77] 
to explain the increasing rates of asthma in highly 
developed countries, suggesting that contacts with a 
high number of infections early in life could properly 
modulate the adaptive immune system, and the 
significant changes in human living standards and the 
improvement of sanitary conditions meant that people 
had less exposure to infection, favoring an impaired 
immune response to environmental triggers[35,78]. This 
concept may be applied to many autoimmune diseases, 
but it does not explain all of these diseases, as there is 
a complex interplay between environmental exposure, 
the host, and other confounding variants[78-80].

Exposure to HEV, which is typically transmitted 
through a fecal-oral pathway, becomes less common 
as individual age, and infection with HEV later in life 
could result in an unbalanced immune response. In 
other words, where enterovirus infections are frequent, 
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Table 1  Longitudinal studies evaluating the association between enterovirus infection and autoimmunity/type 1 diabetes mellitus

Study Enterovirus 
infection and 

autoimmunity/
T1DM

Cases/controls Infection diagnose method End point Ref.

DiMe +   22/110 Antibody assays Diabetes [65]
DiMe +   49/105 EV RNA in serum Diabetes [66]
DIPP +   21/104 Antibody assays; EV RNA in serum and stool-RT-PCR Autoimmunity [67]
DIPP +   41/196 Antibody assays; EV RNA in serum-RT-PCR Autoimmunity [68]
TRIGR + 19/84 Antibody assays; EV RNA in serum-RT-PCR Autoimmunity [69]
BABYDIAB - 28/51 Antibody assays Autoimmunity [70]
Babydiet - 22/82 EV RNA in stool Autoimmunity [71]
DAISY - 26/39 EV RNA in serum, saliva and rectal swab-RT-PCR Autoimmunity [72]
DAISY + 50/90 EV RNA in serum Diabetes [73]
MIDIA - 27/53 EV RNA in stool-RT-PCR Autoimmunity [74]

EV RNA: Enterovirus RNA; RT-PCR: Reverse transcription-polymerase chain reaction; T1DM: Type 1 diabetes mellitus; DiMe: Diuretics In the Management 
of Essential Hypertension; DIPP: Department of industrial policy and promotion; TRIGR: Trial to Reduce IDDM in the Genetically at Risk; DAISY: Diabetes 
and Autoimmunity Study in the Young.
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Treg population that prevents the development of 
pathogenic autoimmune islet-specific T cells, thereby 
reducing the risk of autoimmune T1DM. However, 
in the absence of a protective Treg population, the 
extent of insulitis tends to increase with the depletion 
of β-cells and results in an elevated risk of developing 
autoimmune diabetes. The likelihood of developing 
T1DM requires a basic condition of genetic predisposal 
with the presence of anti-islet autoimmunity due to a 
particular virus strain and infectious dose in addition to 
extensive insulitis at the time of infection. A significant 
number of β-cells must be destroyed before the ad
aptive immune system may be activated. Therefore, 
depending on the host environment during infection, the 
virus may either induce protection against autoimmune 
T1DM onset or, with significant insulitis, may induce 
T1DM development (Figure 1)[89].

Autoimmune islet inflammation may facilitate pro
ductive virus replication and induce β-cell damage[47]. 

Roles of enteroviruses in β -cell injury mechanisms that 
lead to the development of T1DM
Several hypotheses have been proposed to explain 
how enteroviruses affect T1DM (Figure 2)[28,40,89]. The 
mechanisms differ for each enterovirus; however, 
their coexistence is supported[33]. Enteroviruses 
have a strong pancreotropism[91]; human islets 
express coxsackie virus receptor[92], and beta cells 
are susceptible to enteroviruses in vitro[93]. During 
enterovirus infection, pancreatic islet cells may exhibit 
cytolysis, which exposes previously hidden self-
components[94,95]. Dotta et al[96] detected enterovirus 
in three of six pancreatic tissue samples from 
patients with T1DM. Additionally, Coxsackie viruses 
lead to direct pancreatic injury. Elshebani et al[97] 
demonstrated that enteroviruses that were isolated 
from patients who were newly diagnosed with T1DM 

infected induced the destruction of human pancreatic 
islets in vitro. 

Alternatively, β-cell damage may result from a 
virus-induced inflammatory reaction in the exocrine 
pancreas compartment. Viral infections often lead 
to the production of proinflammatory cytokines and 
the activation of antigen-presenting cells (APCs). In 
addition, these infections may cause tissue damage 
and may expose endogenous antigens that are pre
sented by APCs. In individuals who are genetically 
predisposed to T1DM, viral infections may result in 
the impaired activation of self-reactive T cells through 
a mechanism that is independent of specific T-cell 
receptor (TCR) stimulation[98,99]. This process, called 
“bystander activation”, does not require specific TCR 
stimulation and was supported by a study of CVB4 
infection in transgenic mice that resulted in the ac
tivation of circulating naive islet-specific T cells and 
clinical diabetes development[100]. 

Furthermore, the mechanism of cell destruction 
may be based on molecular mimicry[101]. The activation 
of a T-cell population against an environmental antigen 
results in the development of autoimmune disease if 
the epitope recognized shows sequence or structural 
similarity with a self-protein. Although virus-specific 
T lymphocytes are activated during an infection, 
antibody responses are critical in the defense against 
enteroviruses and are responsible for the clearance 
of the infection. Neutralizing antibodies are directed 
against the capsid surface of CVB and nonstructural 
proteins. These proteins are produced exclusively 
during the replication of the virus and are released 
as a consequence of the lysis of the infected cells. 
Directly linked to T1DM triggering was an observation 
of the amino acid sequence similarity between CVB4 
nonstructural protein 2C and GAD65 (PEVEKEK), 
which suggests that the cellular anti-viral response 
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Modulation of this condition depends 
on a combination of variables as virus 

strain, infectious dose, impaired immune 
response

No
insulitis

Active
insulitis

CVB
infection

No T1DM 
induction CVB

infection

Risk of T1DM 
induction depends 

on extent of 
insulitis

Upregulated Tregs population increases 
chance of T1DM protection

Figure 1  Enterovirus infection pathways on type 1 diabetes mellitus pathogenesis (adapted from Tracy et al[47]). T1DM: Type 1 diabetes mellitus; CVB: 
Coxsackie viruses.
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may cross-react with the native protein, inducing an 
autoimmune response[102]. 

However, in several studies, the molecular mimicry 
hypothesis has been controversial because healthy 
control groups presented reactivity to the molecular 
section of GAD65[103]. In addition, molecular mimicry 
is extremely common in nature, which suggests that 
an impaired immune response may be crucial for β-cell 
damage in contrast with molecular mimicry[103]. 

All these mechanisms described may occur simu
ltaneously. In fact, inflammatory conditions induced 
by virus infection will trigger autoimmunity resulting in 
T1DM only in susceptible individuals[38]. This hypothesis, 
Fertile Field, postulates that following the inflammation 
caused by virus infection, autoreactive T cells may be 
generated by bystander activation or molecular mimicry 
or both. The damage of beta cells and its presentation 
to immune system lead to antigenic epitope spreading, 
which explains the broad autoreactive T-cell repertoire 
in T1DM patients. This hypothesis may be of interest 
because enterovirus infection activates a strong innate 
immune response[104,105]. 

Innate and acquired immunity
Immune responses against infection by microbes 
are highly complex, and recent advances in the un
derstanding of innate immunity components have 
elucidated the integration of innate immunity and 
acquired immunity. Innate immunity has limited 
specificity for microbes and works in a similar manner 
against most infectious agents. The main components 
of the innate immune system are physical and chemical 
barriers, blood proteins, including the complement 
system and other inflammatory mediators, such 

as phagocytes (neutrophils and macrophages) and 
natural killer cells. In contrast with the innate immune 
system, the acquired immune system consists of 
defense mechanisms with remarkable specificity 
for distinguishing molecules. The acquired immune 
response increases in magnitude with successive 
exposure to a specific microbe. Acquired immunity 
develops as a response to infection. The components 
of the acquired immune system are lymphocytes and 
their products, which are known as antibodies. 

The innate immune response provides the initial 
defense against infectious agents. Pathogen recognition 
by the innate immune system is usually mediated by 
receptors that recognize the molecular patterns of 
different organisms. Recent studies have demonstrated 
that this recognition is mainly mediated by Toll-like 
receptors (TLR)[106,107]. TLR2 detects lipoproteins, lipo
teichoic acid and zymosan. TLR3 recognizes dsRNA, 
and TLR4 recognizes lipopolysaccharide (LPS). Ad
ditionally, flagellin is detected by TLR5, ssRNA by 
TLR7/8 and CpG DNA by TLR9. TLRs are expressed 
in multiple tissues, predominantly in the cells of the 
immune system, particularly APCs[108].

TLR signaling induces the expression of costi
mulatory molecules and the production of inflammatory 
cytokines, such as interferons (IFNs) and interleukins 
(ILs), which activate both the innate and acquired 
immune responses. An intact innate immune response 
is critical for host survival during enterovirus infection. 
The rapid induction of IFNs is important for protection 
against infection. A recent study found a high rate of 
mortality in mice that were unresponsive to type I 
IFNs or lacked IFN-β after CVB infection. In addition, 
mortality occurred early in these mice[109].
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Figure 2  Schematic representation of possible injury mechanisms from enterovirus infection in type 1 diabetes mellitus development (adapted from 
Roivainen[40]).
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Viral infection, innate immunity and T1DM
Viruses activate the innate immune response and induce 
the production of proinflammatory cytokines[98,110,111]. 
Enteroviruses demonstrate a tropism for the pancreas. 
However, the mechanism of β-cell damage is unclear[112].

CVB4 infection induces the production of pro-
inflammatory cytokines, such as interleukin-1β (IL-
1β) and tumor necrosis factor α (TNF-α)[113]. These 
cytokines are involved in the host defense response 
against infection; however, recent studies have 
suggested that pro-inflammatory cytokines that are 
activated in response to viral infections may play a 
role in the pathogenesis of T1DM[114,115]. TNF-α may be 
involved in β-cell damage[116].

Using RT-PCR, Wen et al[117] recently isolated 
pancreatic islet β-cells from different species of mice 
and detected TLR2, 3, 4 and 9 in the islet cells of 
normal mice but a higher expression of TLR2, 3 and 
4. The same methodology was applied in a study 
of pancreatic β-cells from three healthy human do
nors, and a higher expression of TLR3 was found in 
these cells. However, after treatment with microbial 
stimuli, LPS from gram-negative bacteria and CpG 
oligonucleotide DNA increased the expression of TLR2, 
4 and 9. Moreover, viral stimulation with poly (I:C), a 
synthetic dsRNA that is capable of triggering immune 
responses, TLR2, 3, 4 and 9 expression was observed. 
The same microbial stimuli were assessed in vivo, and 
only the viral stimulus poly (I:C) triggered diabetes 
mellitus. 

In NOD mice, CVB can induce diabetes because of 
the framework that is established by insulitis, which 
is caused by the increased expression of TLR4 and 
8 by dendritic cells[118]. A study in human pancreatic 
cells demonstrated that CVB4 leads to the production 
of inflammatory cytokines, particularly IL-6 and 
TNFα. TLR4 is necessary for triggering this immune 
response; however, this response is independent of 
CVB4 internalization and replication. Therefore, the 
interaction between TLR4 and CBV4 in pancreatic cells 
may induce an innate immune response[119].

Studies in experimental models have demonstrated 
that the innate immune response is crucial for host 
survival during enterovirus infection. A weak innate 
immune response may allow unrestricted replication 
and the systemic spread of the virus. Tissue damage 
may ensue as a direct effect of the infecting virus, 
and an inefficient immune response may enable 
viral persistence. A robust innate immune response 
will limit early viral replication and diminish virally 
instigated damage, thereby allowing the host to mount 
an adaptive immune response. However, autoimmune 
pathologies may arise in the wake of a very potent 
immune response. In this scenario, the innate immune 
response to infection triggers the activation of self-
reactive T cells[120]. Many autoimmune diseases are 
associated with the excessive production of IFNs[121]. 
Therefore, Lien et al[122] postulated that the relationship 
between viruses and TLRs in the development of 
diabetes in BioBreeding diabetes-resistant (BBDR) 
rats is a complex process that involves the modulation 
of auto-reactive T cells. In response to pathogenic 
microorganisms, the innate immune response that 
is mediated by TLR may lead to the bystander 
activation of auto-reactive T cells, the release of 
pro-inflammatory cytokines and the impairment of 
pancreatic islet cells[123,124].

In contrast, a strong immune response is more 
likely to prevent the virus from productively infecting 
host cells and is more likely to hinder virus access 
to the pancreas. However, an inefficient response 
enhances the risk for systemic viral spread and the 
induction of an innate immune response in tissues that 
are targeted by the virus. Therefore, viral infection 
with a weak initial immune response may result in 
higher systemic levels of pro-inflammatory cytokines 
and the activation of auto-reactive T cells[120] (Figure 3).

Interferon transcriptional signature
Two studies were recently conducted with children from 
the BABYDIET cohort[125] and the DIPP study[126] who 
were genetically predisposed to T1DM. Using targeted 
and genome-wide transcriptomics, the expression of 
IFN signatures during the onset of autoimmunity and 
the progression to clinical T1DM was investigated. An 
IFN signature was first characterized in systemic lupus 
erythematosus disease in which IFN was found to be 
correlated with disease severity.

In these two studies, both research groups identified 
an IFN signature in the children before the development 
of islet autoimmunity. Ferreira et al[125] found that the 
IFN signature was increased before seroconversion 
in predisposed patients and corresponded with two 
or more episodes of respiratory infection, suggesting 
that the IFN signature is related to viral infections. 
The expression was intermediate in samples that 
were collected postseroconversion and in children with 
clinical T1DM.

The increased expression of type 1 IFN is a normal 
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Figure 3  Hypothetic relationship between innate immune response to 
enterovirus and type 1 diabetes mellitus risk. T1DM: Type 1 diabetes mellitus.
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response to viral and bacterial infections in healthy 
individuals, but the pattern of expression and the 
presence of an IFN signature in peripheral blood may 
be a marker of a recent antiviral immune response. 
In individuals with a genetic risk for T1DM, an altered 
response to viral infection with unbalanced effector 
and regulatory cells may result in an overreaction. 
Importantly, the expression of an IFN signature is 
consistent with the activation of innate immune 
pathways during the initiation of islet autoimmunity 
and may be the first sign of this process.

CONCLUSION
Extended and cumulative discussions have been 
conducted on the role of enterovirus infection in 
the etiopathogenesis of T1DM, and substantial 
supporting evidence has been found. Improvements 
in enterovirus detection methods and randomized 
studies with patient follow-up have confirmed the 
importance of HEV in T1DM development and pro
gression. However, the frequency, mechanisms, and 
pathways of virally induced autoimmunity and β-cell 
destruction in T1DM remain to be determined. In this 
way, the causal link between EV and T1DM involves 
a complex interplay between viruses, β-cells, innate 
and acquired immune systems in the particular 
genetic context of an individual. The influence of these 
several concomitant mechanisms by which the virus 
damages pancreatic β-cells, which, consequently, may 
lead to T1DM establishment makes investigating the 
role of enterovirus infection quite difficult. It will be 
extremely important to design prospective studies with 
large study populations, more frequent sampling of 
various specimens and a standardized methodology 
to detect enterovirus infection, linking it to islet auto
immunity or T1DM and controlling for confounding 
factors. Advances in molecular and genomic studies 
may facilitate the identification of pathways at the 
earlier stages of autoimmunity when preventive and 
therapeutic approaches may be more effective.

Review CRITERIA
The databases that were searched in this study 
included PubMed and Embase. Papers that were 
published from 2004-2014 were included in the 
study, with a particular interest in papers that were 
published after 2009. The search terms were “virus”, 
“enterovirus”, “coxsackievirus”, “type 1 diabetes 
mellitus”, “auto-immune diabetes”, and “insulin-
dependent diabetes”. The selected publications 
were full-text papers that were published in English. 
Additional references were selected from the reference 
lists of the selected article.
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