World Journal of Gastrointestinal Surgery

World J Gastrointest Surg 2021 October 27; 13(10): 1110-1292

Published by Baishideng Publishing Group Inc

GS WŮ

World Journal of Gastrointestinal Surgery

Contents

Monthly Volume 13 Number 10 October 27, 2021

FRONTIER

1110 Long-term survival outcome of laparoscopic liver resection for hepatocellular carcinoma

Lam S, Cheng KC

OPINION REVIEW

1122 Review of minimally invasive pancreas surgery and opinion on its incorporation into low volume and resource poor centres

Cawich SO, Kluger MD, Francis W, Deshpande RR, Mohammed F, Bonadie KO, Thomas DA, Pearce NW, Schrope BA

MINIREVIEWS

Research progress regarding programmed cell death 1/programmed cell death ligand 1 inhibitors 1136 combined with targeted therapy for treating hepatocellular carcinoma

Zheng LL, Tao CC, Tao ZG, Zhang K, Wu AK, Wu JX, Rong WQ

- 1149 Transanal minimally invasive surgery using laparoscopic instruments of the rectum: A review Kim MJ, Lee TG
- 1166 Current surgical management of duodenal gastrointestinal stromal tumors

Lim KT

1180 Gastric endoscopic submucosal dissection in Western countries: Indications, applications, efficacy and training perspective

De Luca L, Di Berardino M, Mangiavillano B, Repici A

ORIGINAL ARTICLE

Case Control Study

1190 Laparoscopy for Crohn's disease: A comprehensive exploration of minimally invasive surgical techniques Wan J, Liu C, Yuan XQ, Yang MQ, Wu XC, Gao RY, Yin L, Chen CQ

Retrospective Study

1202 Onodera's Prognostic Nutritional Index is a novel and useful prognostic marker for gastrointestinal stromal tumors

Wang H, Xu YY, You J, Hu WQ, Wang SF, Chen P, Yang F, Shi L, Zhao W, Zong L

1216 Utility of preoperative systemic inflammatory biomarkers in predicting postoperative complications after pancreaticoduodenectomy: Literature review and single center experience

Coppola A, La Vaccara V, Caggiati L, Carbone L, Spoto S, Ciccozzi M, Angeletti S, Coppola R, Caputo D

.	World Journal of Gastrointestinal Surgery
Conte	Monthly Volume 13 Number 10 October 27, 2021
1226	Low serum albumin may predict poor efficacy in patients with perforated peptic ulcer treated nonoperatively
	Liang TS, Zhang BL, Zhao BB, Yang DG
1235	Oesophageal adenocarcinoma: In the era of extended lymphadenectomy, is the value of neoadjuvant therapy being attenuated?
	Park JS, Van der Wall H, Kennedy C, Falk GL
1245	Outcomes of reduction hepatectomy combined with postoperative multidisciplinary therapy for advanced hepatocellular carcinoma
	Asahi Y, Kamiyama T, Kakisaka T, Orimo T, Shimada S, Nagatsu A, Aiyama T, Sakamoto Y, Kamachi H, Taketomi A
1258	Development and validation of a prediction model for deep vein thrombosis in older non-mild acute pancreatitis patients
	Yang DJ, Li M, Yue C, Hu WM, Lu HM
	SCIENTOMETRICS
1267	Immunotherapy after liver transplantation: Where are we now?
	Au KP, Chok KSH
	CASE REPORT
1279	Hodgkin lymphoma masquerading as perforated gallbladder adenocarcinoma: A case report
	Manesh M, Henry R, Gallagher S, Greas M, Sheikh MR, Zielsdorf S
1285	Whole circumferential endoscopic submucosal dissection of superficial adenocarcinoma in long-segment Barrett's esophagus: A case report
	Abe K, Goda K, Kanamori A, Suzuki T, Yamamiya A, Takimoto Y, Arisaka T, Hoshi K, Sugaya T, Majima Y, Tominaga K,

Iijima M, Hirooka S, Yamagishi H, Irisawa A

Contents

Monthly Volume 13 Number 10 October 27, 2021

ABOUT COVER

Editorial Board Member of World Journal of Gastrointestinal Surgery, Ramón Cantero, MD, PhD, Associate Professor, Surgeon, Department of Surgery, La Paz Universitary Hospital, Pozuelo de Alarcon 28223, Madrid, Spain. ramon.cantero@salud.madrid.org

AIMS AND SCOPE

The primary aim of World Journal of Gastrointestinal Surgery (WJGS, World J Gastrointest Surg) is to provide scholars and readers from various fields of gastrointestinal surgery with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGS mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal surgery and covering a wide range of topics including biliary tract surgical procedures, biliopancreatic diversion, colectomy, esophagectomy, esophagostomy, pancreas transplantation, and pancreatectomy, etc.

INDEXING/ABSTRACTING

The WJGS is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Current Contents/Clinical Medicine, Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2021 edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJGS as 2.582; IF without journal self cites: 2.564; 5-year IF: 3.378; Journal Citation Indicator: 0.53; Ranking: 97 among 212 journals in surgery; Quartile category: Q2; Ranking: 73 among 92 journals in gastroenterology and hepatology; and Quartile category: Q4.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Rui-Rui Wu; Production Department Director: Xiang Li; Editorial Office Director: Ya-Juan Ma.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Gastrointestinal Surgery	https://www.wjgnet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 1948-9366 (online)	https://www.wjgnet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
November 30, 2009	https://www.wjgnet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Monthly	https://www.wjgnet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
Shu-You Peng, Varut Lohsiriwat, Jin Gu	https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/1948-9366/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS
October 27, 2021	https://www.wjgnet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2021 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

S WJ

World Journal of Gastrointestinal Surgery

Submit a Manuscript: https://www.f6publishing.com

World J Gastrointest Surg 2021 October 27; 13(10): 1110-1121

DOI: 10.4240/wjgs.v13.i10.1110

ISSN 1948-9366 (online)

FRONTIER

Long-term survival outcome of laparoscopic liver resection for hepatocellular carcinoma

Shi Lam, Kai-Chi Cheng

ORCID number: Shi Lam 0000-0003-3754-9657; Kai-Chi Cheng 0000-0002-6440-7825.

Author contributions: Cheng KC designed the research study; Lam S analyzed the data and wrote the manuscript; and all authors have read and approved the final manuscript.

Conflict-of-interest statement:

There are no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: China

Peer-review report's scientific

Shi Lam, Kai-Chi Cheng, Department of Surgery, Kwong Wah Hospital, Hong Kong, 999077, China

Corresponding author: Kai-Chi Cheng, FRCS (Ed), Doctor, Department of Surgery, Kwong Wah Hospital, 25, Waterloo Road, Kowloon, Hong Kong, 999077, China. thomascheng@hotmail.com

Abstract

Long-term survival is the most important outcome measurement of a curative oncological treatment. For hepatocellular carcinoma (HCC), the long-term disease-free and overall survival of laparoscopic liver resection (LLR) is shown to be non-inferior to the current standard of open liver resection (OLR). Some studies have reported a superior long-term oncological outcome in LLR when compared to OLR. It has been argued that improvement of visualization and instrumentation and reduced operative blood loss and perioperative blood transfusion may contribute to reduced risk of postoperative tumor recurrence. On the other hand, since most of the comparative studies of the oncological outcomes of LLR and OLR for HCC are non-randomized, it remained inconclusive as to whether LLR confers additional survival benefit compared to OLR. Despite the paucity of level 1 evidence, the practice of LLR for HCC has gained wide-spread acceptance due to the reproducible improvements in the perioperative outcomes and non-inferior oncological outcomes demonstrated by large-scaled, matched comparative studies. Meta-analyses of the outcomes of these studies by multiple systematic reviews have also returned noncontradictory conclusions. On the basis of a theoretical advantage of LLR over OLR in preventing tumor recurrence, the current review aims to dissect from the current meta-analyses and comparative studies any evidence of such superiority.

Key Words: Hepatocellular carcinoma; Laparoscopic hepatectomy; Liver resection; Longterm outcome; Overall survival; Disease-free survival

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Laparoscopic liver resection (LLR) resulted in better perioperative outcomes when compared with open liver resection. However, for long-term outcomes, the

WJGS | https://www.wjgnet.com

1110

quality classification

Grade A (Excellent): 0 Grade B (Very good): B Grade C (Good): 0 Grade D (Fair): 0 Grade E (Poor): 0

Received: March 11, 2021 Peer-review started: March 11, 2021 First decision: June 14, 2021 Revised: June 14, 2021 Accepted: September 7, 2021 Article in press: September 7, 2021 Published online: October 27, 2021

P-Reviewer: Rakić M S-Editor: Wang JJ L-Editor: A P-Editor: Ma YJ

reported ranges of disease-free survival rate and overall survival rate at 5 years after LLR of hepatocellular carcinoma (HCC) can be as wide as 20%-64% and 47%-95%, respectively. This reflects the heterogeneity of clinical practice and outcome reporting. The purpose of this review is to elucidate the true picture of the oncological efficacy of LLR in the treatment of HCC by critical appraisal of current evidence including metaanalyses and comparative studies.

Citation: Lam S, Cheng KC. Long-term survival outcome of laparoscopic liver resection for hepatocellular carcinoma. World J Gastrointest Surg 2021; 13(10): 1110-1121 URL: https://www.wjgnet.com/1948-9366/full/v13/i10/1110.htm DOI: https://dx.doi.org/10.4240/wjgs.v13.i10.1110

INTRODUCTION

Laparoscopic liver resection (LLR) is widely practiced nowadays for the treatment of hepatocellular carcinoma (HCC). The practice of LLR has propagated on the basis of recommendations by the three international consensus statements published in 2008, 2015 and 2018[1-3]. As of the latest recommendation from the 2018 Southampton consensus[3], LLR is preferred over open liver resection (OLR) in selected cases of HCC because of its better early postoperative outcomes and non-inferior oncological outcomes. This recommendation is supported by findings of meta-analyses and large propensity score-matched retrospective studies comparing LLR and OLR for HCC.

As a curative oncological treatment, disease-free and overall survival are the most important outcome measures of LLR. The reported ranges of disease-free survival rate and overall survival rate at 5 years after LLR of HCC can be as wide as 20%-64% and 47%-95%, respectively. This reflects the heterogeneity of clinical practice and outcome reporting. The purpose of this review is to elucidate the true picture of the oncological efficacy of LLR in the treatment of HCC by critical appraisal of current evidence including comparative studies and meta-analyses. Robotic surgeries and single-port surgeries were excluded because they involved different sets of skills and complexity of operations.

COMPARATIVE STUDIES

It appears to be true that LLR has a non-inferior oncological outcome compared to OLR for HCC - a finding supported by multiple comparative studies, despite the presence of heterogeneity of treatment effect among the studies.

In general terms, the survival outcome of a cancer treatment program is a function of the disease spectrum of patients included and the adequacy of treatment delivery. For HCC, predictors of long-term survival after resection of HCC include factors relating to tumor extent (size, number, macrovascular invasion), tumor biology (microvascular invasion, differentiation grading, serum alpha-fetoprotein level, etc.), ongoing liver damage and technical success of surgery (resection margin, perioperative transfusion, anatomical resection)[4].With accumulation of worldwide experience in LLR, reports to address such factors in the practice of LLR have also been published.

Prior to 2018, all studies comparing outcomes of LLR and OLR were nonrandomized[5-14]. Selection bias has been a significant concern, especially in the earlier cohorts, in which patients included for LLR tended to have more favorable disease for oncologically adequate resections (tumor size, location, width of tumor-free margin)^[5]. Later studies have attempted to ameliorate the impact of selection bias by matching of baseline patient characteristics such as demographic features, tumor status, degree of cirrhosis, American Society of Anesthesiologists (ASA) class, procedure types etc. in the LLR and OLR group. Nevertheless, a wider resection margin is often observed in the resected specimens from the LLR group. As acknowledged by Belli *et al*[5], this could be due to the selection of tumors with greater distance of tumor from the vital vasculature for LLR – an important preoperative consideration that is difficult to quantify for the performance of matching. Interestingly, such difference is less frequently observed in the more recent reports,

probably due to the more liberal inclusion of patients for LLR with accumulation of technical experience (Tables 1 and 2).

After 2018, 21 comparative studies of LLR vs OLR for HCC can be identified [15-35] (Tables 1-4). Only one was a randomized controlled trial[18], while the rest were nonrandomized. Studies with special focus of patient population included major hepatectomy in six, minor hepatectomy in one, cirrhosis in four, small tumors in two, multiple tumors in one and elderly patients in one. All but three of the nonrandomized studies adopt propensity score-matching (Table 3). Sporadic differences between the LLR and OLR group were still identifiable in some reports, including: Tumor size in the studies by Li et al[25] and Tsai et al[23]; prevalence of cirrhosis in the study by Guro et al[17]; ASA class in the study by Yoon et al[29] and procedure magnitude in the study by Tsai *et al*[23].

The only randomized controlled trial was performed in Egypt[18]. They included patients with Child's A solitary HCC equal to or less than 5 cm, located in the peripheral segments of the liver II-VI, at a distance from the line of transection, hepatic hilum, and the vena cava and treatable by limited resection (< 3 segments). Exclusion criteria were tumors close to the portal pedicle or hepatic veins, located in segments I, VII and VIII, an ASA score exceeding 3, a decompensated cirrhosis (Child B or C), esophageal varices grade > 2, and a platelet count < 80 × 10⁹/L, and patients with previous upper abdominal surgeries. On sample size calculation, a total of 42 patients was required in the study to detect a change of mean hospital stay duration from 8.5 d among patients subjected to OLR to 4.0 d among patients subjected to LRR. The estimated sample size was made assuming 95% confidence interval (CI) and 80% power of study. Eventually, they recruited a total of 50 patients with 25 patients in each group. The LLR group achieved similar disease-free survival to the OLR group (P = 0.849). The 1- and 3-year disease-free survival was 88% and 59%, and 84% and 54% for the LLR and OLR groups, respectively. However, survival outcomes were secondary endpoints, with such a small sample size, these survival outcomes were subject to type II error.

Apart from two studies by Tsai *et al*^[23] and Ho *et al*^[35], all of the oncological outcomes at various time spans were not statistically different. For LLR, the reported ranges of 1-, 3- and 5-year overall survival and disease-free survival were 89.9%-100%, 68%-100% and 45.3%-94.5%, and 67%-93.8%, 36%-79.6% and 24%-67.4%, respectively. In the study by Tsai et al[23], the group categorization did have some bias because of the earlier stage of HCC (stage I + II: 85.0% vs 57.4%; P < 0.001) and lower rate of major resection (22.2% *vs* 45.6%; *P* < 0.001) in the LLR group compared with the OLR group. When long-term oncological outcomes of the LLR and OLR group were assessed in terms of stage-specific overall survival and disease-free survival, the result did not differ significantly. On the other hand, in the study by Ho et al[35], the 5-year overall survival for LLR was better than OLR (84.9% vs 61.1%; P = 0.036), but disease-free survival was similar (20.0% vs 22.2%; P = 0.613). The survival advantage of LLR could be contributed by the five perioperative mortalities in the OLR group, which occurred all in the first half of the hepatectomy experience. In other words, better perioperative outcome of LLR may contribute to better long-term survival outcome.

No qualitative association between the baseline or operative factors and oncological outcomes is immediately appreciable. Of note, transfusion requirement and margin involvement are rare events for both LLR and OLR nowadays in most of the reported series.

META-ANALYSES

Due to the paucity of randomized controlled trial, meta-analyses of non-randomized comparative studies with low risk of bias represented the highest level of evidence until recently. The majority of meta-analyses were published after the Morioka consensus, although evidence of four meta-analyses have been adopted by the consensus[2]. A summary of the findings of these four meta-analyses is provided in the systematic review of Morise et al[36] - there is no difference in disease-free and overall survival with LLR or OLR for HCC, a result with low impact of statistical heterogeneity. This is probably because the studies included four meta-analysis of oncological outcome published between the release of Louisville and Morioka consensus statements, when LLRs were mainly performed for resection of lesions in the antero-lateral segments[37-41].

Following the Morioka consensus meeting in 2014, there was a bloom of publications reporting experience worldwide on the practice of LLR for the treatment of

WJGS | https://www.wjgnet.com

Table 1 Summary of comparative studies: Operative outcomes													
Def	Blood los	s in mL /trans	fused %	Resecti	on margin in	n mm	R0 resection rate %						
Ref.	LLR	OLR	Р	LLR	OLR	Р	LLR	OLR	Р				
Belli et al <mark>[5</mark>]	297	580	< 0.001				100	93.6	0.057				
Tranchart <i>et al</i> [6]	364.3	723.7	< 0.0001	10.4	10.6	NS							
Lee et al[7]	150	240	NS	1.8	1.05	0.016	97	98	NS				
Ahn et al <mark>[8</mark>]	350	355	NS	17	13	NS							
Memeo <i>et al</i> [9]	200	200	NS	10	6	0.02							
Lee <i>et al</i> [10]	300	700	0.004	13	10	0.25							
Yoon <i>et al</i> [<mark>11</mark>]	3.4%	7.5%	0.04	2.03	1.12	0.01							
Xiao et al[<mark>12</mark>]	272	450	0.001				100	98	NS				
Sposito <i>et al</i> [<mark>13</mark>]			NS	6	5	NS	98	98	NS				
Cheung et al[14]	100	300	< 0.001				100	93.1	NS				
Ryu et al[<mark>15</mark>]							95	83	NS				
Rhu et al[<mark>16</mark>]	13%	2%	NS	13	12	NS							
Guro et al[<mark>17</mark>]	1543	1248					97.6	94.6	NS				
El-Gendi <i>et al</i> [<mark>18</mark>]	230	250	NS				100	100	NS				
Inoue <i>et al</i> [<mark>19</mark>]	100	380	< 0.0001	7	5	NS							
Kim <i>et al</i> [20]	300	250	NS	13	15	NS							
Deng et al[<mark>21</mark>]	150	380	< 0.001				98	90	NS				
Wu et al[22]	150	250	NS										
Tsai et al[<mark>23</mark>]	363	839	< 0.001	5	5.2	NS							
Di Sandro <i>et al</i> [24]	150	200	0.007	5	5	NS							
Li et al <mark>[25</mark>]	328	396	NS										
Kim <i>et al</i> [<mark>26</mark>]	152	245		8.5	8.4	NS							
Chen et al[<mark>27</mark>]	300	500	< 0.1				97	100	NS				
Untereiner <i>et al</i> [28]	150	250	NS				91	85	NS				
Yoon <i>et al</i> [<mark>29</mark>]	226	251					98	98					
Peng et al[<mark>30</mark>]	200	300	NS				100	100	NS				
Yamamoto <i>et al</i> [<mark>31</mark>]	87	223		3	3	NS							
Lee <i>et al</i> [<mark>32</mark>]	19%	28%	NS	9	16.5	NS							
Navarro et al <mark>[33</mark>]	234	454	0.021				100	100	NS				
Delvecchio et al[34]	13%	25%	NS				95	87	NS				
Ho <i>et al</i> [<mark>35</mark>]	500	725	NS	5	3	0.043	91	91	NS				

LLR: Laparoscopic liver resection; NS: Statistically not significant; OLR: Open liver resection.

HCC. While level 1 evidence was lacking at that time, strong recommendations were made regarding the non-inferiority of both minor and major LLR in short-term postoperative and long-term outcomes, as the relative benefits of LLR over OLR had appeared to be reproducible in the larger-scaled, propensity score-matched nonrandomized comparative studies conducted worldwide[2]. Yet in 2018, the very "concern of selection bias" that is inherent to non-randomized studies was then resolved with the publication of the OSLO-COMET trial, which convincingly showed that LLR has superior perioperative outcomes, non-inferior oncological safety, similar cost and better gain of life quality to OLR for the treatment of colorectal cancer liver metastases[42].

Baisbidena® WJGS | https://www.wjgnet.com

Table 2 Summary of comparative studies: Baseline clinical-pathological features of both treatment groups

Ref.	Difference between	ICG,	%	Child A/B/	C, %	Tumo	or size in cm	Microvascular invasion, %			
Ket.	study groups	LLR	OLR	LLR	OLR	LLR	+/- SD/95%CI	OLR	+/- SD/95%CI	LLR	OLR
Belli et al[5]	Tumor size, AFP level, margin width			91/9/0	93.6/6.4/0	3.8	+/-1.3	6	+/-2.3	37	39.2
Tranchart <i>et al</i> [<mark>6</mark>]						3.6	+/-1.75	3.7	+/-2.1	33.3	35.7
Lee et al[7]	Cirrhosis, previous abdominal surgery, margin width					2.5	1.5-9	2.9	1.2-9		
Ahn et al <mark>[8</mark>]		14.5	13.1			2.6	+/-1.5	2.8	+/-1.2	15.7	19.6
Memeo et al[9]	Margin width			98/2/0	96/4/0	3.2	0.9-11	3.7	0.1-15		
Lee <i>et al</i> [<mark>10</mark>]	Margin width			97.6/2.4/0	97.6/2.4/0	5.4	2-16	4.4	2-14	52.5	43.5
Yoon <i>et al</i> [<mark>11</mark>]	Margin width	12.1	12.4			2.87	0.7-4.9	3.04	0.2-4.9		
Xiao et al[<mark>12</mark>]				95/5/0	96.5/3.5/0	4.22	+/-2.05	4.3	+/-1.49		
Sposito <i>et al</i> [<mark>13</mark>]		15	15	98/2/0	95/5/0	2.6	1-6.5	2.2	1-8.5	56	37
Cheung <i>et al</i> [14]	Age			100/0/0	96.6/3.4/0	3	1.2-5	3.5	1.5-8.5		
Ryu et al[<mark>15</mark>]		11.9	14			3.9	1.1-17	4.9	1-14.5	30	40
Rhu et al[<mark>16</mark>]				37.7/0/0	37.1/0/0	3.1	+/-5.7	3.1	+/-1.7	56.6	58.8
Guro et al <mark>[17</mark>]	Cirrhosis, tumor size			95/2.4/2.4	88/9.9/7.2	4.1	+/-2.4	6.3	+/-3.8		
El-Gendi <i>et al</i> [<mark>18]</mark>				100/0/0	100/0/0	3.3	+/-0.57	3.4	0.59	60	68
Inoue et al[<mark>19</mark>]				89/11/0	100/0/0	2.5		2.6		12	13
Kim <i>et al</i> [<mark>20</mark>]		9.3	8			2.8		2.8		25	23
Deng et al[<mark>21</mark>]	Procedure type			100/0/0	100/0/0	2.5		2.8		10.2	16.6
Wu et al <mark>[22</mark>]						3.5	0.9-12.5	3.5	0.8-11.3	38.4	41.9
Tsai <i>et al</i> [<mark>23</mark>]	Procedure magnitude, tumor size			93/7/0	98/2/0	3.9	+/-2.6	7.2	+/-5.3		
Di Sandro <i>et al</i> [<mark>24</mark>]				87/13/0	84/16/0	2.5	2-3.0	2.5	1.8-3.3	29.3	29.3
Li et al[<mark>25</mark>]	Tumor size					4	+/-2	5.7	+/-3	17	30
Kim et al[<mark>26</mark>]		10.4	12.8			3	+/-2.1	3.2	+/-3.14	22.2	27.8
Chen et al[27]		6.9	6.9			7.3	+/-3.4	7.6	+/-4.2	37	32
Untereiner <i>et</i> al[<mark>28</mark>]				64/0/0	73/0/0	3	2.1-4.9	3	2.3-5		
Yoon <i>et al</i> [29]	ASA class, medical disease	13.6	14	66.8/0/0	65.4/0/0	2.83	1.28	2.9	1.31	14.3	15.7
Peng et al[<mark>30</mark>]				94/6/0	91/9/0	4.8	2-8.5	5.5	2-8.5	30	30
Yamamoto et al[<mark>31</mark>]				88/22/0	84/16/0	1.7	1.2-4.2	2	0.7-9.9		
Lee et al <mark>[32</mark>]				90/10/0	91/9/0	2.5	7-14.5	2.6	1.1-14.5	8.6	8.6
Navarro <i>et al</i> [33]						3.5	8.5	3.3	8.1	51.2	51.2
Delvecchio et al[<mark>34</mark>]				97/3/0	98/2/0	4	3.0-16	7	1.5-14		
Ho et al <mark>[35</mark>]	Hepatitis C carrier status			100/0/0	92/8/0	3.5	2-5	4	3-5	28.9	30

AFP: Alpha-fetoprotein; ASA: American Society of Anesthesiologists; CI: Confidence interval; ICG: Indocyanine green retention at 15 min; LLR: Laparoscopic liver resection; OLR: Open liver resection; SD: Standard deviation.

> The question is now left with HCC though, as obvious difference exists between patients with HCC and colorectal liver metastases. As a majority of HCC patients have underlying cirrhosis, liver decompensation and oncological outcomes are HCCspecific outcomes to consider for LLR. Since the first published meta-analysis on the long-term outcomes of LLR for HCC in 2011[43], there have been about 20 metaanalyses on the topic published, 15 of which were published after 2017. Ciria et al[44] published a meta-analysis in 2018 that included 28 non-randomized comparative studies with low risk of bias. In contrast to those included by meta-analyses in the "pre-Morioka era", the studies reviewed by Ciria et al[44] encompassed a much wider spectrum of disease in clinical practice: Three were on major liver resection, twentytwo on minor liver resection, five on Child-Pugh class A cirrhosis, sixteen on solitary tumors and three on unstratified operable patients. For the disease-free and overall survival, meta-analyses could only be performed for studies featuring cirrhotic patients, minor hepatectomy and solitary tumors but not for major hepatectomy. The pooled relative effect of LLR to OLR showed an odds ratio (OR) in favor of LLR for 1year disease-free survival in patients with minor hepatectomy ($l^2 = 66\%$; OR = 0.133; 95% CI: 0.001–0.265; P < 0.048). For patients with Child's A cirrhosis and solitary tumor, no significant relative benefit or harm were found for the 1-, 3- and 5-year disease-free and overall survivals. For patients with major hepatectomy, meta-analysis was not performed due to lack of data. Moderate to high heterogeneity ($l^2 = 17\%$ -66%) was noted among the studies of laparoscopic minor hepatectomy. The highest heterogeneity is among the five studies for compilation of 1-year disease-free survival (I^2 = 66%), and the biggest discrepancy of mean relative effect lies between the study by Cheung et al[14] and Kobayashi et al[45]. This is probably related to the inclusion of recurrent HCC and hybrid or hand-assisted laparoscopic procedures in the study population in the study by Kobayashi et al[45]. Moreover, two studies with the greatest tendency to favor LLR came from the same center [14,46] with overlapping study period and study population (left lateral sectionectomy in 25% and 100% of studied population), giving rise to the concern of overestimation of the relative benefit of LLR.

> The lack of long-term survival data specifically for laparoscopic major hepatectomies in the above meta-analysis was addressed by a recent meta-analysis by Wang et al[47] that included nine studies of the patient population. Interestingly, a favorable result for LLR was again noted in 1-year disease-free survival ($I^2 = 0\%$; OR = 1.55; 95%CI: 1.04-2.31; P = 0.03), but not in disease-free or overall survival in another analyzed timespan. Again, one of the constituent studies for the pooled analysis of 1year disease-free survival is notably out-standing with regard to the tumor recurrence rate in the OLR group, and an apparent reason that is also acknowledged by the author was the significantly bigger tumor size $(6.3 \pm 3.8 vs 4.1 \pm 2.4 cm; P = 0.000)$ included in the OLR arm[17].

> In contrast to most of the meta-analyses showing non-significant difference in overall survival, Jiang et al[48] meta-analyzed studies of cirrhotic patients and found significant relative benefit of LLR in 1-, 3- and 5-year overall survival and 1-year disease-free survival, with only moderate issue of heterogeneity ($l^2 = 36\%-39\%$). The apparent reason for the discrepancy between that study and Ciria et al [44]'s sub-group analyses for cirrhotic patients is that the two reviews included different sets of studies for analyses. The rationale behind study selection is difficult to judge, but Jiang et al [48] excluded the study because the data were not retrievable, which could potentially lead to bias. On the other hand, Ciria et al[44] only included three studies for the analyses of long-term outcome of cirrhotic patients, which may not be powerful enough to detect small effects.

DISCUSSION

Theoretically, LLR has a few advantages over OLR that may potentially give rise to a superior oncological outcome; these include reduced perioperative transfusion and reduced tumor manipulation. Practically, such an effect has not been convincingly demonstrated in the currently available evidence. An overall improvement in the pre-

WJGS | https://www.wjgnet.com

Table 3 Summary of comparative studies: Study design

Ref.	Year	Number of patients		Matching	Study population										
		LLR	OLR		Demographic	Tumor	Cirrhosis	Procedure							
Belli et al <mark>[5</mark>]	2009	54	125	No		< 5 cm, anterolaterally located									
Tranchart et al[<mark>6</mark>]	2010	42	42	Yes											
Lee et al[7]	2011	33	50	Yes				Minor resection							
Ahn et al <mark>[8</mark>]	2014	51	51	Yes		Solitary									
Memeo et al[9]	2014	45	45	Yes			Cirrhosis								
Lee <i>et al</i> [10]	2015	43	86	Yes											
Yoon <i>et al</i> [11]	2015	58	174	Yes		< 5 cm									
Xiao et al[<mark>12</mark>]	2015	41	86	No		Posterosuperior									
Sposito <i>et al</i> [13]	2016	43	43	Yes			Cirrhosis	Minor resection							
Cheung et al[14]	2016	24	29	Yes				Left lateral sectionectomy							
Ryu et al[<mark>15</mark>]	2018	40	30	No				Anatomical resection							
Rhu et al <mark>[16</mark>]	2018	58	133	Yes				Right posterior sectionectom							
Guro et al[17]	2018	67	110	No				Major hepatectomy							
El-Gendi <i>et al</i> [<mark>18</mark>]	2018	25	25	Randomized		< 5 cm	Child A								
Inoue <i>et al</i> [<mark>19</mark>]	2018	61	175	Yes		< 5 cm		Parenchymal sparing hepatectomy							
Kim <i>et al</i> [<mark>20</mark>]	2018	37	37	Yes				Left hepatectomy							
Deng et al[21]	2018	157	157	Yes											
Wu et al <mark>[22</mark>]	2019	86	86	Yes			Cirrhosis								
Tsai et al <mark>[23</mark>]	2019	153	160	Yes											
Di Sandro <i>et al</i> [<mark>24</mark>]	2018	75	75	Yes			Cirrhosis	Minor hepatectomy							
Li et al <mark>[25</mark>]	2019	41	307	Yes				Mesohepatectomy							
Kim et al <mark>[26</mark>]	2018	18	36	Yes		Central									
Chen et al[27]	2019	38	38	Yes				Right hepatectomy							
Untereiner <i>et al</i> [<mark>28</mark>]	2019	33	33	Yes											
Yoon et al <mark>[29</mark>]	2020	217	434	Yes											
Peng et al[<mark>30</mark>]	2019	33	33	Yes		Multiple									
Yamamoto <i>et al</i> [31]	2020	58	197	Yes			Cirrhosis								
Lee <i>et al</i> [32]	2021	58	110	Yes											
Navarro et al <mark>[33</mark>]	2021	106	299	Yes				Major hepatectomy							
Delvecchio <i>et al</i> [34]	2021	38	84	Yes	Elderly			Major hepatectomy							
Ho et al[<mark>35</mark>]	2021	45	90	Yes											

LLR: Laparoscopic liver resection; OLR: Open liver resection.

operative stratification, diverting away of selected patient population to liver transplantation, improved surgical techniques to minimize blood transfusion requirement even in the OLR group, a better medical control of background liver disease activity, etc., might all be possible to ameliorate any marginal survival advantage of LLR over OLR.

Def	1-year OS, %			3-year OS, %			5-year OS, %			1-year DFS, %			3-year	DFS, %		5-year DFS, %		
Ref.	LLR	OLR	Р	LLR	OLR	Р	LLR	OLR	Р	LLR	OLR	Р	LLR	OLR	Р	LLR	OLR	Р
Belli et al[<mark>5</mark>]	94	85	NS	67	53	NS				78	79	NS	52	52	NS			
Tranchart et al[6]	93.1	81.8	NS	74.4	73	NS	59.5	47.4	NS	81.6	70.2	NS	60.9	54.3	NS	45.6	37.2	NS
Lee et al[7]	86.9	98	NS	81.8	80.6	NS	76	76.1	NS	78.8	69.2	NS	51	55.9	NS	45.3	55.9	NS
Ahn et al[<mark>8</mark>]							80.1	85.7	NS							67.8	54.8	NS
Memeo <i>et al</i> [9]	88	63	NS				59	44	NS	80	60	NS				19	23	NS
Lee <i>et al</i> [10]	95.3	93.9	NS	89.7	89.5	NS	89.7	87.3	NS	60.5	81.5	NS	60.3	66.7	NS	60.3	58.6	NS
Yoon <i>et al</i> [11]	95	98	NS	86	84	NS				82	88	NS	63	62	NS			
Xiao et al[<mark>12</mark>]	95.1	89.5	NS	78	76.7	NS				87.8	82.6	NS	70.7	68.6	NS			
Sposito <i>et al</i> [<mark>13</mark>]				75	79	NS	38	46	NS				41	44	NS	25	11	NS
Cheung et al[14]	100	93	NS	85.6	84.1	NS	69.1	77.6	NS	95	69.2	NS	72.8	61.5	NS	51.8	61.5	NS
Ryu et al[15]	89.9	89.9	NS	84.7	68	NS	70.9	63.1	NS	79.5	72.4	NS	58	56.1	NS	42.5	50.4	NS
Rhu et al[<mark>16</mark>]	96.8	96.8	NS	94.5	94.5	NS	94.5	94.5	NS	77.8	77.8	NS	68.3	68.3	NS	62.5	62.5	NS
Guro et al[17]							77.3	60.2	NS							50.8	40.1	NS
El-Gendi <i>et al</i> [18]										88	84	NS	58.7	54	NS			
Inoue <i>et al</i> [19]	97.8	87.9	NS	78.8	70.6	NS				83.8	75	NS	57.5	54.8	NS			
Kim <i>et al</i> [<mark>20</mark>]				93.9	93.8								79.6	91.1	NS			
Deng et al[21]	96.2	96.8	NS	72.6	73.4	NS	45.3	46.9	NS	90.5	91.7	NS	53.7	54.4	NS	24.6	19.9	NS
Wu et al[<mark>22</mark>]	93	81.4	NS	81.4	75.5	NS	69.8	62.8	NS	75.6	69.8	NS	60.5	53.5	NS	44.2	38.4	NS
Tsai et al <mark>[23</mark>]	90.3	85	0.002	82.9	63.6	0.002	78.1	57.6	0.002	72.9	60.8	NS	49.2	43	NS	37.9	31	NS
Di Sandro et al[24]				68	76								44	44	NS			
Li et al <mark>[25]</mark>	96.3	95.3	NS	68.4	90.5	NS				84	87.2	NS	36	59.7	NS			
Kim <i>et al</i> [<mark>26</mark>]	94.4	100	NS	94.4	92.9	NS				93.8	76.5	NS	56.3	41.3	NS			
Chen et al[27]				69.8	74	NS							51.6	57.8	NS			
Untereiner et al[28]				78	79	NS							72	58.6	NS			
Yoon et al <mark>[29</mark>]	98.1	93.8	NS	87	90.8	NS	78.6	84.3	NS	81	85.3	NS	62	64.7	NS	49.1	56.2	NS

Peng et al[30]	95.8	92.8		77	77	NS				71.9	79.1	NS	51.4	46.2	NS			
Yamamoto <i>et al</i> [31]				82	78.4	NS	58.9	62.3	NS				52.6	40.3	NS	24	24.1	NS
Lee et al[32]	96.6	92.8	NS	73.3	93.1	NS	88.8	76.1	NS	84.4	64	NS	60.2	93.1	NS	67.4	63.9	NS
Navarro <i>et al</i> [33]							90	90	NS							58	40	NS
Delvecchio et al[34]	100	95	NS	100	88	NS	77	75	NS	67	79	NS	44	54	NS	29	46	NS
Ho <i>et al</i> [35]	95.6	87.5	0.036	84.9	70.3	0.036	84.9	61.1	0.036	80.0	73.3	NS	40.0	41.1	NS	20.0	22.2	NS

DFS: Disease-free survival; LLR: Laparoscopic liver resection; NS: Statistically not significant; OLR: Open liver resection; OS: Overall survival.

Two observations were made from the current review of meta-analyses and recent comparative studies. Firstly, the non-inferiority in long-term oncological outcome of LLR *vs* OLR has been repeatedly shown by pooling of various combinations of studies, patient populations and LLR procedures. This should partially address the concern of selection bias, as such outcomes are now widely reproducible worldwide. Secondly, while the studies on LLR for HCC are increasingly heterogenous in terms of disease spectrum included and type of procedure performed, the study methodologies adopted are more and more standardized. Thus, future publications are likely to reflect the advanced practice of difficult procedures of high-volume centers, while the diffusion of the technique among lower-volume centers may be underrepresented in the medical literature. This echoes the need of a broad-based prospectively collected registry database for the purpose of ongoing consolidation of evidence and monitoring of the development of LLR.

CONCLUSION

The current review has updated the findings on long-term oncological outcomes of LLR for HCC. Depicted is also a phenomenal development of LLR, in which there is a widespread adoption of an innovative invasive technique long before the availability of level 1 evidence. Complicated surgical procedures, heterogenous diseases presentation and a long learning curve are the main hurdles of conducting a widely generalizable randomized controlled trial. Given the heterogeneity of the data and the lack of randomized controlled trial, it may still be too bold to prioritize LLR in long-term survival, its advantage being more evident in the perioperative period. A broad-based prospective LLR registry keeping safety and oncological outcomes in check may be a better solution to the need of stronger evidence in the field.

REFERENCES

- Buell JF, Cherqui D, Geller DA, O'Rourke N, Iannitti D, Dagher I, Koffron AJ, Thomas M, Gayet B, Han HS, Wakabayashi G, Belli G, Kaneko H, Ker CG, Scatton O, Laurent A, Abdalla EK, Chaudhury P, Dutson E, Gamblin C, D'Angelica M, Nagorney D, Testa G, Labow D, Manas D, Poon RT, Nelson H, Martin R, Clary B, Pinson WC, Martinie J, Vauthey JN, Goldstein R, Roayaie S, Barlet D, Espat J, Abecassis M, Rees M, Fong Y, McMasters KM, Broelsch C, Busuttil R, Belghiti J, Strasberg S, Chari RS; World Consensus Conference on Laparoscopic Surgery. The international position on laparoscopic liver surgery: The Louisville Statement, 2008. Ann Surg 2009; 250: 825-830 [PMID: 19916210 DOI: 10.1097/sla.0b013e3181b3b2d8]
- Wakabayashi G, Cherqui D, Geller DA, Buell JF, Kaneko H, Han HS, Asbun H, O'Rourke N, 2 Tanabe M, Koffron AJ, Tsung A, Soubrane O, Machado MA, Gayet B, Troisi RI, Pessaux P, Van Dam RM, Scatton O, Abu Hilal M, Belli G, Kwon CH, Edwin B, Choi GH, Aldrighetti LA, Cai X, Cleary S, Chen KH, Schön MR, Sugioka A, Tang CN, Herman P, Pekolj J, Chen XP, Dagher I, Jarnagin W, Yamamoto M, Strong R, Jagannath P, Lo CM, Clavien PA, Kokudo N, Barkun J, Strasberg SM. Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg 2015; 261: 619-629 [PMID: 25742461 DOI: 10.1097/SLA.00000000001184]
- 3 Abu Hilal M, Aldrighetti L, Dagher I, Edwin B, Troisi RI, Alikhanov R, Aroori S, Belli G, Besselink M, Briceno J, Gayet B, D'Hondt M, Lesurtel M, Menon K, Lodge P, Rotellar F, Santoyo J, Scatton O, Soubrane O, Sutcliffe R, Van Dam R, White S, Halls MC, Cipriani F, Van der Poel M, Ciria R, Barkhatov L, Gomez-Luque Y, Ocana-Garcia S, Cook A, Buell J, Clavien PA, Dervenis C, Fusai G, Geller D, Lang H, Primrose J, Taylor M, Van Gulik T, Wakabayashi G, Asbun H, Cherqui D. The Southampton Consensus Guidelines for Laparoscopic Liver Surgery: From Indication to Implementation. Ann Surg 2018; 268: 11-18 [PMID: 29064908 DOI: 10.1097/SLA.00000000002524]
- Tung-Ping Poon R, Fan ST, Wong J. Risk factors, prevention, and management of postoperative 4 recurrence after resection of hepatocellular carcinoma. Ann Surg 2000; 232: 10-24 [PMID: 10862190 DOI: 10.1097/00000658-200007000-00003]
- Belli G, Limongelli P, Fantini C, D'Agostino A, Cioffi L, Belli A, Russo G. Laparoscopic and open 5 treatment of hepatocellular carcinoma in patients with cirrhosis. Br J Surg 2009; 96: 1041-1048 [PMID: 19672933 DOI: 10.1002/bjs.6680]
- 6 Tranchart H, Di Giuro G, Lainas P, Roudie J, Agostini H, Franco D, Dagher I. Laparoscopic resection for hepatocellular carcinoma: a matched-pair comparative study. Surg Endosc 2010; 24: 1170-1176 [PMID: 19915908 DOI: 10.1007/s00464-009-0745-3]
- Lee KF, Chong CN, Wong J, Cheung YS, Lai P. Long-term results of laparoscopic hepatectomy 7 versus open hepatectomy for hepatocellular carcinoma: a case-matched analysis. World J Surg 2011; 35: 2268-2274 [PMID: 21842300 DOI: 10.1007/s00268-011-1212-6]
- Ahn KS, Kang KJ, Kim YH, Kim TS, Lim TJ. A propensity score-matched case-control comparative study of laparoscopic and open liver resection for hepatocellular carcinoma. J Laparoendosc Adv Surg Tech A 2014; 24: 872-877 [PMID: 25393886 DOI: 10.1089/lap.2014.0273]
- 9 Memeo R, de'Angelis N, Compagnon P, Salloum C, Cherqui D, Laurent A, Azoulay D. Laparoscopic vs. open liver resection for hepatocellular carcinoma of cirrhotic liver: a case-control study. World J Surg 2014; 38: 2919-2926 [PMID: 24912628 DOI: 10.1007/s00268-014-2659-z]
- Lee JJ, Conneely JB, Smoot RL, Gallinger S, Greig PD, Moulton CA, Wei A, McGilvray I, Cleary SP. Laparoscopic versus open liver resection for hepatocellular carcinoma at a North-American Centre: a 2-to-1 matched pair analysis. HPB (Oxford) 2015; 17: 304-310 [PMID: 25297815 DOI: 10.1111/hpb.12342]
- 11 Yoon SY, Kim KH, Jung DH, Yu A, Lee SG. Oncological and surgical results of laparoscopic versus open liver resection for HCC less than 5 cm: case-matched analysis. Surg Endosc 2015; 29: 2628-2634 [PMID: 25487545 DOI: 10.1007/s00464-014-3980-1]
- Xiao L, Xiang LJ, Li JW, Chen J, Fan YD, Zheng SG. Laparoscopic versus open liver resection for 12 hepatocellular carcinoma in posterosuperior segments. Surg Endosc 2015; 29: 2994-3001 [PMID: 25899815 DOI: 10.1007/s00464-015-4214-x]
- 13 Sposito C, Battiston C, Facciorusso A, Mazzola M, Muscarà C, Scotti M, Romito R, Mariani L, Mazzaferro V. Propensity score analysis of outcomes following laparoscopic or open liver resection for hepatocellular carcinoma. Br J Surg 2016; 103: 871-880 [PMID: 27029597 DOI: 10.1002/bjs.10137]
- Cheung TT, Poon RT, Dai WC, Chok KS, Chan SC, Lo CM. Pure Laparoscopic Versus Open Left 14 Lateral Sectionectomy for Hepatocellular Carcinoma: A Single-Center Experience. World J Surg 2016; 40: 198-205 [PMID: 26316115 DOI: 10.1007/s00268-015-3237-8]
- 15 Ryu T, Honda G, Kurata M, Kobayashi S, Sakamoto K, Honjo M. Perioperative and oncological outcomes of laparoscopic anatomical hepatectomy for hepatocellular carcinoma introduced gradually in a single center. Surg Endosc 2018; 32: 790-798 [PMID: 28733745 DOI: 10.1007/s00464-017-5745-0]
- Rhu J, Kim SJ, Choi GS, Kim JM, Joh JW, Kwon CHD. Laparoscopic Versus Open Right Posterior 16 Sectionectomy for Hepatocellular Carcinoma in a High-Volume Center: A Propensity Score Matched Analysis. World J Surg 2018; 42: 2930-2937 [PMID: 29426971 DOI: 10.1007/s00268-018-4531-z]
- 17 Guro H, Cho JY, Han HS, Yoon YS, Choi Y, Kim S, Kim K, Hyun IG. Outcomes of major

laparoscopic liver resection for hepatocellular carcinoma. Surg Oncol 2018; 27: 31-35 [PMID: 29549901 DOI: 10.1016/j.suronc.2017.11.006]

- 18 El-Gendi A, El-Shafei M, El-Gendi S, Shawky A. Laparoscopic Versus Open Hepatic Resection for Solitary Hepatocellular Carcinoma Less Than 5 cm in Cirrhotic Patients: A Randomized Controlled Study. J Laparoendosc Adv Surg Tech A 2018; 28: 302-310 [PMID: 29172949 DOI: 10.1089/lap.2017.0518
- 19 Inoue Y, Suzuki Y, Ota M, Fujii K, Kawaguchi N, Hirokawa F, Hayashi M, Uchiyama K. Short- and Long-Term Results of Laparoscopic Parenchyma-Sparing Hepatectomy for Small-Sized Hepatocellular Carcinoma: A Comparative Study Using Propensity Score Matching Analysis. Am Surg 2018; 84: 230-237 [PMID: 29580351]
- 20 Kim JM, Kwon CHD, Yoo H, Kim KS, Lee J, Kim K, Choi GS, Joh JW. Which approach is preferred in left hepatocellular carcinoma? BMC Cancer 2018; 18: 668 [PMID: 29921239 DOI: 10.1186/s12885-018-4506-3
- 21 Deng ZC, Jiang WZ, Tang XD, Liu SH, Qin L, Qian HX. Laparoscopic hepatectomy versus open hepatectomy for hepatocellular carcinoma in 157 patients: A case controlled study with propensity score matching at two Chinese centres. Int J Surg 2018; 56: 203-207 [PMID: 29935365 DOI: 10.1016/j.ijsu.2018.06.026
- 22 Wu X, Huang Z, Lau WY, Li W, Lin P, Zhang L, Chen Y. Perioperative and long-term outcomes of laparoscopic versus open liver resection for hepatocellular carcinoma with well-preserved liver function and cirrhotic background: a propensity score matching study. Surg Endosc 2019; 33: 206-215 [PMID: 29987565 DOI: 10.1007/s00464-018-6296-8]
- 23 Tsai KY, Chen HA, Wang WY, Huang MT. Long-term and short-term surgical outcomes of laparoscopic versus open liver resection for hepatocellular carcinoma: might laparoscopic approach be better in early HCC? Surg Endosc 2019; 33: 1131-1139 [PMID: 30043170 DOI: 10.1007/s00464-018-6372-0]
- 24 Di Sandro S, Bagnardi V, Najjar M, Buscemi V, Lauterio A, De Carlis R, Danieli M, Pinotti E, Benuzzi L, De Carlis L. Minor laparoscopic liver resection for Hepatocellular Carcinoma is safer than minor open resection, especially for less compensated cirrhotic patients: Propensity score analysis. Surg Oncol 2018; 27: 722-729 [PMID: 30449499 DOI: 10.1016/j.suronc.2018.10.001]
- 25 Li W, Han J, Xie G, Xiao Y, Sun K, Yuan K, Wu H. Laparoscopic versus open mesohepatectomy for patients with centrally located hepatocellular carcinoma: a propensity score matched analysis. Surg Endosc 2019; 33: 2916-2926 [PMID: 30498855 DOI: 10.1007/s00464-018-6593-2]
- Kim WJ, Kim KH, Kim SH, Kang WH, Lee SG. Laparoscopic Versus Open Liver Resection for 26 Centrally Located Hepatocellular Carcinoma in Patients With Cirrhosis: A Propensity Score-matching Analysis. Surg Laparosc Endosc Percutan Tech 2018; 28: 394-400 [PMID: 30180138 DOI: 10.1097/SLE.000000000000569]
- Chen K, Pan Y, Wang YF, Zheng XY, Liang X, Yu H, Cai XJ. Laparoscopic Right Hepatectomy for 27 Hepatocellular Carcinoma: A Propensity Score Matching Analysis of Outcomes Compared with Conventional Open Surgery. J Laparoendosc Adv Surg Tech A 2019; 29: 503-512 [PMID: 30625024 DOI: 10.1089/lap.2018.0480]
- Untereiner X, Cagniet A, Memeo R, Cherkaoui Z, Piardi T, Severac F, Mutter D, Kianmanesh R, 28 Wakabayashi T, Sommacale D, Pessaux P. Laparoscopic Hepatectomy Versus Open Hepatectomy for the Management of Hepatocellular Carcinoma: A Comparative Study Using a Propensity Score Matching. World J Surg 2019; 43: 615-625 [PMID: 30341471 DOI: 10.1007/s00268-018-4827-z]
- Yoon YI, Kim KH, Cho HD, Kwon JH, Jung DH, Park GC, Song GW, Ha TY, Lee SG. Long-term 29 perioperative outcomes of pure laparoscopic liver resection versus open liver resection for hepatocellular carcinoma: a retrospective study. Surg Endosc 2020; 34: 796-805 [PMID: 31161292 DOI: 10.1007/s00464-019-06831-w]
- 30 Peng Y, Liu F, Xu H, Lan X, Wei Y, Li B. Outcomes of Laparoscopic Liver Resection for Patients with Multiple Hepatocellular Carcinomas Meeting the Milan Criteria: A Propensity Score-Matched Analysis. J Laparoendosc Adv Surg Tech A 2019; 29: 1144-1151 [PMID: 31411541 DOI: 10.1089/lap.2019.0362]
- Yamamoto M, Kobayashi T, Oshita A, Abe T, Kohashi T, Onoe T, Fukuda S, Omori I, Imaoka Y, 31 Honmyo N, Ohdan H. Laparoscopic versus open limited liver resection for hepatocellular carcinoma with liver cirrhosis: a propensity score matching study with the Hiroshima Surgical study group of Clinical Oncology (HiSCO). Surg Endosc 2020; 34: 5055-5061 [PMID: 31828498 DOI: 10.1007/s00464-019-07302-y]
- 32 Lee DH, Kim D, Park YH, Yoon J, Kim JS. Long-term surgical outcomes in patients with hepatocellular carcinoma undergoing laparoscopic vs. open liver resection: A retrospective and propensity score-matched study. Asian J Surg 2021; 44: 206-212 [PMID: 32532684 DOI: 10.1016/j.asjsur.2020.05.028]
- Navarro JG, Kang I, Rho SY, Choi GH, Han DH, Kim KS, Choi JS. Major Laparoscopic Versus 33 Open Resection for Hepatocellular Carcinoma: A Propensity Score-Matched Analysis Based on Surgeons' Learning Curve. Ann Surg Oncol 2021; 28: 447-458 [PMID: 32602059 DOI: 10.1245/s10434-020-08764-4
- Delvecchio A, Conticchio M, Ratti F, Gelli M, Anelli FM, Laurent A, Vitali GC, Magistri P, Assirati 34 G, Felli E, Wakabayashi T, Pessaux P, Piardi T, Di Benedetto F, de'Angelis N, Briceño-Delgado J, Adam R, Cherqui D, Aldrighetti L, Memeo R. Laparoscopic major hepatectomy for hepatocellular carcinoma in elderly patients: a multicentric propensity scorebased analysis. Surg Endosc 2021; 35:

3642-3652 [PMID: 32748269 DOI: 10.1007/s00464-020-07843-7]

- Ho KM, Cheng KC, Chan FK, Yeung YP. Laparoscopic hepatectomy versus open hepatectomy for 35 hepatocellular carcinoma: A propensity case-matched analysis of the long-term survival. Ann Hepatobiliary Pancreat Surg 2021; 25: 1-7 [PMID: 33649248 DOI: 10.14701/ahbps.2021.25.1.1]
- 36 Morise Z, Ciria R, Cherqui D, Chen KH, Belli G, Wakabayashi G. Can we expand the indications for laparoscopic liver resection? J Hepatobiliary Pancreat Sci 2015; 22: 342-352 [PMID: 25663288 DOI: 10.1002/jhbp.215]
- 37 Shimada M, Hashizume M, Maehara S, Tsujita E, Rikimaru T, Yamashita Y, Tanaka S, Adachi E, Sugimachi K. Laparoscopic hepatectomy for hepatocellular carcinoma. Surg Endosc 2001; 15: 541-544 [PMID: 11591936 DOI: 10.1007/s004640080099]
- 38 Laurent A, Cherqui D, Lesurtel M, Brunetti F, Tayar C, Fagniez PL. Laparoscopic liver resection for subcapsular hepatocellular carcinoma complicating chronic liver disease. Arch Surg 2003; 138: 763-9; discussion 769 [PMID: 12860758 DOI: 10.1001/archsurg.138.7.763]
- 39 Kaneko H, Takagi S, Otsuka Y, Tsuchiya M, Tamura A, Katagiri T, Maeda T, Shiba T. Laparoscopic liver resection of hepatocellular carcinoma. Am J Surg 2005; 189: 190-194 [PMID: 15720988 DOI: 10.1016/j.amjsurg.2004.09.010]
- Endo Y, Ohta M, Sasaki A, Kai S, Eguchi H, Iwaki K, Shibata K, Kitano S. A comparative study of 40 the long-term outcomes after laparoscopy-assisted and open left lateral hepatectomy for hepatocellular carcinoma. Surg Laparosc Endosc Percutan Tech 2009; 19: e171-e174 [PMID: 19851245 DOI: 10.1097/SLE.0b013e3181bc4091]
- 41 Lai EC, Tang CN, Ha JP, Li MK. Laparoscopic liver resection for hepatocellular carcinoma: ten-year experience in a single center. Arch Surg 2009; 144: 143-7; discussion 148 [PMID: 19221325 DOI: 10.1001/archsurg.2008.536
- 42 Chan AKC, Jamdar S, Sheen AJ, Siriwardena AK. The OSLO-COMET Randomized Controlled Trial of Laparoscopic Versus Open Resection for Colorectal Liver Metastases. Ann Surg 2018; 268: e69 [PMID: 29303809 DOI: 10.1097/SLA.00000000002640]
- 43 Zhou YM, Shao WY, Zhao YF, Xu DH, Li B. Meta-analysis of laparoscopic versus open resection for hepatocellular carcinoma. Dig Dis Sci 2011; 56: 1937-1943 [PMID: 21259071 DOI: 10.1007/s10620-011-1572-7
- Ciria R, Gomez-Luque I, Ocaña S, Cipriani F, Halls M, Briceño J, Okuda Y, Troisi R, Rotellar F, 44 Soubrane O, Abu Hilal M. A Systematic Review and Meta-Analysis Comparing the Short- and Long-Term Outcomes for Laparoscopic and Open Liver Resections for Hepatocellular Carcinoma: Updated Results from the European Guidelines Meeting on Laparoscopic Liver Surgery, Southampton, UK, 2017. Ann Surg Oncol 2019; 26: 252-263 [PMID: 30390167 DOI: 10.1245/s10434-018-6926-3]
- 45 Kobayashi S, Nagano H, Marubashi S, Kawamoto K, Wada H, Eguchi H, Tanemura M, Umeshita K, Doki Y, Mori M. Hepatectomy based on the tumor hemodynamics for hepatocellular carcinoma: a comparison among the hybrid and pure laparoscopic procedures and open surgery. Surg Endosc 2013; 27: 610-617 [PMID: 22936439 DOI: 10.1007/s00464-012-2499-6]
- Cheung TT, Poon RT, Yuen WK, Chok KS, Jenkins CR, Chan SC, Fan ST, Lo CM. Long-term 46 survival analysis of pure laparoscopic versus open hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a single-center experience. Ann Surg 2013; 257: 506-511 [PMID: 23299521 DOI: 10.1097/SLA.0b013e31827b947a]
- 47 Wang ZY, Chen QL, Sun LL, He SP, Luo XF, Huang LS, Huang JH, Xiong CM, Zhong C. Laparoscopic versus open major liver resection for hepatocellular carcinoma: systematic review and meta-analysis of comparative cohort studies. BMC Cancer 2019; 19: 1047 [PMID: 31694596 DOI: 10.1186/s12885-019-6240-x
- 48 Jiang S, Wang Z, Ou M, Pang Q, Fan D, Cui P. Laparoscopic Versus Open Hepatectomy in Shortand Long-Term Outcomes of the Hepatocellular Carcinoma Patients with Cirrhosis: A Systematic Review and Meta-Analysis. J Laparoendosc Adv Surg Tech A 2019; 29: 643-654 [PMID: 30702362 DOI: 10.1089/lap.2018.0588]

WJGS | https://www.wjgnet.com

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

