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Abstract
Though the pathophysiology of clinical obesity is un

doubtedly multifaceted, several lines of clinical evidence 
implicate an important functional role for glucagon-like 
peptide 1 (GLP-1) signalling. Clinical studies assessing 
GLP-1 responses in normal weight and obese subjects 
suggest that weight gain may induce functional deficits 
in GLP-1 signalling that facilitates maintenance of the 
obesity phenotype. In addition, genetic studies implicate 
a possible role for altered GLP-1 signalling as a risk factor 
towards the development of obesity. As reductions in 
functional GLP-1 signalling seem to play a role in clinical 
obesity, the pharmacological replenishment seems a 
promising target for the medical management of obesity 
in clinical practice. GLP-1 analogue liraglutide at a high 
dose (3 mg/d) has shown promising results in achieving 
and maintaining greater weight loss in obese individuals 
compared to placebo control, and currently licensed anti-
obesity medications. Generally well tolerated, provided 
that longer-term data in clinical practice supports the 
currently available evidence of superior short- and long-
term weight loss efficacy, GLP-1 analogues provide 
promise towards achieving the successful, sustainable 
medical management of obesity that remains as yet, an 
unmet clinical need.

Key words: Obesity pathophysiology; Glucagon-like 
peptide 1 analogues; Glucagon-like peptide 1; Clinical 
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Core tip: Several lines of clinical evidence implicate 
an important functional role for glucagon-like peptide 
1 (GLP-1) signalling in the pathophysiology of clinical 
obesity. Here we critically evaluate such findings in 
way that as yet has been unexplored; using the well 
established roles of GLP-1 as an incretin and meal to 
meal satiety signal to go some way toward explaining 
findings from interventional and observational clinical 
data that suggest functional deficits of GLP-1 to be a 
contributor to the obesity phenotype. We also explore 
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the promise shown by GLP-1 analogues in achieving and 
maintaining significant weight loss in obese individuals, 
and use findings to discuss to what extent they too may 
support a role for GLP-1 in obesity pathophysiology. 
We conclude by exploring what an association with 
functional GLP-1 deficit could mean for the clinical 
management of obesity; conducting cost and risk 
benefit analyses to evaluate the extent to which GLP-1 
analogues may provide a successful and sustainable 
option for the medical management of obesity that 
remains as yet, an unmet clinical need.
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INTRODUCTION
Public health and economic impacts of obesity
Obesity is a global epidemic, perhaps the greatest 
challenge to global and public health of our time. With 
a doubling in prevalence from 1980 to 2008[1], 13% of 
the world’s population at present are obese [body mass 
index (BMI) ≥ 30 kg/m2] and 39% overweight (BMI ≥ 
27 kg/m2)[2]. If recent trends continue, by 2030 up to 
57.8% of the world’s adult population will be overweight 
or obese[3] (Figure 1). The World Health Organisation 
(WHO) has estimated that 44% of the global diabetes 
burden, and 23% and 7%-41% of the burdens for 
ischaemic heart disease and specific cancers respectively 
can be attributed to being overweight or obese[4]. Psy
chosocially, stigma and discrimination toward obese 
people can have consequences for psychological as well 
as physical health[5], with impaired quality-of life[6] and 
increased rates of depression[7] reported in this group. 
Even modest losses of 5%-10% of total body weight are 
associated with reduced risk of comorbidities in obese 
individuals[8-10]. Therefore, effectively managing rates of 
obesity is a major goal in public health policy.

In addition to its physical and psychological burdens, 
obesity and its comorbidities impose disproportionately 
high healthcare and economic demands at individual and 
societal levels[11]. Affecting the wider economy indirectly 
through increased rates of worker illness absenteeism 

and resultant losses in productivity, healthcare systems 
are burdened from direct healthcare related costs; obese 
individuals on average incurring healthcare related costs 
30% greater that their healthy weight peers[12-16]. A 
global systematic review has estimated the direct costs 
of obesity related diseases to account for between 0.7% 
and 2.8% of a country’s total healthcare expenditure[16]. 
In the United Kingdom alone, direct costs to the National 
Health Service (NHS) of treating overweight and obesity, 
and related co-morbidities were estimated at £5.1 
billion in July 2006; representing around 5% of total 

NHS spending[17,18]. A computer based micro-simulation 
model predicting the direct healthcare related costs of 
overweight and obesity in the United Kingdom should 
2001 prevalence remain constant, has forecasted the 
NHS spending £15.4 billion and £22.5 billion in 2015 
and 2050 respectively[18,19] on the direct health costs of 
treating overweight and obesity and related co-morbidities 
in England alone. An upward trajectory prevented by 
significant weight loss in those currently obese (Figure 2), 
findings imply that whilst the prevention of obesity is the 
strategic imperative, the effective management of those 
already obese is an immediate priority.

Current management of obesity 
Current medical management of obesity involves life
style, pharmacological and surgical interventions[20]. 
Lifestyle intervention, in the form of dietary, behavioural 
and exercise counselling, are currently the suggested 
first line treatment for obesity; however, whilst a recent 
meta-analysis reports such interventions to show small 
but significant benefits on weight loss maintenance, 
weight loss achieved and sustained with lifestyle inter
vention alone remains suboptimal[20-24]. In the face of 
such challenges, a number of pharmaceuticals have 
been marketed to assist weight management over the 
years[25,26] (Table 1). However, adverse effects of some 
and the transient weight losses associated with others[27] 
mean that the pharmacological management of obesity 
remains suboptimal. The only proven treatment to 
achieve and maintain weight loss in obesity is bariatric 
surgery[28-30]. However, surgical and anaesthetic risks 
associated with overweight and obese status sees these 
invasive procedures reserved to those patients classed 
morbidly obese (BMI ≥ 40 kg/m2) or as a last resort 
in those failing more conservative management[20,31,32]. 
The minimally invasive and efficacious management of 
obesity therefore, remains an unmet clinical need.

Glucagon-like peptide 1 and the management of human 
obesity
The ideal management of any illness involves an under
standing of its underlying pathophysiology; greater 
understanding facilitating the development of targeted 
pharmacotherapies to either replete physiological factors 
pathologically depleted, or antagonize pathological 
processes. The pathophysiology of obesity however, 
remains poorly understood. The WHO has defined the 
current obesity crisis epidemiologically, as the conse
quence of an increasing imbalance between energy 
intake and expenditure[33]. Physiologically, energy balance 
is a closely regulated system involving interactions 
between peripheral endocrine, nutritional and neural 
signals acting on regulatory central hypothalamic and 
hedonic brain regions[34-36]. Clinical obesity has been 
associated with deregulations in both homeostatic 
and hedonic controls of energy balance potentially 
facilitated by impaired glucagon-like peptide 1 (GLP-1) 
signalling[35-37] (a role for GLP-1 in the pathophysiology 
of clinical obesity). Pharmacologically targeting GLP-1 
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therefore, may go some way towards achieving the 
successful and sustainable medical management of 
clinical obesity that as yet remains to be achieved. 

GLP-1 is a 31 amino acid polypeptide primarily syn
thesized by the enteroendocrine L cells of the terminal 
ileum. Amongst its pleotropic central and peripheral 
effects, GLP-1 acts as a potent incretin first clinically 
used in the medical management of overweight or obese 
individuals with type 2 diabetes mellitus (T2DM)[38]. The 
repeatedly demonstrated ability of GLP-1 analogues to 
induce weight loss in this cohort[39,40] prompted phase 

Ⅲ trials studying the weight loss efficacy of the GLP-1 
analogue liraglutide (3 mg; trade name Saxenda) vs 
placebo[41] and the pancreatic lipase inhibitor orlistat[42,43] 
(the only anti-obesity drug licensed in the United 
Kingdom) in non-diabetic overweight and obese adults. 
The greater weight loss efficacy achieved and maintained 
by GLP-1 analogues prompting the Food and Drug 
Administration (FDA) in 2014 to approve Saxenda as the 
first GLP-1 analogue for use as a weight loss aid in obese 
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Figure 1  Global overweight and obesity trends and projections. If 
recent trends continue unabated, by 2030, 38% and 20% of the world’s adult 
population are projected to be overweight or obese respectively[8].
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Figure 2  Projected trends in National Health Service costs from a micro-
simulation model. A computer based micro-simulation model[18] predicted the 
direct healthcare related costs of overweight and obesity in the United Kingdom 
at five time points from 2001 (2001, 2007, 2015, 2025 and 2050) should 
prevalence of overweight and obesity remain constant (red) or if an average of 
an 8-point BMI reduction was achieved in all those obese in 2001 (grey). BMI: 
Body mass index; NHS: National Health Service.

Drug Mechanism Year Clinical use and limitations Suspension reason

Currently FDA licenced drugs
   Diethylpropion NA releasing agent 1959 FDA approved for short term use 

(3 mo); not recommended with 
uncontrolled hypertension or heart 

disease

-

   Phentermine 1959 FDA and EMA approved for long term 
use; treatment dependent weight loss

-

   Orlistat (Xenical) - 1999 -
   Orlistat (Alli) Pancreatic lipase inhibitor 2007 -
   Phentermine-topamirate (Qysmia) - - Approved for long term use; treatment 

dependent weight loss
-

   Lorcaserin (Belviq) 5HT2c-R antagonist 2012 FDA approved for long term 
use, recommended in those with 
cardiovascular disease; treatment 

dependent weight loss

-

   Liraglutide (Saxenda) GLP-1 analogue 2014 FDA and EMA (2015) approved -
Previously FDA licenced drugs
   Dinitrophenol Unknown 1938 - Dermatitis, neuropathy, 

agranulocytosis, visual 
impairment, death

   Aminorex Unknown 1968 - Chronic pulmonary hypertension
   Amphetamines Monoamine reuptake inhibitor 1971 - Addiction, hypertension, 

myocardial toxicity
   Fenfluramine Serotonin reuptake inhibitor 1997 - Valvular heart disease
   Phenylpropanolamine NA-R and DA-R agonist 2000 - Haemorrhagic stroke
   Rimonabant CB1R antagonist 2009 - Psychiatric disorders, depression, 

suicidal ideation
   Sibutramine Serotonin-NA reuptake 

inhibitor
2010 - Risk of major cardiovascular 

events

Table 1  Current and previously Food and Drug Administration licenced anti-obesity pharmacotherapeutics

The pancreatic lipase inhibitor Orlistat and GLP-1 analogue liraglutide are the only currently UK licenced anti-obesity agents). 5HT2c: Serotonin receptor; 
NA: Noradrenaline; DA: Dopamine; CB1R: Cannabinoid receptor; R: Receptor; FDA: Food and Drug Administration; EMA: European Medical Association.
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adults and overweight adults with at least one weight 
related co-morbidity[44]. March 2015 saw the European 
Medical Association (EMA) grant marketing authorization 
for 3 mg liraglutide under the FDA approved criteria in all 
28 European Union (EU) states[45]. However, launching in 
April 2015 in the United States at a cost of over $1000 
per patient a month, cost-benefit is of greater issue in EU 
nations such as the United Kingdom where health care 
is primarily socially funded; undoubtedly contributing to 
the uncertainty of launch plans in the United Kingdom 
at present[46]. Clinical evidence however implicates a 
role for functional impairments in GLP-1 signalling in 
the pathophysiology of obesity, GLP-1 agonism there
fore may be the first truly targeted therapeutic in the 
medical management of clinical obesity. Therefore, 
with its superior clinical efficacy to currently United 
Kingdom licensed therapies benefiting patients through 
greater achieved and maintained weight loss and the 
economy through the potential to reduce long-term 
financial burdens of obesity, the cost-benefit spectrum 
may therefore be swayed, favouring the use of GLP-1 
analogues in the medical management of obesity in the 
United Kingdom[46].

THE HOMEOSTATIC AND HEDONIC 
CONTROL OF ENERGY BALANCE
Physiologically, energy balance is a closely regulated 
system involving interactions between peripheral endo
crine, nutritional and neural signals acting on regulatory 
central hypothalamic[34] and hedonic[35,36] brain regions. 
Where previously the neurocircuits mediating the homeo
static and hedonistic control of energy balance were 
considered distinct entities, it has now emerged that 
considerable cross talk exists with implications for the 
pathophysiology of clinical obesity.

Peripheral afferents
Peripheral signals involved in energy homeostasis are 
often stratified as long or short acting. Long acting signals 
provide information about available energy stores, and 
in response, the brain makes corrective adjustments to 
food intake and energy expenditure to maintain body 
weight[47]. The white adipocyte hormone leptin[48] and 
pancreatic hormone insulin are the two major afferents 
governing long-term energy balance and act primarily 
as anorexigens. Food intake and energy expenditure 
in the short term are modulated by a wide variety of 
situational and meal-related factors, among the most 
important are short-term gut derived hormones such as 
GLP-1 that act to signal acute energy status. Originally 
thought to exert their effects on energy balance through 
modulating homeostatic hypothalamic circuits, both long 
and short term afferents may also modulate the hedonic 
drive toward food consumption, though these pathways 
remain less extensively studied[49] (Figure 3).

Central controllers
The homeostatic control of food intake: The hypothalamic 

arcuate nucleus (ARC) is believed to play a crucial role in 
the homeostatic control of energy balance. At a cellular 
level, the ARC contains two distinct neural populations 
exerting antagonistic effects on food intake; a medially 
located orexigenic (appetite stimulating) population 
consisting of neurons co-expressing Agouti related 
peptide (AgRP) and neuropeptide Y and a laterally 
located anorexigenic (appetite suppressing) population 
consisting of neurons co-expressing pro-opiomelanocortin 
(POMC) and cocaine and amphetamine related transcript 
(CART)[55-58]. Both neural subsets project to melanocortin 
4 receptor (MC4R) positive neurons located in intra- and 
extra-hypothalamic sites. POMC is cleaved to produce 
α-MSH an agonist of MC4R whereas AgRP acts an inverse 
agonist[59-61]. The ARC may exert its effects on energy 
homeostasis by direct cortical projections or indirectly via 
second order neurons in adjacent hypothalmic nuceli of 
which the paraventricular nucleus (PVN) is believed to be 
play a crucial role[62,63]. GLP-1 receptors (GLP1-Rs) have 
been localized pre-clinically in the ARC and PVN[50,51] and 
stimulation of theses receptors reduce food intake to 
induce weight loss in rodents. Targeting the homeostatic 
controls of energy balance may therefore be the means 
by which GLP-1 agonism achieves its weight loss effects 
in the clinic, suggesting an underlying deregulation 
in GLP-1 signalling contributing to the multifactorial 
pathophysiology of human obesity. 

The hedonic control of food intake: Despite a robust 
homeostatic system governing energy balance, feeding 
and meal termination are also influenced by hedonic, 
reward-related factors such as palatability and the 
perceived rewards associated with meal consumption. 
The drive to pursue such pleasurable experiences 
largely mediated by the mesolimbic rewards system 
originating from dopaminergic neurons in ventral teg
mental area (VTA) that terminate on neurons in the 
nucleus accumbens. Though the relationship between 
peripheral afferents signalling acute and long term 
energy status and central hedonic control centres are 
less well defined, GLP-1Rs have been located in the 
dopaminergic neurons of the VTA[64] where activation 
inhibits neural firing, potentially reducing hedonic drives 
toward food consumption. Interestingly, where the 
homeostatic control of energy balance modulates food 
intake to regulate the amount of body fat an individual 
maintains[65], in obesity, despite an overall positive energy 
balance, hyperphagia is the norm. Where previously, the 
neurocircuits mediating the homeostatic and hedonistic 
control of energy balance were considered distinct 
entities, it has now emerged that considerable cross talk 
exists and central GLP-1 signalling has been implicated 
as a mediator of such interactions (detailed in a number 
of excellent reviews[36,37,54]). A skew toward hedonic and 
away from homeostatic controls of energy balance may 
explain the pathological hyperphagia seen in obesity; 
restoring the balance between homeostatic and hedonic 
drives towards food consumption may therefore be the 
means by which GLP-1 agonism achieves its sustained 
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weight loss effects in the clinic, suggesting an underlying 
deregulation in GLP-1 signalling contributing to the multi
factorial pathophysiology of human obesity.

GLP-1
Synthesis, secretion and degradation
GLP-1 is a 31 amino acid polypeptide derived from 
post-translational processing of the native 160 amino 
acid peptide proglucagon by the enzyme prohormone 
convertase 1 (PC1/3). Peripheral proglucagon gene 

expression has been localized to the enteroendocrine L 
cells and pancreatic α-cells whilst centrally, proglucagon 
expressing neurons have been localized to brainstem 
regions such as the nucleus of the solitary tract (NTS)[66-68]. 
Tissue specific post-translational processing liberates 
different pro-glucagon derived peptides[69] depending 
on subtype of PC enzyme present. Figure 4 details the 
different post-translational products following PC1/3 and 
2 cleavage. 

GLP-1 is primarily synthesized by PC1/3 activity 
in the intestinal L cells[75]; open-type epithelial cells 

Afferent Central processing Efferent

Liver

Nutrients

Adipose tissue

Leptin
Adipokines

Pancreas

Insulin
PP

Enterostatin
Amylin

Glucagon

GI-tract

Ghrelin
CKK
PYY

GLP-1
OXM

Chemoreceptors
Mechanoreceptors

BBB GLP-1R

GLP-1R

GLP-1R

Hedonic control 
VTA

Homeostatic control

ARC

NPY
AgRP

POMC
CART

Brain stem

Vagus nerve

PVN

CRH TRH

LHA

Orexin MCH

Pituitary 
Thyrotrophs

Pituitary 
Corticotrophs

Thyroid function
Growth and 
reproduction 

Sympathetic and 
parasympathetic 

Pre-ganglionic neurons

Autonomic function, 
e.g. , adaptive 
thermogenesis 

Cerebral cortex
Hypothalamus
Olfactory areas
Behavioural,
e.g. , feeding patterns

Behavioural 
changes

e.g. , feeding 

Food intake Energy expenditure

Energy homeostasis

Figure 3  The hedonic and homeostatic controls of energy balance. Peripheral signals from the Liver, adipose tissue pancreas, GI-tract cross the BBB to directly 
signal to neurons of the ARC of the hypothalamus. GI-tract enteroendocrine hormones and chemo- and mechanoreceptor neural afferents can also indirectly activate 
the ARC via the vagus nerve and brainstem. The net output of the ARC neurons is relayed to second order intrahypothalmic neurons in the PVN, and LHA that 
express the MC4R. GLP-1Rs have been localized pre-clinically in the ARC and PVN[50,51], stimulation of theses receptors inducing reductions in food intake and weight 
loss potentially through efferent pathways that involve the activation of TRH and CRH expressing neurons and pre-ganglionic sympathetic and parasympathetic 
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most densely located in the ileum and colon[76-78]. Long 
apical processes that extend toward the intestinal 
lumen[77] allow direct nutrient sensing by L cells, of which 
glucose has been implicated as the most potent GLP-1 
secretagogue in both healthy and T2DM humans[79]. 
Being in close proximity to neurons of the enteric 
nervous system and the intestinal microvasculature[80,81], 
L cells also receive neural and hormonal signals that act 
as indirect nutrient sensors. Following synthesis, GLP-1 is 
secreted from the L-cells via secretory granules located 
in the basolateral membrane. GLP-1 secretion in re
sponse to nutrient sensing is biphasic; an initial rapid rise 
occurring within 10-15 min post-prandial, followed by a 
second longer phase peaking at 30-60 min[82]. The early 
phase of GLP-secretion has traditionally been attributed 
to signals from the parasympathetic vagal nerve and 
neurotransmitters such as gastrin-releasing peptide 
(GRP) and acetylcholine. However, more recently, GLP-1 
secreting cells that show direct secretory responses to 
nutrient stimulation have been localised in significant 
numbers in the proximal small intestine implicating 
a role for this albeit sparser population of proximal 
GLP-1 releasing cells in the rapid postprandial rises of 
plasma GLP-1[83-85]. The second phase is mediated via 
direct nutrient contact with subsequent membrane 
depolarization or activation of second messenger systems 
mediating GLP-1 release. Figure 5 depicts the major 
nutrient, neural and hormonal secretagogues of GLP-1.

Secreted GLP-1 is rapidly degraded at its N-terminal 
residue by the ubiquitously expressed enzyme dipe
ptidyl peptidase Ⅳ (DPPV) to yield residues GLP-1 (9-36 
amide) and GLP-1 9-37[88,89]. The majority of GLP-1 
degradation is attributed to membrane-bound DPPV in 
the hepatic portal system resulting in an extremely short 
half-life (about 2 min)[81,90]. As such, only about 10%-15% 

of GLP1 secreted from intestinal L cells reaches peripheral 
downstream targets. The amount of GLP-1 reaching 
potential central targets involved in energy balance is 
unknown. As parenteral administration of GLP-1 avoids 
the physiological first-pass effect of hepatic DPPV, the 
supraphysiological plasma concentrations achieved 
by subcutaneous (SC) administration may explain the 
weight loss efficacy achieved by 3 mg liraglutide in obese 
and overweight patients in the clinic. Findings also go 
some way to suggest either a reduction in secretion 
of, or sensitivity to, physiological GLP-1 secretion as 
a contributor to the multifactorial pathophysiology of 
human obesity.

Central and peripheral effects of GLP-1
GLP-1 exerts its effects by intracellular signalling path
ways activated after binding to the G-protein coupled 
receptor GLP-1R[91]. The extensive central and peri
pheral expression of the GLP-R reflects the pleotropic 
physiological roles of GLP-1 that are summarised in Figure 
6 and extensively reviewed elsewhere[70,86]. From this point 
onward the review will focus on exploring the evidence 
surrounding a role for physiological GLP-1 signalling in 
the regulation of energy balance and deregulations of 
this signalling as one contributor to the multifactorial 
pathophysiology of clinical obesity.

GLP-1 AND THE REGULATION OF 
ENERGY BALANCE
Evidence: Effects of GLP-1 administration on food 
intake and energy expenditure in man
Numerous clinical studies have examined the relationship 
between acute physiological and supraphysiological 
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doses of GLP-1 with measurements of food intake and 
feelings of hunger and satiety in healthy normal weight 
and obese adults with and without T2DM[92-99]. The 
main findings of these studies have been summarized 
in Figure 7. Though individual studies are conflicting, a 
meta-analysis reports that acute GLP-1 infusion induces 
a mean 11.7% decrease in food intake when compared 
with saline control in man[100]. Interestingly, whilst supra
physiological doses of GLP-1 reduces appetite and food 
intake in both lean and obese subjects, physiological 
GLP-1 doses reduces appetite and food intake in only 
lean subjects[93,94,97,99]. Findings go some way to suggest 

a role for resistance to physiological GLP-1 signalling 
as a factor contributing to obesity pathophysiology. 
Interestingly, whilst physiological GLP-1 infusions in 
obese subjects induce appetite reductions[92,95] similar to 
those observed in their lean peers, this is not translated 
into a reduction in food intake, suggesting pathological 
alterations of GLP-1 signalling in obesity that reinforce 
feeding despite a reduced physiological drive to food 
intake. One mechanism that this may be achieved is 
through a pathological skew toward hedonic and away 
from homeostatic controls of energy balance in obesity, 
potentially mediated by deregulated central GLP-1 sig
nalling (a role for GLP-1 in the pathophysiology of clinical 
obesity). 

Whilst evidence from clinical interventional studies 
suggests that physiological GLP-1 contributes to negative 
energy balance by decreasing food intake. The effects 
of GLP-1 on energy expenditure are less clear. Fasting 
plasma GLP-1 concentrations have been positively asso
ciated with increased rates of energy expenditure in 
man[101]. Clinical evidence regarding the effects of acute 
GLP-1 administration on energy expenditure however 
is conflicting. Physiological infusions of GLP-1 have 
been reported to reduce energy expenditure in lean 
and non-diabetic obese patients[95,102] associated with 
reduced carbohydrate metabolism. Others, however, 
have observed that supraphysiological infusions of GLP-1 
increase energy expenditure in lean individuals in an 
insulin dependent manner[103]. 

Interpretations: Implications for the clinic
Evidence from clinical interventional studies suggests that 
acute post-meal rises in GLP-1 contribute to negative 
energy balance primarily through an anorexigenic effect. 
The long-acting GLP-1 analogue liraglutide (3 mg) has 
recently been approved as a once daily bolus SC injection 
for the medical management of obesity. The sustained 
anorectic effect of a long term agonist combined with 
supraphysiological dosing perhaps the mechanism of 
the clinical weight loss efficacy achieved by liraglutide 
3 mg. Unfortunately, to date, clinical studies assessing 
the comparative efficacy of acute vs continuous GLP-1 
administration on appetite reduction and weight loss 
remain scarce. Näslund et al[104] compared the effects 
of 4 doses of acute GLP-1 infused 30 min prior to 
meals [prandial subcutaneous infusion (PSI)] to an 
equivalent dose of continuous SC GLP-1 infusion (CSI) 
on food intake and weight loss in non diabetic obese 
patients. Though both acute and continuous GLP-1 
infusion produced significant reductions in food intake 
when compared to placebo (P = 0.02 PSI and CSI), a 
statistically significant weight loss compared to placebo 
was only observed following PSI. With respect to the clinic, 
findings suggest that lowered dose; more frequent GLP-1 
administration may prove more efficacious in inducing 
weight loss in obese patients. Nevertheless, in view of 
the negative impact of SC drug administration on patient 
adherence and the potential biases associated with the 
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Figure 5  Mechanisms of glucagon-like peptide 1 release from entero
endocrine L cell. Glucagon-like peptide 1 (GLP-1) release from L-cells is 
regulated by direct nutrient sensing via receptors and channels on apical 
processes or indirectly via neuro-hormonal mechanisms[70,71,86,87]. A: Nutrient 
signals. Carbohydrates: Glucose derived from carbohydrate metabolism is the 
most potent stimuli for GLP-1 secretion. Glucose can trigger GLP-1 release by 
two mechanisms: (1) the sodium-glucose cotransporter-1 (SGLT-1) couples the 
transport of glucose with Na ions. Na = influx leads to membrane depolarization 
(ΔΨ) (red arrows); and (2) glucose metabolism generates adenosine 
triphosphate (ATP). Elevated intracellular ATP concentrations [ATP]i close KATP 
channels and leads to membrane depolarization (ΔΨ) (green arrows). Both 
routes to membrane depolarisation increase intracellular Ca levels ([Ca2+]i) by 
opening L-type Ca channels. Elevated [Ca2+]i triggers the exocytosis of GLP-1 
secretory granules located at the basolateral surface of the enteroendocrine L 
cell (dashed lines). Fats: Fats are potent stimuli for GLP-1 secretion. Free fatty 
acids (FFA) (blue arrows) interact with G-protein coupled receptors (GPCRs) 
that trigger Ca2+ release from internal stores and also activate protein kinase C 
(PKC). FFA derivates (purple arrows) interact with GPCRs that activate second 
messenger systems involving adenylate cyclase (AC) and cyclic AMP (cAMP) 
which increases [Ca2+]i. Bile acids (orange arrows) and short chained fatty 
acids (not shown) also increase [Ca2+]i by GPCR interactions. Proteins: Protein 
is a weak stimulator of GLP-1 release when compared with sugars and lipids. 
Amino acids (AA) derived from protein breakdown are transported intracelluarly 
with Na+ via Na+ dependent AA transporters. Na+ influx causes membrane 
depolarization and elevated [Ca2+]i with resultant GLP-1 exocytosis (pink 
arrows); B: Hormonal signals. Somatostatin inhibits GLP-1 release by blocking 
AC activation (light blue arrows). The peripheral adiposity signals leptin (yellow 
arrows) and insulin (brown arrows) are thought to stimulate GLP-1 release 
via activation of mitogen-activated protein kinase (MAPK) signalling pathway; 
C: Neural signals. Acetylcholine binding to muscarinic receptors (M1R, M2R) 
elevates [Ca2+]I stimulating GLP-1 release (grey arrows). GRP is though to 
stimulate GLP-1 release in association with the activation of mitogen activated 
protein kinase kinase (MAPKK) and subsequent phosphorylation and activation 
of MAPK (not shown).
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significantly greater peak plasma GLP-1 concentrations 
achieved following PSI compared to CSI (269.4 pmol vs 
88.7 pmol) once daily bolus administration at present, 
seems to be the most clinically efficacious means of 
therapeutic GLP-1 analogue delivery.

Interpretations: Potential effectors of GLP-1s negative 
energy balance effects
Clinical and pre-clinical evidence suggests that targeting 
peripherally and centrally located GLP-1Rs may exert 
the anorectic effects of physiological GLP-1 signalling.

Peripheral effectors: Histological studies in man 
have shown GLP-1Rs to be expressed in cells of the 
gastric mucosa and in pancreatic islet cells[105,106]. Pre-
clinically, stimulation of gastric and pancreatic GLP1-
Rs are associated with reductions in food intake that 

occurs alongside activation of hedonic and homeostatic 
brain regions[47,63,86]. Findings suggest physiological 
GLP-1 signalling may induce its anorectic effects in man 
by indirectly activating central controllers of appetite 
through gastric and pancreatic receptors.

Gastric mechanoreceptors are activated by gastric 
distension following acute nutrient intake, and gastric 
mechanoreceptor signalling plays an important role as 
a meal-to-meal satiety signal, activating the NTS which 
in turn modulates neural activity in both the ARC the 
VTA[107] (the homeostatic and hedonic control of energy 
balance). By relaying to the NTS, mechanoreceptor 
induced anorectic effects may therefore be exerted 
through modulation of both homeostatic and hedonic 
appetite control. The amount of gastric distension in 
response to a given meal is negatively associated with 
the rate of gastric emptying; delayed gastric emptying 
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positively associated with increased satiety and fullness 
in both healthy and obese patients[108-112]. GLP-1 has 
been found to delay gastric emptying in healthy lean, 
obese and T2DM subjects, and histological studies in 
man have shown that GLP-1Rs are expressed in gastric 
mucosa[92,105,113-116]. Post-prandial GLP-1 secretion may 
therefore exert its anorectic effect through activating 
GLP-1Rs in gastric mucosa, which in turn increase mecha
noreceptor firing and signalling to the NTS. Though 
the neurotransmitters involved in relaying signals from 
the NTS to homeostatic and hedonic appetite controls 
remain to be defined, physiological gastric distension 
in rodents has been shown to up-regulate GLP-1 gene 
expression in the NTS associated with central proglucagon 
processing[117], implicating a role for centrally synthesised 
GLP-1. 

In the fasted state, the stomach is empty and so 
gastric motility is reduced to basal levels. That reductions 
in appetite after GLP-1 administration have been 
observed in fasting human subjects[99], suggests that 
mechanisms other delaying gastric motility contribute 
to the physiological anorectic effect of GLP-1. The glu
coregulatory hormone insulin, traditionally viewed as an 
anorectic signal involved in the regulation of long-term 
energy balance[47,63], displays both basal and acute meal-
related secretion[118]. With acute insulin administration 
associated with reduced ad libitum food intake in healthy 
lean individuals[119], findings implicate a role for insulin 
as an anorexigen involved in the regulation of short term 
energy balance. Insulin receptors are widely expressed 
in the ARC and VTA[120-122], thus modulation of both 
homeostatic and hedonic appetite control may be the 
means by which insulin exerts its anorectic effects on 
short-term energy balance. 

The most extensively studied of GLP-1’s physiolo
gical roles is as a positive modulator of insulin secretion 
from pancreatic β-cells[123] (evidence: Effects of GLP-1 
administration on food intake and energy expenditure in 
man). Whilst GLP-1 has been shown to increase energy 
expenditure in healthy lean individuals in an insulin 
dependent manner[103], no clinical evidence to date exists 
exploring the role of insulin as a mediator of GLP-1 
anorexigenic signalling. Studies assessing the effects of 
GLP-1 interactions with the oriexigen ghrelin however, 
suggest that this may indeed be the case. Ghrelin 
receptors have been localised preclinically in Agrp/NpY 
neurons of the ARC and dopaminergic neurons of the 
VTA[124,125], with activation of neurons in either brain 
region producing orexigenic effects. GLP-1 infusion 
in healthy lean humans is associated with significant 
suppression of postprandial rises in ghrelin[126]; the 
decline in orexigenic signalling a potential indirect 
mediator of GLP-1s anorexigenic effect. Interestingly, the 
reductions in ghrelin concentration observed with GLP-1 
infusion inversely correlate with coinciding rises in insulin 
concentration and elsewhere, insulin infusion has been 
shown to display a reciprocal relationship with ghrelin 
secretion in man[127]. Together, findings suggest that 

GLP-1’s anorectic effects may be mediated secondary 
to its incretin effect that in turn that suppresses ghrelin 
release, thus orexigenic signalling. 

Central controllers: Histological and in vivo studies 
in rodents have shown that GLP-1Rs are expressed in 
anorexigenic POMC/CART neurons of the ARC and in 
dopaminergic neurons of the VTA[59,61,18,128] where they 
stimulate and inhibit neural firing respectively. Preclinical 
studies have shown that the stimulation of the POMC/
ARC neurons of the hypothalamus and inhibition of the 
dopaminergic neurons of the VTA reduce food intake. 
Findings suggest that GLP-1 may exert its negative 
energy balance effects in man through direct activation 
of central GLP-1 receptors in the ARC and VTA; 
activating the anorexigenic homeostatic and inhibiting 
the hedonic hyperphagic drives to food intake. With 
the development of neuroimaging techniques, in vivo 
clinical studies substantiate the effects of GLP-1 on 
brain regions involved in the homeostatic and hedonic 
controls of energy balance. Whether these effects 
are mediated by direct central GLP-1R activation or 
indirectly via peripherally located GLP-1Rs however, 
remain to be defined.

Using fluorodeoxyglucose positron emission to
mography Alvarez et al[129] demonstrate that GLP-1 
infusion in lean individuals reduces glucose metabolism 
in the hypothalamus and brainstem. With patients fasted 
during the study and with no changes in peripheral 
hormone profiles observed, the effects of gastric mecha
noreceptor activation or other hormonal influences 
respectively on observed effects are negated. Elsewhere, 
correlations between PET assessed increases in hypo
thalamic blood flow and physiological post-prandial rises 
in serum GLP-1 have been observed[130]. Both findings 
may represent altered neural activity in brain regions 
associated with homeostatic energy balance secondary 
to direct or indirect GLP-1/GLP-1R signalling. The effects 
of this alteration in central neural activity on food intake 
and appetite however, have not been explored. Using 
functional magnetic resonance imaging (fMRI), De 
Silva et al[131] demonstrate that GLP-1 infusion in lean 
individuals attenuates neuronal activity in 6 brain regions 
involved in rewards processing and hedonic feeding 
accompanied with reductions in food intake. Though 
neither parameter reached statistical significance vs 
placebo, results support the idea that central GLP-1 
signalling may at least in part exert its negative energy 
balance effects through modulations in hedonic appetite 
control centres, potentially by reducing the hedonic value 
associated with food and food-driven motivation.

Clinical evidence exists to suggest that the SNS 
modulates energy expenditure through increased 
thermogenesis assessed in vivo as muscle sympathetic 
nerve activity (MSNA)[132,133]; increased MSNA positively 
associated with increased short and longer term energy 
expenditure in otherwise healthy human subjects[134,135]. 
Peripheral GLP-1 infusion has been shown to significantly 
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increase MSNA in healthy human controls[136] and 
suggest that GLP-1 signalling may produce its negative 
energy balance effects not only through anorexigenic 
signalling, but also by increasing energy output.

A ROLE FOR GLP-1 IN THE 
PATHOPHYSIOLOGY OF CLINICAL 
OBESITY
Genetics
Genetic analyses in man suggest clinical obesity is 
associated with a lack of functional GLP-1 signalling 
that may contribute to the development of the obesity 
phenotype.

Monogenic human obesity: Monogenic human obesity 
is a rare form of clinical obesity that shows Mendelian 
patterns of inheritance; the obesity phenotype attributed 
to the loss or gain of function in a single gene[137]. 
Two broad classes of Mendelian human obesity exist; 
syndromic obesity encompasses about 30 Mendelian 
disorders wherein obesity co-presents alongside chara
cteristic physical and developmental anomalies. Though 
causative genes have been identified, the mechanisms 
through which the genetic mutations induce obesity 
are not completely understood in all cases[138]. Non-
syndromic obesity is characterized by a severe, early 
onset hyperphagic obesity attributed to loss of function 
mutations in 1 of 11 genes[139-141]. Interestingly, 8 of 
these genes have physiological roles in the central control 
of energy balance[142]. One such gene is PCSK1 encoding 
the enzyme PC1/3 involved in the proteolytic processing 
of proglucagon, to yield, amongst other peptides, GLP-1 
(GLP-1). Six studies to date document the relationship 
between autosomal recessive, compound heterozygous 
or homozygous[143-148] mutations in PCSK1 in 21 probands 
associated with reduced or absent function of PC1/3. 
Table 2 details the phenotypes of probands, all of whom 
presented with an early onset hyperphagic obesity and 
malabsorptive diarrhoea with varying, though extensively 

overlapping endocrine phenotypes. 
Though the cause of the obesity and endocrine pheno

types associated with PCSK1 mutation are unknown, 
they may well be attributed to the loss of PC1/3 pro-
hormone processing function. Signs of impaired in
testinal[146] pro-glucagon processing have been described 
in probands with PC1/3 deficiency and may contribute 
to the development of the obesity phenotype secondary 
to reduced GLP-1 synthesis. Disappointingly, only 2 of 6 
studies detailing the phenotypes PCSK1 mutant probands 
assess post-prandial GLP-1 secretory responses and 
report conflicting results; whilst an oral glucose load 
(OGTT) yields significantly reduced GLP-1 response in 
three child probands compared to age matched con
trols, post-prandial responses in a 40-year-old proband 
match those of healthy age-matched controls. One 
interpretation of such findings may be that whilst other 
PCs may compensate for lacking PC1/3 to allow for GLP-1 
synthesis in response to mixed nutrient secretagogues, 
PC1/3 is necessary and essential for GLP-1 synthesis 
in response to its most potent secretagogue, glucose. 
An alternative interpretation comes from observations 
that GLP-1 secretion following OGTT in the 3 child 
probands studied by Bandsma et al[146] seem to show an 
age dependent impairment improving with increasing 
age. Following follows reports by Parker et al[147] who 
observed that the pattern of endocrinopathy in probands 
with PSCK1 mutant monogenic obesity change with 
age, perhaps GLP-1 secretion too may show an age-
dependent alteration, potentially compensated for 
over time. One way to test this hypothesis would be to 
histologically examine the enteroendocrine expression of 
GLP-1 in adult PCSK1-mutant probands; enteroendocrine 
expression of GLP-1 is significantly reduced compared 
to control in children with PCSK1 monogenic obesity[146], 
if indeed the normal post-prandial GLP-1 responses 
seen in adulthood are a reflection of the activation of 
redundant PC activity in intestinal cells up regulation of 
enteroendocrine GLP-1 expression would be observed. 
Though the cause of the hyperphagic obesity in PCSK1 
mutant human monogenic obesity remains ill defined, 

Ref. Jackson et al [144], 
1997

Jackson et al [143], 
2003

Farooqi et al [148], 
2007

Frank et al [145], 
2013

Parker et al [147], 
2013

Bandsma et al [146], 
2013

Obesity phenotype
Hyperphagic, early-onset Yes Yes Yes Yes Yes Yes
Endocrine phenotype
Abnormal glucose metabolism Yes Yes Yes Yes Yes
Hypogonadotrophic hypogonadism Yes Yes Yes
Hypocortisolaemia Yes Yes Yes Yes
Hypothyroidism Yes Yes Yes
Central diabetes insipidus Yes
Others
Early onset malabsorptive diarrhoea Yes Yes Yes Yes Yes Yes

Table 2  Obesity and endocrine phenotypes in probands with PCSK1 gene deletion monogenic obesity

Proband details: Jackson et al[144] (1997) - a 40-year-old Caucasian woman; Jackson et al[143] (2003) - female Caucasian infant, non consanguineous; Farooqi et 
al[148] (2007) - 6 North African boy, consanguineous; Frank et al[145] (2013) - male infant; Parker et al[147] (2013) - 13 children aged 3 to 17; Bandsma et al[146] (2013) 
- 2 children age 2 and 7 Arab, consanguineous, 2 children aged 1 and 10, African, non-consanguineous.
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monogenic obesity implicates a role for deregulated 
GLP-1 signalling in the development of the obesity 
phenotype. 

Polygenic obesity and Genome Wide Association 
Studies: Monogenic obesity is a rare form of clinical 
obesity, accounting for less than 1% of total cases of 
obesity worldwide. The obesity epidemic of the past 
10-50 years has been largely attributed to environmental 
and societal changes facilitating a positive energy 
balance; “the obesogenic environment”[149,150]. However 
evidence from adoption, twin and family studies suggest 
the genetic contribution to BMI ranges between 60% and 
84%[151]. As such, the current obesity epidemic may be 
defined as the interaction between a genetic predisposition 
and the “obesogenic environment”[149,150,152-154]. Genome 
wide association studies have identified 119 independent 
gene loci implicated as risk factors toward “common” 
obesity[155,156], as such today’s obesity epidemic may be 
referred to as a polygenic obesity. One such susceptibility 
gene is PCSK1 encoding the enzyme PC1/3 involved 
in the proteolytic processing of proglucagon, to yield, 
amongst other peptides, GLP-1. 

Single-nucleotide polymorphisms (SNPs) at three 
independent PCSK1 loci have been consistently linked to 
an increased risk of obesity[157-161]. Though it is unclear 
how these minor alleles predispose to obesity, in vitro 
studies suggest that the encoded PC1/3 variants may 
not be as enzymatically active or physiologically available 
as the common form, potentially resulting in a partial 
PC1/3 deficiency. Decreased GLP-1 synthesis secondary 
to reduced proglucagon processing by PC1/3 in enter
oendocrine L cells may therefore be the mechanism by 
which identified PCSK1 SNPs confer an increased risk 
toward the obesity phenotype. 

Intestinal neuroendocrine gene expression: 
Neuroendocrine signals from the gut play an important 
role in the physiological control of energy balance. 
Findings from a recent study by Ritze et al[162] studying 
the gene expression of several proteins in the intestinal 
neuroendocrine network go some way to suggest 
intestinal GLP-1 expression and/or function may be 
altered in obesity. Though GLP-1 was not directly 
tested in the study, the anorectic neuropeptide PYY 
shown to co-localise and be co-secreted with GLP-1 in 
enteroendocrine cells[163] was tested. Taking PYY levels as 
proxy measures of GLP-1, Ritze et al[162] report significant 
correlations between GLP-1 with the GLP-1R in non-
obese subjects (suggesting physiological ligand-receptor 
signalling), a correlation lost in obese subjects and 
replaced by correlations with the orexigen ghrelin (P < 
0.01). Ritze et al[162] also observed correlations between 
the long-term satiety signal leptin and GLP-1R in obese 
subjects not seen in their lean counterparts. 

A recent in vitro study on human L cells has shown 
that ghrelin is a positive modulator of GLP-1 release[164]. 
Ghrelin levels have also been reported to be reduced 
in humans with obesity[165,166]. The correlations between 

intestinal PYY (GLP-1) and ghrelin reported in obese 
subjects suggests that ghrelin decreases in obesity 
coincide with decreased GLP-1 levels, the latter potentially 
antagonising the anorexigenic effects of the former 
and may explain the difficulty to attain and maintain 
weight loss observed by many obese patients. Intestinal 
GLP-1 signalling has been suggested to promote small-
intestinal motility in humans[167] and preclinically, central 
administration of leptin has been shown to increase the 
satiating effect of GLP-1, possibly through enhancing 
GLP-1R signalling. Correlations between the leptin 
and GLP-1R in obese subjects may therefore reflect a 
leptin-mediated enhancement of intestinal GLP-1/GLP-
1R increasing intestinal motility to promote increased 
gastric emptying and reduced gastric mechanoreceptor 
activation in response to a given meal; the resultant 
decrease in anorexigenic signalling potentially explaining 
the persistent hyperphagia seen in obesity despite an 
overall positive energy balance.

Clinical studies in polygenic obesity
Interventional and observational clinical evidence 
suggests that malfunctioning of GLP-1 contributes to 
the development and/or maintenance of the obesity 
phenotype, rationalizing the use of GLP-1 analogues as 
novel therapeutic agents in the medical management of 
obesity. 

Post meal and oral glucose GLP-1 secretory 
responses: A number of clinical studies have assessed 
the effect of physiological GLP-1 secretion responses in 
obese and lean subjects following an oral 75 g glucose 
load (OGTT) or post-prandial following a balanced meal. 
Where an OGTT consistently demonstrates a reduced 
GLP-1 secretion in obese subjects compared to their lean 
control post-prandial GLP-1 responses are conflicting; 
some observing significant reductions and others no 
change[168-178] in obese subjects when compared to their 
lean counterparts (Figure 8). That oral glucose, the most 
powerful GLP-1 secretagogue consistently demonstrates 
reduced GLP-1 responses in obese subjects may 
suggest that the impaired GLP-1 response observed are 
secondary to a reduced L-cell glucose sensing capacity 
in obesity. Support for such a postulate comes from 
findings by Ranganath et al[170] who demonstrate that 
whilst GLP-1 secretion to an oral fat load remains intact, 
GLP-1 secretion in response to an oral carbohydrate load 
is decreased in obesity. However, reports by Adam et 
al[168] that demonstrate reductions in GLP-1 response in 
obesity to a balance meal with retained responses to an 
oral carbohydrate load challenge such an interpretation. 
Interestingly however, in their observational study, Adam 
et al[168] also demonstrate that whilst carbohydrates 
stimulate post-prandial GLP-1 release similarly in obese 
and non-obese subjects, these rises are positively 
correlated with increased satiety only in lean subjects 
and put forward an alternate hypothesis that rather 
than impaired GLP-1 secretion, downstream receptor 
resistance may be the root of GLP-1 dyshomeostasis in 
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obesity. That deranged GLP-1 signalling is observed only 
in obese subjects suggests that obesity induces changes 
in functional GLP-1 signalling that through resultant 
reductions of signalling at central and peripherally located 
receptors (GLP-1) may facilitate the maintenance of the 
obesity phenotype. Pharmacologically targeting GLP-1 
to restore physiological signalling may therefore be an 
efficacious method to prevent the propagation of, and 
potentially reverse weight gain in obesity.

Evidence from clinical studies suggests that weight 
gain induces alterations in functional GLP-1 signalling 
that facilitates and propagates the obesity phenotype. 
Though the mechanisms of reduced functional post-
prandial GLP-1 signalling in obesity remain to be defined, 
clinical evidence implicates a role for interactions 
between GLP-1 and the long-term satiety signals insulin 
and leptin, and short-term orexigen ghrelin. The most 
extensively studied of post-prandial GLP-1’s physiological 
roles is as a positive modulator of pancreatic β-cell 
insulin secretion[123]. Hyperinsulinaemia is positively 
associated increased BMI in individuals with normal 
glucose tolerance and increased BMI and increasing 
glucose intolerance have been shown to independently 
and additively impair GLP-1 secretion[171-173,175,179]. The 
chronic hyperinsulinaemia positively associated with 
increasing levels of obesity therefore, may acting as a 
negative feedback signal to inhibit physiological post-
prandial GLP-1 release observed in obese subjects when 
compared with healthy lean control[171-173]. The long term 

adiposity signal leptin acts as a satiety signal governing 
long term energy balance and clinically, increased 
BMI has been shown to be positively correlated with 
fasted leptin, however obese subjects are thought to 
be resistant to leptin’s effects[180,181]. In vitro studies of 
human intestinal L-cells have shown that leptin acts a 
GLP-1 secretogogue and go some way to suggest that 
the leptin resistance associated with obesity may account 
for the decreased post-prandial GLP-1 secretion observed 
in obese humans[168-170,182]. Ghrelin is the only orexigenic 
gut derived hormone[183]; released pre-prandial, ghrelin 
promotes meal initiation and increases food intake, and 
complex reciprocal interactions exist between GLP-1 and 
ghrelin that have implications for obesity pathophysiology. 
Preclinically, physiological ghrelin signalling has been 
shown to enhance post-prandial GLP-1 release[164], clinical 
obesity has however been associated with reductions in 
fasting ghrelin levels that may contribute to the reduced 
post-prandial GLP-1 release observed[168-170]. Conversely, 
clinical data exists to suggest that suppression of late 
post-prandial rises in ghrelin is one mechanism by which 
GLP-1 exerts its anorexigenic effect[126]; reduced post-
prandial GLP-1 secretion in obesity potentially explaining 
the attenuated decreases of post-prandial serum ghrelin 
observed in this cohort[168-170,184,185] (Figure 9).

Together, evidence exists to suggest that the hyper
insulinaemia, leptin resistance and impaired ghrelin 
secretion occurring secondary to obesity cause functional 
deficits in GLP-1 signalling; the resultant reductions in 
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Verdich et al [169], 2001
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Figure 8  Effects of obesity on glucagon-like peptide 1 responses post oral glucose load and post-prandial. Obese subjects consistently demonstrate reduced 
glucagon-like peptide 1 (GLP-1) secretory responses following a 75-g oral glucose load compared to lean controls. Post-prandial GLP-1 secretory responses in obese 
subjects are conflicting, with some studies observing significant reductions and others observing no change[168-178] when compared to lean controls.
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GLP-1 mediated anorexigenic signalling facilitating post-
meal hyperphagia, weight gain and thus perhaps the 
obesity phenotype. Pharmacologically targeting GLP-1 
to restore homeostatic signalling may therefore be an 
efficacious method to prevent the propagation of, and 
potentially reverse the weight gain in obesity.

GLP-1 secretion post RYGB: Weight losses following 
bariatric surgery, pharmacotherapy or diet and lifestyle 
modification are all associated with decreases in cir
culating leptin and improved insulin sensitivity. The 
resultant reductions in anorexigenic signalling potentially 
facilitating weight gain and may explain the difficulty 
obese subjects have in attaining and maintaining 
weight loss. Bariatric surgery remains the most effective 
treatment modality for morbid obesity, with a meta-
analysis reporting the Roux-en-y gastric bypass (RYGB) 
to produce a greater and more sustained weight loss 
than currently available pharmacotherapeutics, diet 
and lifestyle interventions or other bariatric options. 
Prospective studies assessing the effects of RYGB on post-
prandial GLP-1 responses in non-diabetic obese patients 
consistently report statistically significant increases in 
post-prandial GLP-1 when compared to the pre-operative 
state, following equivalent weight losses with GB[186-193] 
and when compared with healthy lean control[188] 
(Figure 10). This post-operative supraphysiological GLP-1 
secretory response therefore may explain the greater 
short- and long-term weight loss efficacy achieved with 
this treatment modality. 

Evidence from clinical studies implicate the supra
physiological[188] post-prandial GLP-1 responses achieved 
following RYGB in the superior weight loss efficacy of this 
treatment modality. Though the mechanisms by which 
RYGB may induce increases in GLP-1 secretion remain 
poorly understood, clinical studies implicate a role for 
altered gut mechanics and L cell resensitisation. 

That increases in post-prandial GLP-1 responses 
following RYGB are observed as early as 3 d post-
operatively[190] suggest physical changes associated with 
RYGB, rather than gene-mediated up-regulations GLP-1 
synthesis play a role in the increased GLP-1 secretory 

responses observed. Where both RYGB and GB induce 
weight loss through volume restriction, the former also 
redirects nutrient flow from the upper stomach directly 
into the distal jejunum. The exaggerated GLP-1 response 
following RYGB likely secondary to the increased glucose 
load delivered to the distal small intestine where L-cells 
are more densely populated. Such a concept is supported 
by the observed reductions in foregut and increases in 
hindgut hormones following RYGB and the hyperplasia 
of GLP-1 containing ileal cells in biopsy samples of obese 
humans after bypass[194-196]. 

RYGB induces a weight loss greater time-for-time 
and reaches a plateau more successfully maintained 
when compared with weight loss following GB[186-189]. 
Post-prandial GLP-1 responses following RYGB are 
also significantly greater than those following GB (that 
show no change from pre-operative levels[186,190,191]) 
however this response does not plateau but instead 
shows a tendency to increase with time past surgery. 
A relationship between the exponentially increasing 
post-prandial GLP-1 response and greater weight loss 
maintenance achieved post-RYGB may be explained 
by findings observed Kellum et al[189] who report that 
at 1 year post RYGB, alongside significantly greater 
achieved and maintained weight loss when compared 
to GB, GLP-1 responses were significantly increased in 
response to a carbohydrate meal in subjects post RYGB; 
a response positively associated with amount of weight 
lost. With derangements in L-cell carbohydrate sensing 
implicated in the pathophysiology of human obesity (see 
5.1.1B, 5.2.1B), and with no alterations in response to 
a protein-fat meal observed following weight loss with 
RYGB and no altered response to either meal following 
weight loss with GB, findings suggest that weight loss 
following RYGB may be associated with a restoration of 
L cell sensitivity to the most potent GLP-1 secretagogue; 
a resensitisation that may occur proportionately to 
the amount of weight lost, the feed forward effect of 
weight loss on increased GLP-1 secretion resulting in 
supraphysiological GLP-1 signalling with the potential to 
antagonize the increased orexigenic drives of decreased 
leptin and insulin signalling associated with weight loss. 
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Figure 9  Physiological and pathophysiological interactions between orexigenic ghrelin and anorexigenic glucagon-like peptide 1 signalling in lean and 
obese individuals. GLP-1: Glucagon-like peptide 1.
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Such a concept may explain the long-term weight loss 
efficacy associated with RYGB.

Together, evidence exists to suggest that the supraphy
siological[188] upregulation in GLP-1 signalling seen 
following RYGB contributes to the superior short and long 
term weight loss efficacy observed with this treatment 
modality. Not only do findings go some way to suggest a 
role for impaired GLP-1 signalling in the pathophysiology 
of human obesity, findings support the potential for 
pharmacological mimicry of this supraphysiological GLP-1 

secretion as a minimally invasive, thus risk reducing and 
cost-effective alterative of achieving and maintaining 
similarly significant weight loss in obese subjects in the 
clinic.

Functional neuroimaging and self-assessments of 
appetite: fMRI studies have provided evidence in vivo 
to suggest that central nervous system responses in 
brain regions involved in rewards processing are altered in 
obese individuals; reduced brain activity in response to the 
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Verdich et al [169], 2001
Ranganath et al [170], 1996
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Figure 10  Effects of weight loss induced by gastric banding and Roux-en-Y gastric bypass on post-prandial glucagon-like peptide 1 secretion. Weight loss 
following gastric banding induces no changes in post-prandial glucagon-like peptide 1 (GLP-1) levels from pre-operative levels (A). All 7 studies assessing the effects 
of post-prandial GLP-1 secretion following weight loss with RYGB show significantly increased responses compared with pre-surgery responses and healthy obese 
controls (Bi), healthy lean controls (Bii) and following weight losses following gastric banding (Biii).
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consumption of, and increased activity in response to the 
anticipation of palatable food consistently observed when 
compared with healthy lean controls[197-199]. Interestingly, 
GLP-1 agonism reverses these functional brain changes 
to match those of lean control with associated reductions 
in ad libitum food intake[199], an effect prevented by 
pre-treatment with a GLP-1 antagonist[200] (Figure 11). 
Together, findings suggests that obesity induced de
creases in functional GLP-1 signalling contribute to altered 
rewards processing in obesity to facilitate hyperphagic 
weight gain despite an overall positive energy balance. 

Further support for a role for GLP-1 and altered 
rewards processing in obesity pathophysiology comes 
from self-assessments of appetite. Subjectively ass
essed emotional eating scores have been defined as 
hedonic markers of appetite that display strong positive 
associations with the degree of human obesity, and, 
in obese subjects, relate to the extent to which GLP-1 
receptor activation in brain regions involved in rewards 
processing are reduced[201-203]. Together, findings suggests 
that obesity induced decreases in functional GLP-1 sig
nalling creates a feed-forward loop of hyperphagic weight 
gain despite an overall positive energy balance, an effect 
perhaps secondary to a GLP-1 deficit mediated skew 
toward hedonic and away from homeostatic controls of 
food intake. Together, findings from fMRI and subjective 
appetite assessment scores implicate obesity-associated 
reductions in functional GLP-1/GLP-1R signalling in the 
pathophysiology of hyperphagic weight gain in obesity. 
As such, findings support the role of the GLP-1R as a 
novel therapeutic target in the medical management of 
obesity, providing rationale for the use of liraglutide 3 mg 
in the pharmacotherapy of obesity in the clinic.

A ROLE FOR GLP-1 IN THE 
PHARMACOTHERAPY OF CLINICAL 
OBESITY
The balance between drug efficacy and cost determines 
the selection of a pharmacological agent for use in 
the medical management of any disease; greater 
understanding of underlying disease pathophysiology 
facilitating the development of targeted therapeutics with 
the potential for greater efficacy. Several lines of clinical 
evidence implicate a role for altered GLP-1 function in 
the pathophysiology of human obesity and a number of 
recent clinical trials have validated the clinical efficacy of 
long-term once daily SC 3 mg liraglutide (Saxenda) as an 
adjunct to calorie-restriction and exercise counselling in 
obese and overweight individuals with at least one weight 
related comorbidity. Significant improvements in clinical 
outcome measures such as body weight, anthropometric 
and cardiometabolic parameters, and indices of glucose 
tolerance have been observed and recently reviewed 
elsewhere[204]. Though March 2015 saw the EMA grant 
marketing authorization for 3 mg liraglutide as a weight-
management agent in all 28 EU states[45], cost-benefit of 
funding treatment on the NHS undoubtedly contributes 

to the uncertainty of launch plans in the United Kingdom 
at present[46].

Weight loss efficacy of GLP-1 analogues
Evidence: One phase Ⅱ (NCT00422058)[43], and a 
number of phase Ⅲ multi-national double-blinded ran
domized control trials conducted in non-diabetic obese 
adults (NCT00480909)[42], overweight adults with at 
least one weight related co-morbidity (SCALE Obesity 
and Pre-diabetes, and SCALE Maintenance[205,206]), non-
diabetic obese adults with obstructive sleep apnoea (OSA) 
(SCALE OSA[41]) and obese adults with T2DM (SCALE 
diabetes[207]) have established the efficacy of once daily 
3 mg SC liraglutide as an adjunct to an energy-deficient 
low-calorie diet and physical activity counselling for 
weight management in this cohort. Results from the 
first study; a 20-wk phase Ⅱ trial in non-diabetic obese 
subjects showed that weight loss with liraglutide is dose-
dependent up to 3.0 mg once daily[42,206]. Significantly 
more liraglutide 3 mg/d recipients than placebo or 
orlistat recipients achieved a 5% or 10% reduction of 
body weight at 20 wk. In a 2-year phase Ⅲ extension 
of the same study[42], double-blind treatment (liraglutide 
1.2-3 mg/d) was continued until week 52, after which 
all liraglutide (< 2.4 mg/d) and placebo recipients were 
switched to liraglutide 2.4 mg, then 3.0 mg (week 
70-96) based on 20-wk and 1-year results respectively 
(Figure 12) that indicated this was the optimal dosage. 
At 2 years, mean bodyweight reductions in those 
randomized to liraglutide were significantly greater than 
pancreatic lipase inhibitor orlistat, the only alternative 
licenced weight loss agent in the United Kingdom. 
Results from the SCALE maintenance and SCALE obesity 
and prediabetes[205,206] trials report similarly significant 
reductions in bodyweight in subjects randomized to 3 mg 
liraglutide when compared with placebo at 56 wk (P < 
0.0001) alongside increased 5% and 10% responder 
rates. Findings are supported by results of the 32 wk 
SCALE Sleep Apnoea trial[41] in obese non-diabetic sub
jects with moderate to severe OSA and in the 56-68 wk 
SCALE Diabetes[207] trial in obese subjects with T2DM 
(Figure 13). With even modest losses of 5%-10% of total 
body weight associated with reduced risk of comorbidities 
in obese individuals[8-10], findings provide rationale 
for the licensing and funding of 3 mg liraglutide as an 
adjunct to lifestyle alteration as the first line anti-obesity 
pharmaceutical agent for weight management in obese 
and comorbid overweight adults in the United Kingdom.

Interpretations - obesity pathophysiology: 
Excessive consumption of palatable food can trigger 
neuroadaptive responses in brain reward circuits similar 
to that of alcohol and drugs of abuse[208] and clinical 
studies provide evidence to suggest that human obestiy 
is associated with altered rewards processing mediated 
in part by altered GLP-1 function that may render the 
hyperphagia of obesity the manifestation of a “food 
addiction”. Whilst 3 mg liraglutide has been shown to 
induce weight loss in man by reductions appetite pre-
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clinically, liraglutide attenuates the reinforcing properties 
of alcohol in vivo[209,210]. As such, perhaps GLP-1 agonism 
may attenuate produce its weight loss effects in part, by 
attenuating the negative reinforcement of hyperphagia 
in obesity. Interestingly, though all aforementioned 
trials[41-43,205-207] advise participants to restrict food 
consumption throughout the treatment period, adherence 
rates are not reported. If indeed GLP-1 agonism induces 
its weight loss effects by modulating food related rewards 
that potentially reverses the negative reinforcement of 
hyperphagia in obesity, an increased adherence to caloric 
restriction would be expected. It would be interesting to 
see if this were the case. 

Interpretations - cost-benefit of 3 mg liraglutide as 
an anti-obesity agent on the NHS: Follow-up period 
(FUP) assessments in the SCALE Maintenance, and 
SCALE Diabetes[205-207] trials suggest that weight loss with 
3 mg liraglutide is treatment dependent; weight gains in 
excess to those seen in placebo control and subjects re-
randomized to treatment observed in liraglutide treated 
participants upon treatment cessation (Figure 12). 

Though reductions in bodyweight have been shown 
to significantly improve health outcomes and thereby 
reduce healthcare costs long term[211], in 2013, 24.9% 
of the United Kingdom adult population were classed 
obese and 90% of the £2.7 million T2DM adults in the 
United Kingdom were overweight. Following FDA and 

EMA approval criteria, all these individuals are potential 
candidates for treatment with liraglutide 3 mg. Costing 
in excess of $1000 per patient a month, and with 
prevalence of obesity and overweight predicted to rise 
(introduction), prolonged treatment seems unsustainable. 
A potential solution comes from longitudinal observations 
from Astrup et al[43] who observed that subjects 
randomized to liraglutide 3 mg achieve maximal rates 
of weight loss in the initial 0-20 wk treatment period 
with a tendency toward weight gain beyond 36 wk[42,43]. 
Findings suggest that whilst initially treatment with a 
GLP-1 analogue may compensate for functional deficits 
in obesity, treatment beyond 20 wk may be associated 
with the development of treatment resistance, most 
apparent 36 wk from initiation (Figure 14). Based on 
this, perhaps treatment with liraglutide 3 mg should 
be prescribed for 20 to a maximum of 36 wk alongside 
behavioural therapies promoting lifestyle changes and 
developing strategies to combat the addiction driven 
hyperphagia implicated in obesity pathophysiology (GLP-1 
secretion post RYGB); combing behavioural therapies 
in the initial 20 wk of drug induction where weight loss 
is most pronounced may act as a positive reinforcer of 
sustained behavioural change facilitating continuation 
of these behaviours. This approach, integrating the 
psychosocial empowerment associated with patient self-
management of chronic illness, alongside cost benefits 
associated with limited in-treatment period seems an 

Ai                                                                                 Aii

GLP-1

GLP-1Ex-9-39

1
2

B

C

Figure 11  Altered central nervous system responses in brain regions involved in rewards in obese subjects is reversed upon glucagon-like peptide 1 
receptor activation. Central nervous system activity in regions involved in rewards processing show increased responses in obese subjects when exposed to food 
related images (Aii) associated with increased ad libitum food consumption when compared to healthy lean control (Ai). A response reversed upon administration of a 
GLP-1 analogue with concomitant reductions in ad libitum food intake (B), this effect antagonized by pre-treatment with GLP-1 antagonist Extendin 9-39 (EX9-39) (C). 
GLP-1: Glucagon-like peptide 1.
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attractive one, especially if sustainable long-term weight 
losses with resultant reductions in the socioeconomic 
impacts of weight-related comorbidities can be achieved.

Glucose tolerance
Evidence: Clinical studies in obese subjects with 
pre-diabetes consistently demonstrate a greater 
reversion to normal glycaemic control following treat
ment with liraglutide 3 mg coinciding reduced T2DM 
incidence[42,206,212]. 

Interpretations - obesity pathophysiology: Being 
overweight or obese is the main modifiable risk factor for 
T2DM and increasing BMI is positively associated with 
hyperinsulinaemia even in those with normal glycaemic 
control[175,179,213] suggesting a common pathophysiology 
to both conditions. That increased BMI and impaired 
glucose tolerance have been shown to independently and 
additively impair GLP-1 secretory responses following an 
OGTT[171-173] suggests that this common pathophysiology 
may lie in a functional deficit of GLP-1. Support for the 
existence of a common pathophysiology between obesity 
and T2DM comes from observations that treatment 
with the insulin sensitizer metformin (currently the first 
line pharmacotherapeutic agent in the management of 
T2DM) upregulates GLP-1 secretory response following 

an OGTT, the restoration of physiological anorexigenic 
and incretin effects perhaps explaining the weight loss, 
and insulin sensitising properties of the drug seen in the 
clinic respectively[214,215]. 

Interpretations: Cost-benefit of 3 mg liraglutide as 
an anti-obesity agent on the NHS: Being overweight or 
obese is the main modifiable risk factor for T2DM[213] 
and T2DM is one of the major indirect financial 
burdens of obesity and overweight. Treating T2DM 
and its complications alone current costs the NHS 
£8.8 billion a year with indirect costs estimated at £13 
billion[216]. With the incidence of obesity projected to rise 
(introduction), so too can be expected the incidence of 
T2DM, the management of which therefore, may become 
unsustainable on the NHS. Though costly, treatment 
with liraglutide 3 mg is associated with reductions in 
the rate of development of T2DM in overweight and 
obese subjects[42,206,212] and goes some way to suggest 
that treatment may reduce both direct burdens of 
obesity and overweight and the large indirect burden 
posed by new incidences of T2DM. However, weight 
loss in itself is associated with an improvement in 
glycaemic control. It may be argued therefore, that 
true cost-benefit of funding liraglutide 3 mg on the 
rationale of T2DM prevention in overweight and obese 
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Figure 12  Significantly greater 5% and 10% weight loss achieved following 3 mg subcutaneous liraglutide compared to placebo and orlistat. Five percent 
and 10% responder rates in NCT00480909 reported at 1 year (see text).
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Figure 13  Body weight changes with liraglutide are treatment dependent. Following the 56-wk treatment period a 12-wk follow-up (FUP) was conducted in 
SCALE maintenance, SCALE obesity and pre-diabeties and SCALE diabetes trials. Twelve weeks FUP was an off-treatment period in SCALE Maintenance and 
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weight gain occurred in all three groups weight gain was significantly higher following cessation of liraglutide. T2DM: Type 2 diabetes mellitus.
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subjects exists only if the improved glucose tolerance 
achieved following a given weight loss with liraglutide 
3 mg exceeds those attained following other, arguably 
cheaper treatment modalities. Calculating correlation 
coefficients between percentage weight lost and 
percentage changes in glucose tolerance in non-diabetic 
obese subjects randomized to liraglutide 3 mg compared 
to those administered orlistat or placebo[41-43,205,206] in 
aforementioned phase Ⅲ trials may be one way in which 
this could be assessed. Figure 15 interprets the possible 
findings of such a test.

If indeed pharmacological GLP-1 agonism improves 
glucose tolerance independent of weight lost, the potential 
curb in prevalence, thus socio-economic burden of T2DM 
achieved with treatment provides a second rationale 
for the licensing and funding of liraglutide 3 mg as an 
adjunct to lifestyle alteration as the first line anti-obesity 
agent for weight management in obese and co-morbid 
overweight individuals in the United Kingdom.

Adverse drug events
Evidence - in-treatment tolerability: Whilst evidence 
exists to suggest GLP-1 agonism may be a targeted 
agent with long term cost-benefit for use in the medical 
management of obesity, tolerability and safety are 
important considerations in determining the choice of 
any pharmaceutical, especially in the management of 
chronic disease. The safety and efficacy of liraglutide 
3 mg has been evaluated in 5 phase Ⅲ double-blinded 
placebo controlled trials comprising 3384 overweight 
or obese subjects receiving liraglutide 3 mg and 1941 
placebo controls for a treatment periods of 32, 52 
and 56 wk[42,42,205-207]. In a pooled analysis of the 5 
aforementioned trials, liraglutide 3 mg in obese and 
overweight subjects was generally well tolerated, with 
most adverse drug events gastrointestinal in nature, 
transient and of mild to moderate intensity[42,43,205-207]. 
However, 9.8% of liraglutide and 4.3% of placebo 
recipients discontinued treatment because of an adverse 
event[217]. Figure 16 details adverse reactions occurring 
with a higher incidence to placebo with an incidence of 
≥ 10% in liraglutide 3 mg recipients, stratified by system.

Of interest, 0.6% of subjects receiving liraglutide 

3 mg experienced increases in mean heart rate (an 
average baseline increase of 2.5 beats/min) compared to 
0.1% of placebo recipients[218]. Potentially a manifestation 
of GLP-1 induced increases in SNS activity (potential 
effectors of GLP-1s negative energy balance effects: 
Central controllers) contributing to GLP-1 induced weight 
loss via increases energy expenditure, elsewhere tachy
cardia associated with 3 mg liraglutide treatment in non-
diabetic obese subjects yields no associated increases 
in 24 h energy expenditure[209]. Thus, whilst the clinical 
significance of this finding remains to be determined, 
observations may warrant more intense monitoring in 
patients with pre-existing cardiovascular disease.

Interpretations - long term risk-benefit of 
liraglutide 3 mg as an anti-obesity agent on the 
NHS: Though generally well tolerated in the acute 
setting, safety concerns have been raised regarding the 
potential risk of pancreatitis and pancreatic and thyroid 
cancer with long-term use of GLP-1 analogues[219,220]. 
Confirmed cases of acute pancreatitis and papillary 
thyroid carcinoma were reported in 0.3% of liraglutide 
3 mg treated compared to 0.2% of placebo treated 
participants, however the relative rarity of events 
means the relationship between treatment with disease 
incidence and severity remains to be defined. On-
going clinical experience and thorough post-marketing 
surveillance should help clarify any such associations 
and also identify other potential adverse drug events. To 
this end, episodes of acute renal failure and medullary 
thyroid carcinoma (not observed during in-treatment 
and FUP period assessments[42,43,205-207]) have been 
reported in the post-marketing period, though again, 
insufficient data exists to establish or exclude a causal 
relationship. Figure 17 details other potentially serious 
medical conditions observed in during in-treatment and 
FUP assessments[42,43,205-207]. 

Though potentially associated with serious long-
term adverse effects, the rarity of incidence and lack 
of causal relationship mean that current knowledge 
supports benefit over risk, supporting the licensing and 
funding of liraglutide 3 mg as the first line anti-obesity 
pharmaceutical agent for weight management in obese 
and overweight adults with at-least one weight related 
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co-morbidity in the United Kingdom.

CONCLUSION
Obesity is a global epidemic, perhaps the greatest 
challenge to global and public health of our time. Whilst 
public health initiatives should continue to focus on 
curbing the projected upward trends in the incidence of 
obesity and overweight, effective management of those 
individuals already obese remains an important and as 
yet unmet clinical need. The current medical management 
of obesity in the United Kingdom is suboptimal, with 
the only treatment modality with proven long-term 

efficacy being bariatric surgery. Both risky and costly, 
this treatment option is not viable for the widespread 
management of obesity, and remains reserved for ex
treme cases. The ideal medical management of any 
illness utilizes a targeted pharmacotherapy that either 
repletes physiological factors pathologically depleted, or 
antagonizes pathological processes, the development 
of such an agent requiring an understanding of the 
pathophysiology underpinning a disease. Though the 
pathophysiology of clinical obesity is undoubtedly multi
faceted, several lines of clinical evidence implicate a role 
for functional impairments in GLP-1 signalling. Whilst 
genetic studies implicate a role for primary altered GLP-1 
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signalling as a risk factor towards development of the 
obesity phenotype, clinical studies assessing physiological 
GLP-1 responses in normal weight and obese subjects 
suggest weight gain may induce functional deficits 
in GLP-1 that facilitates maintenance of the obesity 
phenotype. Whatever the relationship, cause or effect, 
reductions in functional GLP-1 signalling seems to play 
a role in clinical obesity, as such, the pharmacological 
replenishment of this functional deficit seems a promising 
target for the medical management of obesity in the 
clinic. Indeed, the GLP-1 analogue liraglutide 3 mg has 
shown promising results in achieving and maintaining 
greater weight loss in obese individuals when compared 
to control or currently licensed anti-obesity medication. 
Though results from extended phase Ⅲ and phase 
Ⅳ studies report the development of potentially fatal 
adverse drug events in those randomized to or prescribed 
liraglutide 3 mg respectively, the scarcity of incidence 
and lack of causal relationship sees such potential risks 
overshadowed by the proven superior weight loss 
efficacy of treatment. Cost-benefit, however, may pose 
a barrier toward viable NHS funding, though this may 
be overcome by strategic treatment delivery; combining 
short-term liraglutide 3 mg treatment (≤ 36 wk) with 
behavioural therapies targeted toward promoting 
healthy lifestyle changes. With drug induced weight loss 
potentially reinforcing adherence to long-term lifestyle 
changes, if successful, shortened in-treatment period 
alongside decreases in direct and indirect socioeconomic 
burdens of obesity and overweight secondary to achi
evement and maintenance of significant weight loss 
associates a long-term cost-benefit to funding treatment. 
Such a concept supports the use of liraglutide 3 mg 
as the first line anti-obesity agent on the NHS when 
conservative lifestyle management alone has failed in 
achieving clinically significant weight loss in comorbid 
overweight or obese adults.
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