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Abstract
Brain integrity and cognitive aptitude are often impaired 

in patients with diabetes mellitus, presumably a 
result of the metabolic complications inherent to the 
disease. However, an increasing body of evidence has 
demonstrated the central role of insulin-like growth 
factor 1 (IGF1) and its relation to sex hormones in 
many neuroprotective processes. Both male and female 
patients with diabetes display abnormal IGF1 and sex-
hormone levels but the comparison of these fluctuations 
is seldom a topic of interest. It is interesting to note that 
both IGF1 and sex hormones have the ability to regulate 
phosphoinositide 3-kinase-Akt and mitogen-activated 
protein kinases-extracellular signal-related kinase 
signaling cascades in animal and cell culture models 
of neuroprotection. Additionally, there is considerable 
evidence demonstrating the neuroprotective coupling of 
IGF1 and estrogen. Androgens have also been implicated 
in many neuroprotective processes that operate on similar 
signaling cascades as the estrogen-IGF1 relation. Yet, 
androgens have not been directly linked to the brain IGF1 
system and neuroprotection. Despite the sex-specific 
variations in brain integrity and hormone levels observed 
in diabetic patients, the IGF1-sex hormone relation in 
neuroprotection has yet to be fully substantiated in 
experimental models of diabetes. Taken together, there 
is a clear need for the comprehensive analysis of sex 
differences on brain integrity of diabetic patients and the 
relationship between IGF1 and sex hormones that may 
influence brain-health outcomes. As such, this review 
will briefly outline the basic relation of diabetes and IGF1 
and its role in neuroprotection. We will also consider 
the findings on sex hormones and diabetes as a basis 
for separately analyzing males and females to identify 
possible hormone-induced brain abnormalities. Finally, 
we will introduce the neuroprotective interplay of IGF1 
and estrogen and how androgen-derived neuroprotection 
operates through similar signaling cascades. Future 
research on both neuroprotection and diabetes should 
include androgens into the interplay of IGF1 and sex 
hormones.
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Core tip: Insulin-like growth factor 1 (IGF1), estrogen, 
and androgens are known to have neuroprotective 
properties. Fluctuations in these hormones is observed 
in patients with diabetes, varies with sex, and may 
contribute to abnormalities in brain integrity and cogni
tive impairment typical of the disease. While the neuro
protective coupling of estrogen and IGF1 has been 
studied extensively, little research has focused similarly 
on androgens. Furthermore, research investigating 
the IGF1-sex hormones relation to diabetes and brain-
health outcomes is minimal. One avenue of approach to 
extend this literature may be to examine sex differences 
by comparison of these hormone levels, brain integrity, 
and cognitive aptitude.
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INTRODUCTION
Diabetes mellitus is a metabolic syndrome known 
for impaired insulin production. This condition is asso
ciated with an abundance of sequelae including car
diovascular disease[1,2], brain atrophy[3,4], and more 
recently, Alzheimer’s disease[5-7]. Over the past thirty 
years, researchers have established strong evidence 
supporting a link between patients with diabetes and 
subsequent cognitive impairments and abnormalities in 
brain integrity. 

While meta-analyses have found inconsistencies in 
the specifics of the literature[8-10], general trends point 
to cognitive impairments and abnormalities in related 
structural and functional brain areas. For example, 
patients with type 1 diabetes (T1D) are frequently 
found to have decreased psychomotor speed, mental 
flexibility, and IQ scores[8,11-13]. T1D patients also often 
show reductions in the volume of regional gray matter 
in areas such as the prefrontal cortex, hippocampus, 
and thalamus[12,14,15]. On the other hand, affected 
skills in type 2 diabetes (T2D) are largely executive 
function, memory, and information processing[16,17]. 
Neuroimaging studies done on T2D patients indicate 
global brain atrophy and microstructural changes[4,7,9,18], 
while findings regarding white matter hyperintensities 
are mixed[3].

In both T1D and T2D these decrements are con­
sidered mild across most age groups[8,11,19]. The severity 
of cognitive impairments and brain abnormalities are 
correlated with age of onset in T1D[11] and duration 

of the disease in T2D[20,21]. Age is also a risk factor as 
deficits in learning and memory have been reported to 
worsen considerably in T2D patients above 65 years of 
age[22]. Findings suggest the decreased brain volume 
in patients with T2D is correlated with increased insulin 
resistance[23], and both brain atrophy and microstructural 
changes are associated with impaired cognitive pe
rformance[18,20]. 

These data lend support to the idea that brain 
integrity is compromised in patients with both T1D 
and T2D, but also emphasize the need to integrate 
peripheral biomarkers associated with neuroprotection 
into diabetes research in humans. Various hormones 
altered as a result of diabetes have been recognized 
as neuroprotective, including insulin-like growth factor 
1 (IGF1) and sex hormones. Research has revealed 
differences in the serum levels of IGF1 and gonadal 
hormones in diabetic patients[24-27], with clear sex 
differences in the effects of androgens and estrogens on 
the brain in animal models[28]. 

There is currently a movement in biomedical re
search to incorporate analyses of sex differences into 
studies[29-31]; however, studies on brain integrity of dia
betic patients often fail to examine men and women 
separately. This is despite findings of sex-specific 
differences in regional brain volume between men and 
women[32-34]. For instance, DTI scans have also reported 
white matter hyperintensities are different in men 
and women diabetics[35]. Others have shown that, by 
combining the data of men and women, T2D patients 
had smaller gray matter volume with larger ventricular 
volume and white matter lesions compared to healthy 
controls. However, when the sexes were analyzed 
separately, the data for men failed to reach statistical 
significance[36]. 

Because sex hormones can act on similar molecular 
pathways as IGF1, and IGF1 is functionally related to 
insulin and diabetes, there is a need to further investigate 
how these hormones interact in the brains of diabetic 
patients. The relationship between estrogen and IGF1 
is the most extensively studied in the neuroprotection 
literature[37-39], but it has yet to expand experimentally 
into diabetes research. Furthermore, little attention 
has been paid to androgen-IGF1 interactions, even in 
the animal literature, despite the similar mechanisms 
underlying estrogenic and androgenic neuroprotection.

DIABETES AND IGF1 RELATION
IGF1 has a hypoglycemic response similar to insulin 
and, in some circumstances, is capable of modulating 
insulin receptor (IR) activities. Research has demon­
strated that low IGF1 is associated with T1D and 
T2D[40-42]. Moreover, genetic studies suggest decreased 
IGF1, due to a genetic polymorphism in the promoter 
region of the IGF1 gene, increases the risk of glucose 
intolerance and T2D[43]. 

On the other hand, T2D has also been correlated 
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with excessively high levels of IGF1. For example, 
people with acromegaly - a condition known for its 
overproduction of pituitary growth hormone - have both 
high levels of IGF1 and a greater risk of developing 
T2D[44]. These findings were corroborated by two large 
studies from Denmark (n = 3354) and Germany (n 
= 7777) which found U-shaped associations between 
IGF1 levels and the likelihood of developing insulin 
resistance and T2D[24,25]. Moreover, treatment with IGF1 
can improve glycemic control in patients with T1D and 
T2D[45,46], which may suggest an optimal range of IGF1 
for normal glycemic control.

Although IGF1 is synthesized in the brain, peripheral 
values cannot be used to accurately infer brain levels 
of IGF1 in humans as local synthesis of IGF1 in the 
brain appears not to correlate with the quantity of 
IGF1 receptors (IGF1R)[47-49]. Evidence from animal 
models suggest that brain atrophy and loss of DNA are 
prevented following injection of insulin and IGF1, but 
not insulin alone, into cerebrospinal fluid of mice[50]. 
Thus, proper systemic levels of IGF1 and its transport 
from the periphery into the brain is likely necessary for 
the maintenance of various cognitive processes[51].

Collectively, these data support the involvement of 
IGF1 in diabetes but also point to an “optimal range” of 
IGF1. Future research should examine the significance 
of an optimal peripheral range in the development 
and maintenance of diabetes and cognitive decline. 
Moreover, there is a need for data on the role of central 
vs peripheral IGF1 levels and the subsequent impact on 
cognitive impairment and brain atrophy.

THE IGF1 SYSTEM
Transportation
IGF1 is a polypeptide, structurally similar to insulin, 
that is released in response to growth hormones 
secreted by the anterior pituitary[52]. While synthesized 
predominantly by hepatocytes in the liver and released 
into general circulation, both paracrine and autocrine 
functions contribute through local tissue synthesis of 
IGF1. The concentration of IGF1 is greatest during 
perinatal development and decreases markedly into 
adulthood. IGF1R are expressed in nearly all neural cells 
of the CNS, being most highly expressed in the cortex, 
hippocampus, cerebellum, brainstem, hypothalamus, 
and spinal cord[53].

The blood brain barrier and blood-cerebrospinal 
fluid barrier are the two primary routes involved with 
transporting systemic IGF1 into the brain. Both barriers 
utilize lipoprotein receptor-related proteins along with 
IGF1R as transporters to enter the brain[54,55]. However, 
the bioavailability of IGF1 is largely determined by the 
amount of hormone bound to IGF binding proteins 
(IGFBPs). Most circulating IGF is bound by IGFBPs, 
which are proteins that control the distribution and 
functional capabilities of IGF1 throughout the body. 
Six different IGFBPs modulate the activity of IGFs via 
binding affinities exceeding that of its respective receptor 

and, thus, help regulate the amount of IGF1 that enters 
the brain[56]. 

Signaling pathways 
The role of IGF1 is dependent on its binding to insulin-
like peptide receptors. The three most important include 
the IGF1R, IR, and a hybrid receptor formed from 
heterodimer α-β IR and IGF1R subunits[53,57]. These 
receptors are important to the functional efficacy of IGF1 
and have defined downstream molecular pathways. As 
part of the tyrosine kinase receptor family, activation 
of IGF1R leads to the signaling of either the mitogen-
activated protein kinases-extracellular signal-related 
kinase (MAPK-ERK) or phosphoinositide 3-kinase 
(PI3K)-Akt pathways[53,57]. These pathways are involved 
in several important cellular processes including the 
regulation of gene transcription, apoptosis, oxidative 
stress, and cellular proliferation and differentiation. 

The affinity of IGF1 varies among the three rece­
ptors with the highest affinity for IGF1R. Activation of 
the IGF1R is capable of directly stimulating the RAS-ERK 
pathway, leading to the modulation of gene transcription 
by way of activating ETS-like transcription factor, 
ELK1[57]. The capacity of insulin-like peptide receptors to 
initiate downstream molecular activity is modified in part 
by the recruitment of insulin receptor substrate (IRS) 
scaffolding proteins[57-59]. This scaffolding helps adjust 
pathway choice following receptor phosphorylation. 
The result is activation of PI3K-Akt and subsequent 
expression of downstream effectors, including glycogen 
synthase 3 kinase (GSK3β) and mammalian target of 
rapamycin[53,57,60]. 

Relationship to the insulin system
IGF1 acts primarily through binding to the IGF1R, but 
also shares with insulin the capacity to bind the IR and 
hybrid receptor[53,56,57]. Insulin is produced exclusively by 
β-cells of the pancreas and, hence, is strictly transported 
in the systemic circulation. The amount of insulin 
capable of entering the brain varies considerably[54,55]. 
Unlike IGF1, insulin appears not to be locally synthesized 
in adult brain cells[53,56]. Similar to IGF1, IR located 
on endothelial and epithelial cell membranes allow 
insulin to be transported into the brain from systemic 
circulation. IRs are concentrated mostly in the olfactory 
bulb, cerebral cortex, hypothalamus, hippocampus, and 
cerebellum[55]. The movement of systemic insulin into 
the brain is not controlled by binding proteins. 

Both insulin and IGF1 produced in the periphery 
contribute to varied physiological processes. Proper 
peripheral IGF1 activation is necessary for insulin 
secretion from the pancreas and, hence, is implicated 
in many facets of diabetes[61]. However, their functions 
differ once entering the brain. IGF1R are expressed 
at notably higher rates in the brain than the rate IGF1 
is synthesized. This differential suggests that active 
transport of IGF1 into the brain is required to furnish 
sufficient IGF1 for proper neuronal function[47-49]. For 
example, peripheral IGF1 supplies the brain with 

Huffman J et al . IGF1 and sex hormones in neuroprotection



48 February 15, 2017|Volume 8|Issue 2|WJD|www.wjgnet.com

information regarding body mass, is related to neural 
plasticity and cognitive processes, and attenuates cog
nitive impairment induced by diabetes[51,62,63]. Deficien­
cy of IGF1 can also lead to hippocampal atrophy and 
impaired learning[64]. Indeed, IGF1 in the brain is 
required for proper tissue growth in both the brain and 
periphery, as well as sufficient glucose regulation and 
insulin sensitivity[65,66].

Insulin in the periphery is well-known for its role in 
glucose regulation and communication with the brain to 
maintain energy homeostasis. Similar to IGF1, insulin 
is involved in modifying BBB permeability in the brain[55] 
with T2D patients showing greater permeability of the 
BBB[67]. Insulin also acts on the PI3K and MAPK signaling 
cascades to enhance neuronal survival, plasticity, and 
subsequent cognitive processes[55,68,69]. With that said, 
insulin does not necessarily regulate glucose activity in 
neuronal cells after entering the brain. Rather, insulin 
modulates energy homeostasis through its actions at 
the level of the hypothalamus[70].

INTEGRATING SEX HORMONES INTO 
DIABETES AND IGF1
Diabetes is associated with imbalances in sex steroid 
hormone levels. This is not surprising as androgens 
and estrogens are known to play an important role in 
body composition[71] while maintaining glucose and 
lipid homeostasis[72,73]. Research into these imbalances 
suggests a complex relation between estradiol (E2) 
and insulin insensitivity. Several studies have reported 
that postmenopausal women with T2D have increased 
levels of circulating E2[27,74,75]. Elevated E2 has been 
correlated with the development of insulin resistance 
and T2D in these women[76,77]. Nevertheless, there are 
at least two studies that have shown inconsistencies 
between E2 levels and the development of diabetes in 
postmenopausal women[78,79].

There is also a link between high levels of E2 and 
diabetes in men. Diabetic men have shown relative
ly high basal levels of E2[27,78], while men with higher 
levels of circulating E2 have an increased risk of develop
ing T2D[80]. Although this may simply be a product 
of higher body fat content as adrenal androgens are 
readily converted to E2 in adipose tissue[81-83], two stu
dies reported E2 results in men were independent of 
obesity[78,80].

Findings with animal models suggest an opposite 
conclusion for E2 and diabetes, at least during reproduc
tive ages. Male mice with streptozotocin-induced insulin 
insensitivity are more likely to develop diabetes than 
their female cohorts. This increased risk of diabetes in 
the males can be attenuated with E2 supplements[84]. 
Also, mice lacking the alpha subtype of estrogen rece
ptor (ERα) have been reported to develop insulin insensi
tivity[85]. In contrast, these data in animals mirror those 
from postmenopausal women in which glucose homeo
stasis was positively impacted with estrogen therapy in 

the short term[86].
Sex differences in androgen-diabetes relations 

have also been reported. Postmenopausal women with 
diabetes displayed elevated circulating testosterone 
(TS) levels[27,75]. Reports suggest that premenopausal 
women with higher levels of TS[76,79], as well as female 
mice administered the androgen[84], had a greater risk 
of developing diabetes. Another example is the link 
between T2D development and hyperandrogenism 
experienced by patients with polycystic ovarian synd
rome[87]. Still, much like E2, there are also studies that 
dispute these reports, particularly in postmenopausal 
women[77,78].

A clear sex difference is also indicated in that 
diabetic men tend to have either lower total, free, or 
bioavailable TS than healthy men[27,88,89]. Indeed, men 
with the highest levels of TS were at the lowest risk 
and men with lowest levels of TS were at highest risk 
for developing T2D[78,79,90]. Moreover, men undergoing 
androgen deprivation treatments for prostatic cancer 
had a greatly increased risk of developing T2D[91]. Yet 
again, these reports are not without contradiction[92] and 
some studies found this relationship to be dependent on 
obesity[80,93].

Taken together, there are clear inconsistencies in 
the findings on sex hormones and diabetes. There 
is also an apparent lack of research focusing on sex 
hormones in premenopausal diabetic women that 
should be addressed[26]. It is again important to note 
that many studies fail to acknowledge the possible 
relation of sex hormones to the IGF1 system. Findings 
with serum E2 data are consistent with findings from 
meta-analyses examining IGF1[24,25]. Their proposed 
U-shaped association of IGF1 and T2D fits into the well-
defined mechanistic relationship between E2 and IGF1, 
described in more detail below. The relation between sex 
hormones and IGF1 suggests that a delicate hormonal 
balance is likely an important facet of diabetes-induced 
brain and cognitive impairment. 

NEUROPROTECTION: SEX HORMONES 
AND IGF1
Estrogen and IGF1
An intriguing feature of neuroactive hormones is their 
ability to protect the CNS from damage, especially in 
regards to estrogen. ER activation is implicated in the 
maintenance of various metabolic processes that are also 
associated with diabetes, including glucose homeostasis 
and obesity[94,95]. Only recently has research with animal 
models focused on neuroprotection from IGF1-E2 
interactions. Evidence suggests that neuroprotective 
properties of E2 are directly related to receptor activities 
of insulin-like peptide receptors, mainly IGF1R. E2 and 
IGF1 work in tandem to reciprocally modulate and 
facilitate ER and IGFIR activation of the PI3K-Akt and 
MAPK-ERK signaling cascades[96-100].

IGF1 shows differential sensitivities to the two 
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estrogen receptor subtypes with ERα being more 
sensitive than ERβ[97,101]. Selective inhibition of IGF1R, 
for instance, downregulates ERα expression in the 
hypothalamus, hippocampus, and cerebral cortex, with 
the only significant changes of ERβ occurring in the 
cerebellum[38]. Many glial and neuronal cells in the brain 
express IGF1R and both ER subtypes[102]. In particular, 
ERα is uniquely capable of increasing IGF1R activity of 
downstream PI3K-Akt signaling in rodent models[103,104]. 
ERα activation also increases the binding of p85 and 
IRS-1 regulatory subunits of PI3K and, thus, may be 
one mechanism assisting in Akt pro-survival signaling 
through the IGF1R[39,97] (Figure 1).

Administration of E2 to mice increased IGF1R and 
ERα activity in the brain, enabling activation of IGF1R 
and downstream PI3K-Akt pathway signaling[97]. 
Similarly, IGF1 and insulin modulated ER effects on 
gene transcription and the PI3K-Akt-GSK3β signaling 
cascade[38,98,103,105,106]. GSK3β is a protein kinase known 
particularly well for its role in glycogen synthesis. How
ever, as reviewed by Jacobs et al[60], recent attention has 
turned to the dual pro- and anti-apoptosis capabilities of 
GSK3β regulated through multiple different pathways. 
Indeed, the neuroprotective effects of IGF1 may be 
consequent to Akt-derived inhibition of GSK3β in a 
hypoxic state[107] (Figure 1).

Activation of the MAPK pathway is another impor­
tant signal transduction pathway involved with regula
ting gene transcription and cellular proliferation and 
differentiation, particularly in cancer[108]. However, 
multiple studies have demonstrated that the neuro
protective properties of estrogen are also derived from 
its ability to regulate MAPK signaling in the brain[38]. Both 
estrogen and IGF1 can facilitate MAPK signaling through 
the IGF1R, with IGF1 increasing ERα activities in the 
presence of E2[104]. Akt inhibitors are capable of nullifying 
the neuroprotective effects of IGF1 and E2 regardless of 
MAPK signaling[99,104], while ERK suppression increases 
PI3K-Akt activity via ER and IGF1R heterodimers[39]. 
Thus, it appears the PI3K-Akt pro-survival signaling 
cascade is the most involved with the neuroprotective 
coupling of E2 and IGF1[39].

It is important to note that IGF1 and E2 have a 
remarkable reciprocity. Inhibition of ER activity can 
downregulate IGF1R expression in the hippocampus[109], 
a brain region known to atrophy in patients with dia
betes and glucose intolerance[110-112]. Similarly, IGF1 
has the capacity to upregulate ERα in the hippocam
pus and is impaired following administration of IGF1R 
antagonists[109]. Agonists or antagonists of either 
hormone can respectively facilitate or inhibit the neuro
protective and memory enhancing properties of the 
other[96,109,113-116]. This has led some to suggest that 
cooperation between IGF1R and ER is required for many 
E2-induced neuroprotective processes. The present 
section does not, however, do justice to the complexity 
of the relation between estrogen and IGF1 receptors. 
A fuller explanation can be found in one of several re
views[37-39,101,109,117].

Androgens and IGF1
Far less research has examined a functional link between 
IGF1 and androgens in the brain. This is an unfortunate 
but common trend in neuroendocrinology. Estrogens are 
the most intensely studied gonadal hormone, despite 
estrogens and androgens sharing metabolic pathways 
and functional properties. Much of the current literature 
on IGF1-androgen relations are directed at the periphery, 
particularly prostate cancer and motor systems, for 
which there are a number of recent reviews[118,119]. Few 
studies have examined IGF1-androgen interactions in 
neuroprotection[120,121] and none, to our knowledge, 
have empirically examined this interaction in diabetes. 
Therefore, we have relied on peripheral data, often 
from in vitro experiments, to extrapolate the androgen 
receptor (AR) brain discussion. 

There is evidence that the two main androgens, 
TS and dihydrotestosterone (DHT), are capable of 
neuroprotection through binding the AR[122-126]. Similar 
to ERα, androgen activation of the AR in mouse 
vas deferens epithelial cells can modulate the p85 
regulatory subunits of PI3K and subsequently trigger 
Akt expression (Figure 1). Inhibiting the AR prevents 
these signaling effects[127]. Phosphorylation of MAPK 
and Akt can also increase AR activation in low androgen 
and estrogen concentrations, as well as increase the 
neuroprotective activities of ERα and AR[128]. Recent 
findings showed that DHT, which has a higher affinity 
than TS for the AR, prevents apoptosis in a C6 glial cell 
line through the PI3K-Akt signaling cascade[129]. These 
effects were also impaired by inhibition of PI3K and 
suggest a functional relationship between apoptosis and 
AR activities. 

Interestingly, studies have demonstrated that 
binding of DHT to the transmembrane AR impairs MAPK 
and PI3K signaling and subsequent neuroprotection 
from DHT or E2[130-132]. This suggests that nuclear 
activation of the AR by DHT is likely one mechanism 
behind DHT’s neuroprotective properties[130]. DHT may 
also interact with effectors downstream of ER and 
IGF1R signaling. Both TS and DHT can activate the 
MAPK-ERK signaling cascade[132] which has been shown 
to induce ribosomal S6 kinase (Rsk) expression. Rsk 
signaling can lead to the inhibition of the pro-apoptosis 
Bad protein and the activation of downstream effectors 
including the ER, GSK3β and ELK1[133] (Figure 1).

One possible explanation for the neuroprotective role 
of androgens is the conversion in the steroid metabolic 
cascade of TS into E2 by the enzyme aromatase. That 
is, TS may be involved in neuroprotection only to the 
extent that TS is a precursor for E2, which is capable of 
activating MAPK or PI3K signaling through the ER and 
IGF1R. The aromatization of TS into E2, as well as the 
aromatase enzyme, have been suggested to play an 
important role in neuroprotection[134-139]. 

The ratio of endogenous TS to E2, and subsequent 
influences of aromatized TS, is indeed a topic of 
recent interest[26]. Increased local synthesis of E2 from 
elevated aromatase expression is seen in models 
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of neuroprotection from other brain disorders, e.g., 
stroke[140]. More pertinent to this review, streptozotocin-
induced diabetes causes a considerable reduction in 
aromatase synthesis in female and male reproductive 
systems[141]. Notably, inhibition of aromatase decreases 
E2 and impairs insulin sensitivity and peripheral glucose 
disposal in healthy males[142], although the influence 
this may have on brain integrity and cognitive outcomes 
remains debated[143].

Another explanation places greater emphasis on the 
other pathway in the steroid metabolic cascade leading 
to DHT. Metabolites of DHT, 3α-Diol and 3β-Diol, are also 
bioactive and may bind the ER or insulin-like peptide 
receptors to initiate MAPK or PI3K signaling cascades. 
Indeed, research shows that 3α-Diol stimulated PI3K-
Akt signaling enhances cell survival in the prostate[144]. 
Similarly, DHT metabolites may influence transcriptional 
activities of nuclear ER by modulating ER-induced MAPK 
or PI3K signaling cascades. 

Few in vivo studies examining these sex steroid 
metabolites have focused on MAPK or PI3K signal 
cascades in the brain. There is, however, evidence 
that 3α-Diol inhibits protein kinase A expression in the 
rat hippocampus[145]. Others have reported that strep

tozotocin-induced diabetic mice had lower levels of TS 
and 3α-Diol in the cerebral cortex, and lower levels of 
DHT and 3α-Diol in the spinal cord[146]. It is still unclear, 
though, whether 3α-Diol and 3β-Diol interact with or 
initiate the MAPK or PI3K signaling cascades following 
activation of the ER, AR, or, possibly, IGF1R.

None of these explanations clarify fully the ability of 
the AR to directly trigger these signaling cascades. We 
do not aim to discount the neuroprotective mechanisms 
of ER and AR, or the clear link between E2 and IGF1 
processes in neuroprotection. Rather, we simply sug­
gest that androgen-derived neuroprotection may be 
intertwined with IGF1, the activation of insulin-like 
peptide receptors, and/or the IGF1R and ER coupling. 
Given the common signaling pathways between these 
hormones, we suggest future research should aim to 
include androgens and AR activities into the ER-IGF1R 
neuroprotective coupling, as well as serum comparisons 
in brain-health outcomes of diabetic patients.

CONCLUSION
The reciprocity of IGF1 and estrogen in neuroprotective 
processes is well-established in cell cultures and 

Figure 1  Similar signaling cascades involved with neuroprotection for insulin-like peptides and sex hormones. The insulin receptor (IR), insulin-like growth 
factor 1 receptor (IGF1R), and insulin-IGF1 hybrid receptor enact their neuroprotection through the mitogen-activated protein kinases-extracellular signal-related 
kinase (MAPK-ERK) or phosphoinositide 3-kinase (PI3K)-Akt pathways signaling cascades. Although IGF1R can directly activate the RAS-ERK pathway, both 
the insulin-like peptide receptors and the estrogen receptor alpha (ERα) firstly interact with insulin receptor substrate 1 (IRS-1) scaffolding proteins. ERα and the 
androgen receptor (AR) can also directly modulate PI3K-Akt and MAPK-ERK signaling. Both IRS-1 and p85 binding of PI3K are increased with ERα activation, 
leading to downstream Akt-derived inhibition of glycogen synthase kinase 3 (GSK3) and mammalian target of rapamycin (mTOR). GSK3, specifically, is involved with 
glycogen synthesis, while both effectors are involved in apoptosis. A similar effect may occur with AR’s ability to modulate p85 binding to PI3K. AR-induced MAPK-
ERK signaling also results in ribosomal S6 kinase (Rsk) expression that can inhibit the pro-apoptosis bcl-2-associated death promoter protein, as well as effects 
on the ER, GSK3, and the ETS-like transcription factor, ELK1. Solid black arrows indicate downstream interaction. Dashed black arrows represent the influence of 
kinases or proteins on the cellular environment. Dashed blue arrows represent the binding capabilities of IGF1 and insulin across all three receptor types.
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animal models[38]. Interactions between androgens 
and IGF1 may also play an important role in the E2-
IGF1 neuroprotective coupling. Both estrogens and 
androgens enact their neuroprotection through similar, 
but not identical, signal transduction pathways. Recog­
nition of this has led us to consider the possibility that 
these sex hormones may work together with IGF1 and 
insulin-like peptide receptors to modulate MAPK and 
PI3K signaling and their neuroprotective properties. 

Regulation of MAPK and PI3K activity may also be a 
driving force behind the structural changes, atrophy of 
brain regions, or functional changes, often observed in 
diabetic patients. Drawing conclusions from imaging data 
in humans to those found in animal models is indeed 
difficult. Nevertheless, there is a need for a clearer 
mechanistic explanation grounding the cognitive decline 
and brain abnormalities observed in diabetic patients. 

Future studies in human research on diabetic brain 
integrity should integrate hormone titer measures to help 
substantiate sex differences in brain-health outcomes 
of diabetic patients. This approach may also assist in 
identifying region-specific brain abnormalities resulting 
from fluctuations in IGF1 and sex hormones between 
men and women. Moreover, animal models examining 
the E2-IGF1 coupling in neuroprotection should employ 
streptozotocin-induced diabetes, as well as the possible 
role of androgens and AR activities. These conclusions 
warrant further examination of the variability present in 
cognitive and brain-health outcomes for patients with 
diabetes as a result of sex hormone relations to IGF1, 
insulin, and the insulin-like peptide receptors.
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