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Abstract
Liver cancer is one of the most common cancers in the world. Of all types of liver 
cancer, hepatocellular carcinoma (HCC) is known to be the most frequent primary 
liver malignancy and has seriously compromised the health status of the general 
population. Locoregional thermal ablation techniques such as radiofrequency and 
microwave ablation, have attracted attention in clinical practice as an alternative 
strategy for HCC treatment. However, their aggressive thermal effect may cause 
undesirable complications such as hepatic decompensation, hemorrhage, bile duct 
injury, extrahepatic organ injuries, and skin burn. In recent years, photodynamic 
therapy (PDT), a gentle locoregional treatment, has attracted attention in ablation 
therapy for patients with superficial or luminal tumors as an alternative treatment 
strategy. However, some inherent defects and extrinsic factors of PDT have 
limited its use in clinical practice for deep-seated HCC. In this contribution, the 
aim is to summarize the current status and challenges of PDT in HCC treatment 
and provide potential strategies to overcome these deficiencies in further clinical 
translational practice.
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Core tip: The application of photodynamic therapy (PDT) in hepatocellular carcinoma 
(HCC) therapy is limited due to its low penetration depth of light irradiation, the 
reduced generation of reactive oxygen species by conventional photosensitizers in the 
aggregated state, and the nontargeted accumulation in cancer cells. Once these 
problems are resolved, PDT will be a promising alternative treatment strategy for 
HCC.

Citation: Zhu F, Wang BR, Zhu ZF, Wang SQ, Chai CX, Shang D, Li M. Photodynamic 
therapy: A next alternative treatment strategy for hepatocellular carcinoma? World J 
Gastrointest Surg 2021; 13(12): 1523-1535
URL: https://www.wjgnet.com/1948-9366/full/v13/i12/1523.htm
DOI: https://dx.doi.org/10.4240/wjgs.v13.i12.1523

INTRODUCTION
Liver cancer is one of the most common causes of cancer-related death worldwide[1]. 
Of all types of liver cancer, hepatocellular carcinoma (HCC) is known to be the most 
frequent liver malignancy[2,3]. The main risk factors for HCC are chronic hepatitis B 
virus or hepatitis C virus infection, alcohol consumption and the resulting cirrhosis, 
nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, dietary intake of aflatoxin 
B1, etc[4,5]. The incidence and mortality of HCC are rapidly rising in the USA and 
several European regions and slightly declining in traditionally high-risk regions such 
as East Asia and Africa[4]. Population-based studies have revealed that the incidence 
rate continues to approximate the death rate, indicating that most patients who 
develop HCC die of it[6]. HCC has seriously compromised the health status of the 
general population. In general, there are several treatment options for the management 
of HCC, but each treatment has its limitations and side effects[7]. In recent years, 
photodynamic therapy (PDT) has been a palliative treatment option that could 
improve quality of life and median survival with minimal invasion for cancer patients
[8] and some studies have investigated its applications in ablation therapy for HCC. 
The aim of this frontier article was to summarize the current status and challenges of 
PDT for HCC as an alternative locoregional ablation and to propose potential 
strategies to overcome the deficiencies in clinical translational practice.

THERAPY
In general, several treatment options have emerged for the management of HCC. 
These options include surgical treatment with curative intents such as hepatic 
resection[9] or liver transplantation[10], systemic therapy (e.g., sorafenib, lenvatinib, 
regorafenib and apatinib)[11,12], immunotherapy (e.g., atezolizumab plus bevaci-
zumab, nivolumab, pembrolizumab, ramucirumab, and camrelizumab)[13-16], 
external beam radiotherapy and catheter based embolic therapies (e.g., chemoembol-
ization and radioembolization)[17-20]. In addition, locoregional therapies include 
ablative techniques inducing tumor necrosis by injection of chemicals (e.g., ethanol and 
acetic acid), and temperature modification (ablation by radiofrequency, microwave, 
laser or cryoablation)[21-25]. Recently, locoregional thermal ablation techniques, 
radiofrequency and microwave ablation, have attracted interest in clinical practice as 
alternative strategies for HCC treatment[26-28]. According to the guidelines of the 
China Liver Cancer Staging, locoregional ablation is recommended for HCC patients 
in stages Ia, Ib and IIa as an alternative treatment[29]. The obvious benefits of radiofre-
quency ablation are its minimally invasive nature, lower rate of complications, and 
decreased cost of treatment. The efficiency of microwave ablation allows for an 
increased volume of necrosis, better vessel coagulation, and decreased ablation times
[7]. However, the aggressive thermal effect of locoregional ablations may cause 
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undesirable complications, such as hepatic decompensation, hemorrhage, bile duct 
injury, extrahepatic organ injuries, and skin burn[30]. Therefore, the development of a 
novel locoregional ablation technique is an imperative task for alternative treatment 
strategies for HCC therapy.

PDT
PDT is a palliative treatment option that can improve quality of life and median 
survival with minimal invasion for patients, and has caused extensive concern for 
tumor therapy in recent years since Paramecium spp. killing was described through the 
interaction between acridine and infrared radiation by Oscar Raab in 1900[31]. Due to 
its low economic cost, few side effects, less invasiveness than surgery, short treatment 
time, precise targeting, and repeated treatment at the same site, PDT has been 
extended to the treatment of a variety of tumors, such as brain tumors[32], head and 
neck tumors[33,34], skin tumors[35], breast cancer[36], esophageal cancer[37], 
gastrointestinal tumors[38], lung cancer[39], extrahepatic cholangiocarcinoma[40-43], 
and bladder cancer[44].

PDT kills cancer cells by reactive oxygen species (ROS) generated from light-
activated photosensitizers (PSs), resulting in the destruction of tumor cells and blood 
vessels and the stimulation of the host immune system[45-47]. Specifically, after 
activation by light irradiation, PSs accumulating in malignant tissues are electronically 
excited and transfer an electron to molecular oxygen or other electron acceptors to 
yield superoxide anions and radicals (i.e., type I reaction, in a hypoxic microenvir-
onment) or transfer their electronic energy to ground-state molecular oxygen to yield 
singlet oxygen (i.e., type II reaction in a hyperoxic microenvironment)[48], which leads 
to antitumor effects and stimulates immune effects[49]. Moreover, activating the innate 
immune system increases the priming of tumor-specific T lymphocytes that can 
recognize and destroy distant tumor cells and lead to the development of immune 
memory that can combat the recurrence of cancer at a later point in time[50].

Among the three essential elements, PSs play a crucial role in ensuring the 
successful implementation of PDT. However, several inherent limitations of conven-
tional PSs, such as high demand for oxygen in the microenvironment, inefficient 
generation of ROS and no organelle targeting, limit therapeutic outcomes in PDT[51]. 
In other words, several extrinsic factors impact the effectiveness of PDT. For instance, 
conventional PSs hardly have active accumulation in tumor lesions and tumor cell 
uptake[52], resulting in inefficient anticancer effects and phototoxicity of other normal 
tissues.

PDT FOR HCC
Although the clinical practice of PDT for deep-seated solid tumors has been limited by 
the penetration of laser irradiation and the defects of PSs, many studies have shown 
that PDT has better potential to improve HCC treatment than other traditional 
therapies owing to its noninvasiveness and localized therapeutic effect in the presence 
of specialized laser irradiation[8]. For example, experimental studies have shown that 
PDT can effectively kill hepatoma cells and shrink tumor tissues[53-55], and clinical 
investigations have also revealed that PDT can prolong the survival rate in patients 
with inoperable cancers to significantly improve their quality of life[56,57]. 
Specifically, this work summarizes the previous literature on PDT for HCC in Tables 1 
and 2, to provide some insight for future research on PDT for HCC.

As described in Table 1, indocyanine green (ICG) is a clinical infrared imaging agent 
approved by the US Food and Drug Administration[70,71] and has been applied in 
optical imaging in liver surgery[72-74], fluorescence angiography[75], cancer 
theranostics[72], surgical navigation[76], vascular grafts[77] and so on. In addition, a 
large number of studies have shown that ICG is widely used as a PS in PDT, and is 
able to rapidly generate singlet oxygen upon exposure to a near-infrared (NIR) laser 
and thus destroy cancerous cells[78,79]. Hence, ICG has been considered a promising 
theranostic agent. In addition, HCC cells notably take up ICG molecules with high 
efficiency but it cannot be easily excreted to bile ducts owing to the abnormal 
structures of bile capillaries[80]; thus, the retained ICG in HCC can kill cancer cells via 
PDT. For example, Kim et al[58] tested the cytotoxicity of ICG after NIR light irra-
diation in cancerous cell lines (Huh-7 and Hep3B) in vitro and investigated the 
tumoricidal ability after treatment with intravenous injection of ICG (5–20 mg/kg2) 
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Table 1 Summary of photosensitizers molecules in photodynamic therapy for hepatocellular carcinoma in recent years

PSs Animal model Ref.

ICG Patient-derived orthotopic xenograft mice Hong et al[58]

ICG Huh-7 tumor-bearing nude mice Shirata et al[49]

m-THPC (Foscan®) Rat model with Walker-256 hepatoma cells Wang et al[59]

Endogenous PpIX from 5-ALA Diethylnitrosamine-induced HCC in Fisher-344 rats Otake et al[60]

HpD 2-Acetylaminofluorene-induced HCC in Fisher-344 rats Kita et al[61]

PSs: Photosensitizers; ICG: Indocyanine green; m-THPC: Meta-tetra (hydroxyphenyl) chlorin/temoporfin; PpIX: Protoporphyrin IX; 5-ALA: 5-
aminolaevulinic acid; HpD: Hematoporphyrin derivatives; HCC: Hepatocellular carcinoma.

Table 2 Summary of photosensitizers-loaded nanoparticles-mediated drug delivery systems in photodynamic therapy for 
hepatocellular carcinoma evaluated in recent years

PSs Delivery vehicle Ligand Matching 
receptor Drug agent Animal model Ref.

Pu-18-N-butylimide-
NMGA

Gold NPs / / / Huh-7 tumor-bearing 
nude mice

Kwon et al
[62]

ZnPc BSA-assembled NPs / / Sorafenib SMMC-7721 tumor-
bearing nude mice

Yu et al[51]

ICG Nanoliposomes / / Sorafenib Hep3B tumor-bearing 
nude mice

He et al[63]

Porphyrin MOF Folic acid Folate receptor / Doxycycline-induced 
HCC in krasG12V 

zebrafish

Chen et al[64]

Ce6 SPIONs Cancer cell 
membrane

/ / SMMC-7721 tumor-
bearing nude mice

Li et al[65]

Porphyrin PEGylated Zr-MOF Galactose ASGPR DOX Huh-7 tumor-bearing 
nude mice

Hu et al[66]

Mitoxantrone PEGylated UCNP micelles Anti-EpCAM 
antibody

EpCAM / BEL-7404 tumor-bearing 
nude mice

Han et al[46]

Ce6 DNA hybrids TLS11a aptamer / DOX HepG2 tumor-bearing 
nude mice

Zhang et al
[67]

Ce6 Gold NPs TLS11a aptamer / AQ4N HepG2 tumor-bearing 
nude mice

Zhang et al
[68]

IR780 Phospholipid/Pluronic F68 
NPs

Pullulan ASGPR Paclitaxel MHCC-97H tumor-
bearing nude mice

Wang et al
[69]

PSs: Photosensitizers; Pu-18-N-butylimide-NMGA: Purpurin-18-N-butylimide-N-methyl-D-glucamine; NPs: Nanoparticles; ZnPc: Zinc phthalocyanine; 
BSA: Bovine serum albumin; ICG: Indocyanine green; MOF: Metal-organic frameworks; Ce6: Chlorin e6; SPIONs: Superparamagnetic iron oxide 
nanoparticles; ASGPR: Asialoglycoprotein receptor; DOX: Doxorubicin; AQ4N: Banoxantrone.

and daily NIR exposure (0.5–1.75 W/cm2) in a patient-derived orthotopic xenograft 
(PDoX) mouse model in vivo. The results demonstrated that complete remission of 
deep-seated PDoX hepatoma could be achieved through NIR-irradiated ICG, 
indicating that ICG-based PDT is promising for the noninvasive destruction of deep-
seated HCC. Meanwhile, a series of fluorogens, such as chlorin e6[81], porphyrin[64], 
and 5-aminolaevulinic acid[82] were investigated as new PSs for anti-HCC therapy.

However, traditional PSs have low selectivity for accumulation in neoplastic tissues 
with an affinity for healthy tissues, which results in phototoxicity during treatment[83,
84]. Therefore, a long period of light protection is required for patients after PDT. 
Additionally, PSs are easily degraded and excreted in blood circulation and have a 
tendency to aggregate in aqueous milieu, resulting in low bioavailability and the loss 
of photodynamic activity[85]. Recently, nanocarrier systems have shown potential to 
overcome the defects mentioned above[86-88]. In tumorous tissues, the absence of 
vasculature supportive tissues intimates the formation of leaky vessels and pores (100 
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nm to 2 μm in diameter). Meanwhile, the poor lymphatic system offers a great 
opportunity to treat cancer, and this phenomenon is known as the enhanced 
permeability and retention (EPR) effect[89,90]. Nanoparticles (NPs) can essentially 
deliver PSs to tumor lesions, which contribute to their passive tumor-targeting abilities 
(via the EPR effect)[91-93]. For example, He’s group[94] reported a new type of NP, 
copper–cysteamine (Cu–Cy), as a novel PS for anti-HCC treatment. Cu–Cy NPs not 
only significantly reduced the activity of HepG2 cells at a low dose after a short time of 
ultraviolet radiation in vitro, but also inhibited tumor growth in vivo. To further 
enhance the anti-HCC effects, Xu and his colleagues[63] designed NIR fluorescence 
imaging-guided nanoliposomes co-encapsulated with ICG and sorafenib. As expected, 
this nanocarrier could overcome the drawbacks of free ICG solution, such as instability 
in aqueous solution, rapid clearance in blood circulation, and lack of targeting, which 
leads it to achieve the PDT effect with negative targeting. Moreover, sorafenib also 
decreased the expression of vascular endothelial growth factor (VEGF) that was 
upregulated by PDT, which is a critical signaling factor for tumor recurrence. As such, 
this nanocarrier could inhibit HCC with synergistic therapeutic effects in a Hep3B 
tumor-bearing xenograft nude mouse model in vivo.

The free NPs used by PDT are subjected to inactive uptake and lack cancer cell-
targeting abilities; hence, they cannot be internalized into cancer cells via active 
targeting with high efficiency[95,96]. Due to this limitation of free NPs, the paradigm 
of HCC treatment by PDT is now markedly shifting from NPs conjugating PSs to the 
tumor-specific targeting approach, which could lead to significantly improved PDT 
efficacy due to enhanced cellular uptake and minimize the toxic effects of associated 
therapeutic molecules[97,98]. Active targeting strategies using, for instance, specific 
ligands such as vitamins, antibodies or peptides, aptamers, could be a solution to 
overcome this limitation and achieve tumor-specific targeting properties[93]. The 
ligands can specifically bind with matching receptors on the hepatoma cell membrane 
and trigger receptor-mediated endocytosis[99]. For example, Li et al[64] designed and 
synthesized nanoscale gadolinium–porphyrin metal-organic frameworks as a skeleton 
for folic acid (FA) conjugation (FA–NPMOFs) to enhance the delivery of porphyrin 
into HCC cells. FA–NPMOFs exhibited a strong affinity for HCC cells with positive 
folate receptors and were delivered to tumor tissues in a targeted manner. Then, the 
porphyrin that accumulated in the tumor tissues could possess dual-function of 
fluorescence imaging and PDT in HCC tumor-bearing zebrafish model. After exposure 
to light at a specific wavelength, the singlet oxygen generated from porphyrin exerts a 
prominent anti-HCC effect rather than damaging the normal tissues contributing to 
the active targeting between FA of FA–NPMOFs and FR on HCC cells.

Another common problem of traditional PSs, such as the most widely used 
porphyrin derivatives and ICG, lies in their high hydrophobia and rigid planar 
structures as shown in Figure 1. Such a problem can collectively cause them to form 
aggregates in aqueous media through π–π stacking, resulting in an aggregation-caused 
quenching effect. This performance induces quenched fluorescence and a significant 
decrease in ROS generation that diminishes the imaging quality and PDT efficacy[100,
101]. Conversely, aggregation-induced emission (AIE) molecules with a twisted 
configuration that suppresses strong intermolecular interactions represent a new class 
of PSs for image-guided PDT[102-104]. These PSs with AIE characteristics (denoted as 
AIE PSs) present weak emission in the molecular state but exhibit strong fluorescence 
emission and efficient photosensitization ability in the aggregated state[105-107]. Thus, 
formulating targeted AIE PS dots for image-guided PDT is expected to be a new 
treatment for tumors[40,105,106,108,109]. In previous work[40], our group designed 
and fabricated integrin ανβ3-targeted organic nanodots for image-guided PDT based on 
a red emissive AIE PS. The tetraphenylene derivative with typical AIE characteristic 
(TPETS)-encapsulated nanodots was prepared by nanoprecipitation method and 
further conjugated with thiolated cRGD through a click reaction to yield the targeted 
TPETS nanodots (T-TPETS nanodots), which could facilitate cellular uptake through 
active targeting by specific binding between cRGD and integrin ανβ3 and enhance ROS 
generation based on AIE PSs as the core of nanodots in the aggregate state. The data 
showed that the obtained nanodots showed bright red fluorescence and highly 
effective 1O2 generation in the aggregated state. The T-TPETS nanodots could 
accumulate in tumor tissue through the EPR effect and further expedite internalization 
by HCC cells via receptor-mediated endocytosis. Based on these multiple features, 
both in vitro and in vivo experiments demonstrated that the nanodots exhibited 
excellent HCC-targeted imaging performance, which promoted image-guided PDT for 
tumor ablation in a HepG2-bearing nude mouse model. After light irradiation, the 
nanodots inhibited the growth of tumor foci and significantly extended survival. 
Moreover, further analysis revealed that nanodot-mediated PDT could induce time- 
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Figure 1  Chemical structures of common traditional photosensitizers for hepatocellular carcinoma in previous literatures.

and concentration-dependent cell death. Specifically, the high PDT intensity resulted 
in direct cell necrosis, while the mitochondria-apoptosis pathway was triggered under 
low PDT intensity. These results suggest that the targeted NPs loaded with AIE PSs 
are promising image-guided PDT agents in HCC treatment.

LIMITATIONS AND PERSPECTIVE
In recent years, numerous clinical trials have been registered of PDT for many types of 
tumors, but there are scarcely any trials on HCC. Therefore, some critical problems 
need to be conquered before further clinical practice of PDT for HCC can be realized 
(Figure 2). First, one major drawback of the currently available PDT is its low tissue 
penetration depth of light irradiation caused by the short-wavelength absorption of 
most PSs, which limits their clinical application[46]. The use of a self-illuminating 
system as a light source provides an intriguing solution to the light penetration issues 
of conventional PDT[110]. Some self-illuminating systems, including chemilumin-
escence[111] and bioluminescence[112], are promising candidates as internal light 
sources for PDT. These self-illuminators are small in size (ranging from the 
atomic/molecular to the nanometer scale) and thus can be delivered to any 
pathological tissue[113]. In addition, X-PDT exploits a nanoscale scintillator to down-
convert external X-ray photons to visible light photons, and then the latter in turn 
activates nearby PSs to trigger PDT. Therefore, X-rays afford superior tissue 
penetration and can overcome this limitation of PDT[114,115]. Recently, Liu and her 
colleagues[116] developed a novel X-PDT system, taking advantage of an AIE PS with 
bright fluorescence and highly efficient 1O2 generation in the aggregated state. Based 
on the high penetration of X-ray irradiation, this system could use ionizing irradiation 
to trigger localized PDT, indicating that effective ·OH and SO generation was induced 
via radiosensitization-mediated energy transfer from X-rays to the AIE PS and then 
realized marked killing of cancer cells. This pioneering exploration revealed the great 
potential of AIE PSs in novel X-PDT systems to overcome the drawback of light 
irradiation penetration.

Second, another critical limiting factor of conventional cancer PDT is the lack of 
specificity of PSs. Moreover, most PSs accumulate in normal and cancer tissues 
indiscriminately. This performance leads to both significantly important side effects 
and decreased therapeutic efficacy[117,118]. Due to these obstacles, many studies have 
focused on the development of strategies to deliver effective therapeutic concen-
trations of PSs and anti-cancer agents specifically to the tumor, thereby increasing their 
therapeutic efficacy while reducing toxicity[99,118]. Therefore, targeted delivery of 
phototherapeutics, such as NP-mediated targeted drug delivery systems, is promising 
to minimize drug toxicity to healthy tissues through both target-specific drug delivery 
and by precisely controlling phototherapy-initiating external light sources[99,119,120].
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Figure 2  The limitations of photodynamic therapy in clinical practice for hepatocellular carcinoma and potential strategies to overcome 
the obstacles in further research.

Finally, the hypoxic microenvironment induced by PDT could secondarily 
accelerate the upregulation of angiogenic factors, such as hypoxia-inducible factor 1 
and VEGF, and if the tumor cells are not killed completely under low light intensity, 
revascularization in tumor foci can be promoted, triggering the activation of signaling 
pathways for tumor recurrence[121,122]. Therefore, multiple combination regimens in 
the treatment of HCC, including immunotherapy, PDT/photothermal therapy, 
multikinase inhibitors and anti-VEGF agents, have attracted focus in recent years
[123]. Combination therapies will hopefully increase objective responses and overall 
survival, contributing to the synergistic treatment of PDT and other anti-HCC 
therapies[124]. The multitude of available complementary and additive treatment 
modalities should encourage clinicians to implement a multidisciplinary treatment 
approach to improve the outcome in HCC patients[125].

CONCLUSION
The application of PDT in HCC has been limited due to its low tissue penetration 
depth of light irradiation, reduced generation of ROS, nontargeted accumulation in 
cancer cells, and tumor recurrence after PDT. There are several potential strategies to 
overcome these limitations, such as creating self-illuminating systems, NP-mediated 
targeted drug delivery systems, and synergistic treatments. Once these problems are 
resolved, PDT will be a promising alternative treatment strategy for HCC.
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