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Abstract
Helicobacter pylori  (H. pylori ) infection is a well-
established risk factor for the development of gastric 
cancer (GC), one of the most common and deadliest 
neoplasms worldwide. H. pylori  infection induces 
chronic inflammation in the gastric mucosa that, in the 
absence of treatment, may progress through a series of 
steps to GC. GC is only one of several clinical outcomes 
associated with this bacterial infection, which may be at 
least partially attributed to the high genetic variability 
of H. pylori . The biological mechanisms underlying 
how and under what circumstances H. pylori  alters 
normal physiological processes remain enigmatic. A 
key aspect of carcinogenesis is the acquisition of traits 
that equip preneoplastic cells with the ability to invade. 
Accumulating evidence implicates H. pylori  in the 
manipulation of cellular and molecular programs that 
are crucial for conferring cells with invasive capabilities. 
We present here an overview of the main findings 
about the involvement of H. pylori  in the acquisition 
of cell invasive behavior, specifically focusing on the 
epithelial-to-mesenchymal transition, changes in cell 
polarity, and deregulation of molecules that control 
extracellular matrix remodeling.

Key words: Helicobacter pylori ; Plasminogen activation 
system; Invasion; Epithelial-to-mesenchymal transition; 
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Core tip: Helicobacter pylori  (H. pylori ) infection induces 
chronic inflammation in the gastric mucosa that, in the 
absence of treatment, may progress through a series of 
steps to gastric cancer (GC). GC is only one of several 
clinical outcomes associated with this bacterial infection, 
which may be at least partially attributed to the high 
genetic variability of H. pylori . Accumulating evidence 
implicates H. pylori  in the manipulation of cellular and 
molecular programs that are crucial for conferring the 
cells with invasive capabilities, including reprograming 
of the epithelial-to-mesenchymal transition signaling 
programs, changing of the cell apicobasal polarity, and 
remodeling of the extracellular matrix.

Molina-Castro S, Ramírez-Mayorga V, Alpízar-Alpízar W. 
Priming the seed: Helicobacter pylori alters epithelial cell 
invasiveness in early gastric carcinogenesis. World J Gastrointest 
Oncol 2018; 10(9): 231-243  Available from: URL: http://www.
wjgnet.com/1948-5204/full/v10/i9/231.htm  DOI: http://dx.doi.
org/10.4251/wjgo.v10.i9.231

INTRODUCTION
Persistent Helicobacter pylori (H. pylori) infection in
duces chronic inflammation in the gastric mucosa, which 
in susceptible individuals may progress to gastric cancer 
(GC)[1,2]. The final clinical outcome of the infection 
depends on complex interactions among the infecting 
strain of the bacterium, the host, and the environment[3]. 
The biological mechanisms underlying how and under 
what circumstances H. pylori alters normal physiological 
processes in such a way that sequential events culminate 
in the development of GC remain largely unknown.

A key feature of malignant transformation and 
progression is the invasion of malignant cells locally 
and then to distant sites (metastasis)[4]. Invasion and 
metastasis occur through a series of events in which 
several processes take place, including reprograming 
of signaling pathways that drive the epithelial-derived 
malignant cells into a mesenchymal-like phenotype, the 
so-called epithelial-to-mesenchymal transition (EMT), 
changing of the cell polarity, and remodeling of the 
extracellular matrix (ECM)[5,6]. Several of these events 
are activated in gastric epithelial cells by H. pylori directly 
or as a result of the inflammatory reaction mounted 
in response to this bacterial infection. This review 
summarizes the current evidence implicating H. pylori 
in the activation of molecular and cellular mechanisms 
related to invasion in the early stages of the pathogenic 
series of events leading to GC. Specifically, we address 
the role of H. pylori in the deregulation of molecules that 
control EMT, cell polarity, and ECM remodeling.

EPIDEMIOLOGY
GC is the fifth most common and the third death-causing 
cancer worldwide[7]. Incidence rates vary considerably 
depending on age and sex; however, the most substantial 
variation is connected to geographic location, with very 
well-established high- and low-risk areas across the 
world[8,9]. GC incidence is steadily declining worldwide; 
and although the reasons are not clear, this may be at 
least partially linked to the concomitant decrease in H. 
pylori prevalence[8]. The decrease, however, is not of the 
same magnitude in GC of different histological subtype 
or anatomical location[10]. Similarly, mortality rate varies 
geographically, being particularly high in developing 
countries but declining globally[8,9]. The 5-year survival 
rate remains below 30% in most countries, which is 
mainly connected to the fact that most of the cases 
are diagnosed at advanced stages, when therapeutic 
interventions are likely to fail.

HISTOPATHOLOGY
Several schemes are used for classifying GC accord-
ing to microscopic and histological characteristics. The 
Lauren classification system is probably the most com-
monly used[11,12]. The Lauren system divides GC into 
intestinal, diffuse and mixed subtypes, with important 
differences at the epidemiological, pathological and mo-
lecular levels[11,13].

Marked epidemiological and etiological differences 
have been revealed for malignant tumors located in the 
distal part of the stomach and those of the proximal 
region[14,15]. Therefore, anatomical location of the lesions 
is regarded as an important parameter in the classif-
ication of GC.

PATHOGENESIS
The pathogenesis of GC is a complex and multifacto-
rial process in which environment and lifestyle, host 
genetics, and H. pylori infection play a role[2,16-21]. As al-
ready mentioned, the pathogenesis of GC substantially 
differs depending on the histological and anatomical 
subtype. The intestinal subtype of GC, for instance, 
arises through a sequential series of steps known 
as the Correa cascade[22], in which H. pylori plays a 
pivotal role. The infection is usually established early 
in life and persists lifelong in the absence of treatment, 
which in combination with environmental factors leads 
to sustained chronic inflammation characterized by 
infiltration of inflammatory cells in the gastric mucosa 
and expression of inflammatory mediators. 

Intriguingly, most of the infected individuals remain 
asymptomatic, while others develop pathologies that 
are not related to GC. In a minority of infected people, 
the inflammation evolves into a chronic atrophic gastritis, 
which is regarded as a pre-neoplastic lesion[22,23]. This 
may subsequently progress to intestinal metaplasia, 
dysplasia, and invasive carcinoma[22]. Much less is known 
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about the pathogenesis of the diffuse subtype of GC[24,25] 
and the malignant lesions arising in the most proximal 
segment of the stomach[26].

H. PYLORI
Infection with H. pylori is one of the most prevalent 
bacterial infections worldwide[27]. This bacterium utilizes 
several strategies for colonizing and surviving in the 
hostile environment of the stomach. Some of these 
are common bacterial mechanisms of acid resistance, 
such as proton pump activation, decarboxylases, and 
membrane lipid modification[28]. More specific adaptations 
to the acidic environment include the enzyme urease, 
which is encoded by the ure gene cluster and catalyzes 
the conversion of urea into ammonium and carbon 
dioxide. Urease was, in fact, the first protein identified 
in H. pylori with a role in neutralizing gastric acid, and 
it is considered a virulence factor[29] since it has proven 
essential to the survival of the bacterium in the gastric 
mucosa[30,31]. Besides the ure gene cluster, transcriptional 
regulation in response to acid extends to other genes 
related to motility, chemotaxis, and virulence[32].

The genetic variability of H. pylori is high, and it 
probably explains in part the association of this infec-
tion with several gastric and extra-gastric pathologies, 
in addition to GC. Some strains, however, are more 
strongly associated with GC, namely those harboring 
particular polymorphic variants in the gene encoding the 
vacuolating cytotoxin A (VacA) and the ones expressing 
the Cag pathogenicity island (Cag-PAI)[3,33-36]. Despite 
no physical or functional relation known for vacA and 
cag-PAI loci, strains that express virulent VacA usually 
contain functional Cag-PAI[35,37]. In addition to VacA and 
Cag-PAI, other virulence factors of H. pylori have been 
associated with gastric pathology, including BabA, SabA, 
OipA, and DupA (Figure 1)[3,36].

INVASION AND METASTASIS
The dissemination of cancer cells from primary lesions 
to form new tumor colonies at distant sites is a key 
feature of cancer[4]. This occurs in a multistep process, 
termed the invasion-metastasis cascade: cancer cells 
locally invade, intravasate into the vascular system, 
travel in the circulation, extravasate at distant sites, form 
micrometastatic nodules of cancer cells, and, finally, 
grow into overt metastatic lesions[5,6]. Importantly, early 
in this series of events, malignant cells acquire traits that 
equip them with the ability to invade, leave, and travel 
to distant tissues. A centrally important process that 
confers epithelial-derived malignant cells with increased 
motility and invasiveness is the EMT program[38,39]. 

In order to become invasive, cells commonly lose 
their apico-basal polarity due to rearrangements in 
the cytoskeleton, which maintains the shape and in-
ternal organization of the cells, and modifications in 
the intercellular unions that hold them together[39,40]. 
Also, the degradation of ECM components is essential 

in several phases of the invasion-metastasis cascade. 
ECM remodeling is primarily mediated by proteases 
that belong to the plasminogen activation (PA) system 
and the matrix metalloproteinase (MMP) family[41,42]. 
The cellular and molecular mechanisms underlying 
these processes, as well as their regulation, have been 
reviewed in depth[39,40,43-45]. Accumulating experimental 
evidence has implicated H. pylori in all these aspects 
(Figure 2), as discussed below. 

EMT and H. pylori
EMT is an evolutionary conserved, reversible process 
in which polarized epithelial cells acquire a mesenchym-
al phenotype through phenotypical and biochemical 
changes, thereby resulting in increased capacities of 
migration, invasion, and apoptosis resistance as well 
as ECM production and remodeling[38]. Transcription 
factors such as Snail, Slug, zinc-finger E-box binding 
(ZEB1/2) and FOXC2 are activated at the beginning of 
the process. This is accompanied by the expression of 
specific microRNAs (miRs), for instance the miR-200 
family, changes in the expression of particular cell surface 
proteins, cytoskeletal reorganization, and activation of 
Wnt/β-catenin and Notch signaling[38,46,47]. 

A critical feature of EMT is the down-regulation of 
E-cadherin[48], a surface glycoprotein expressed in epi-
thelial cells that is a key component of the adherent 
junctions in epithelial tissues[49]. Expression of E-cadher-
in can be repressed directly or indirectly by multiple 
transcription factors, including ZEB1/2, Snail, Slug, nu-
clear factor-kappa B (NF-κB), E47 and KLF8, but also by 
the proteins SIX1 and FOXC2[50-52]. Furthermore, various 
signaling pathways can influence the expression of 
E-cadherin, including TGFβ, hypoxia-induced response, 
Wnt/β-catenin, Notch and PI3K/Akt, and therefore play 
a role in EMT[53,54]. Although EMT is usually depicted as a 
binary switch that shifts cells from a fully epithelial to a 
fully mesenchymal state, this is a misrepresentation of 
this process. Frequently, the EMT program drives cells 
from a fully epithelial state to a partially mesenchymal 
one in which some epithelial markers are retained. 
Nonetheless, this subset of mesenchymal traits has 
profound effects on the cell biology[55].

Activation of EMT programs in neoplastic cells is 
usually connected to their dedifferentiation and acqui-
sition of stem cell-like properties[56]. The existence of 
cancer cells with stem-like properties, the so-called 
cancer stem cells (CSCs), was first described in breast 
cancer and subsequently documented in various mali-
gnancies, including GC. One the first studies about CSCs 
in GC showed that these cells have enhanced capability 
of invasion and tumorsphere formation. Also, it was 
found that CSCs have distinctive features of the EMT, 
such as reduced expression of E-cadherin and increased 
levels of vimentin and MMP2[57]. In primary GC tissue, 
it was demonstrated by immunohistochemistry that 
the combination of Snail-1, vimentin, E-cadherin and 
CD44 predicts tumor aggressiveness[58]. Furthermore, 
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and CD44high cell population was dependent on the 
CagA oncoprotein. CagA induces the EMT in a number 
of ways, as exemplified by a recent in vitro study 
showing that this bacterial protein up-regulates MMP3, 
which is also part of the EMT program, through EPIYA 
motifs in a phosphorylation-dependent manner[62]. 
Immunohistochemistry staining of human and murine 
gastric tissue have confirmed that H. pylori infection 
is correlated with high expression of CD44 and EMT 
markers[61]. Presumably, ERK and JNK are involved in 
the described EMT-like changes, CD44 overexpression 
and the ability to form tumorspheres in vitro that is 
triggered by H. pylori cagA-positive strains[61]. 

Other studies addressing the potential induction of 
CSC-like properties by H. pylori concluded that Wnt/

it has been reported that MKN7 GC cells undergoing 
Wnt5a-induced EMT acquire CSC properties[59], similar to 
what has been observed in hypoxia-driven EMT in vitro 
models with the BGC823 and SGC7901 GC cell lines[60]. 

Using in vitro systems, it was revealed that H. pylori 
infection results in the activation of EMT programs 
and the emergence of CD44high cell populations with 
CSC properties in the AGS, MKN45 and MKN74 GC 
cell lines[61]. These cells acquire elongated shape and 
show enhanced expression of mesenchymal markers 
(i.e., Snail1, ZEB1, and vimentin). Compared to the 
CD44low cells, the CD44high GC cell population gained the 
ability to migrate and invade and was better at forming 
tumorspheres in vitro and tumors in immunodeficient 
mice. According to that study, the induction of the EMT 
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Figure 1  Helicobacter pylori  virulence factors associated with gastric pathogenic processes. H. pylori is genetically highly variable, and some strains are more 
strongly associated with gastric pathologies, including GC. The most prominent are those that express the virulence factors VacA and Cag-PAI. VacA is a cytotoxic 
protein expressed by the polymorphic gene vacA that induces the formation of vacuoles, thus generating damage in the gastric epithelium. The Cag-PAI-positive 
strains (approximately 60%) possess a functional genetic region, which contains approximately 30 genes that code for proteins, that together make up a T4SS. 
The secretion system introduces a number of molecules, including the virulence factor CagA and peptidoglycans, into the cytoplasm of epithelial cells of the gastric 
mucosa. Once in the cytoplasm, CagA is phosphorylated, and this triggers downstream intracellular events, such as cytoskeletal rearrangement, alterations in cellular 
polarity, expression of inflammatory mediators, and activation of signaling pathways that promote cellular proliferation. The conversion of urea into ammonium and 
carbon dioxide by urease is essential to the survival H. pylori in the stomach. Flagella play an important role in the colonization of the gastric mucosa, as they produce 
differential motility depending on the pH of the stomach lumen and the concentration of compounds such as urea, thus enabling H. pylori bacteria to swim across the 
mucous layer towards the epithelial lining. Other less well-characterized virulence factors of H. pylori associated with gastric pathology are the adhesins, which include 
BabA, SabA, and OipA. Cag-PAI: Cag pathogenicity island; GC: Gastric cancer; H. pylori: Helicobacter pylori; T4SS: Type Ⅳ secretion system; VacA: Vacuolating 
cytotoxin A.
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β-catenin activation in response to this bacterial in-
fection is a necessary event for the acquisition of such 
properties in GC cell lines[63]. Finally, observations on 
patients with gastric dysplasia and early GC, before 
and after eradication of H. pylori, showed a connection 
between the mRNA expression levels of TGF-β1, EMT 
markers, and immunohistochemical expression of CD44, 
suggesting that H. pylori infection may trigger a TGF-β1
induced EMT and the emergence of CSCs[64]. 

Cell polarity alterations induced by H. pylori
Epithelial cells in the gastrointestinal tract are normally 
found in organized layers or epithelia. Their polygonal 
shape and functional organization in an apico-basal 
polarized manner allow them to lay in an orderly fashion, 
and the unions they form with each other and with the 
basal membrane give the epithelium a barrier function. 
As already mentioned, invasiveness is enhanced when 
cells lose their polarity due to alterations in the cyto-
skeleton and intercellular unions. H. pylori has been 
implicated in changing the polarity of the gastric epithelial 
cells, which may have important consequences in the 
context of gastric carcinogenesis. Of the three types 
of filaments that compose the cytoskeleton, the actin 
microfilaments are the most affected during H. pylori 
infection. 

The actin cytoskeleton is a very dynamic structure 
whose assembly is finely tuned by complex signaling 
networks and involves numerous regulatory proteins. 
Actin microfilaments form a wide variety of structures: 
contractile rings, phagocytosis- and endocytosis-related 
structures, microvilli, cortex, adherens belts (associ-
ated with adherens junctions), filopodia, lamellipodia, 
and stress fibers. The ability of H. pylori to promote 
rearrangements of the actin cytoskeleton is well-es-
tablished[65-67]. The most evident demonstration of this 
is the so-called hummingbird phenotype, comprising 
a change in the epithelial cell shape to the characte-
ristic elongated morphology of H. pyloriinfected cells 
in vitro. This phenotype is thought to be linked to 
cancer cell migration and invasive growth in vivo[68]. 
The hummingbird phenotype involves the formation of 
stress fibers and protrusions, the disruption of cell-to-
cell adhesions, and the deregulation of focal adhesions 
between the cell and the ECM. 

The basic mechanisms by which H. pylori changes the 
dynamics of the actin cytoskeleton during cell migration 
have been reviewed in depth by Wessler et al[69]. Briefly, 
H. pylori, via cag-PAI type-4 secretion system (T4SS; 
especially CagL) and CagA, is able to modify the host 
cell’s signaling networks. On the one hand, CagL binds 
β1 integrins, thereby stimulating the focal adhesion 
kinases (FAKs) and the Src-family kinases (SFKs); mean-
while, CagA activates the Abl-kinase. FAK, SFK, and Abl 
activate Crk, which in turn activates Rac1, which then 
promotes the assembly of actin filaments via activation 
of the Arp2/3 complex, contributing to cell motility. On 
the other hand, upon injection into the host-cell cytosol, 

CagA is phosphorylated by SFK (c-Src) and binds Shp-2 
and Csk, which then inhibit SFK in a negative feedback 
loop. Inhibition of SFK induces dephosphorylation of actin 
regulatory proteins, such as ezrin, vinculin, and cortactin. 
Cortactin stimulates the actin nucleation activity of 
Arp2/3 and, upon H. pylori-induced dephosphorylation, 
accumulates at the tip of the cellular protrusions and 
colocalizes with F-actin[70].

The serine/threonine kinase polarity-regulating kinase 
partitioning-defective 1b (PAR1) participates in the CagA-
mediated remodeling of the actin cytoskeleton. PAR1 
inhibits the formation of stress fibers and cortical actin 
in the cell periphery. Kikuchi et al[71] showed that the 
physical interaction between the CagA multimerization 
sequence and PAR1b, the isoform present in gastric 
epithelial cells, is crucial for the stable binding of CagA 
and Shp-2. In fact, a second study found that CagA 
indirectly activates RhoA-dependent formation of stre-
ss fibers by impairing PAR1b-mediated inhibition of 
RhoA[72]. These results were elegantly combined in a 
model that proposes a link among cell polarity regulation, 
the hummingbird phenotype, and actin cytoskeleton[73]. 
More specifically, upon cell polarity loss of the epithelial 
cell, PAR1b and aPKC are relocated, resulting in the 
establishment of a front-to-rear polarity in which these 
two molecules are asymmetrically distributed, with 
PAR1b localized in the rear part of the migrating cell. 

The binding of CagA to PAR1b modifies this program 
by perturbing PAR1b localization, which translates 
into loss of its kinase activity, lifting of the repression 
of RhoA, and formation of stress fibers; the salient 
manifestation of this is the hummingbird phenotype[73]. 
The affinity of CagA for PAR1b and formation stress 
fibers increases proportionally to the number copies 
of the CagA-multimerization (CM) domain present in 
CagA, which is seemingly higher in East Asian CM than 
in Western CM and differs in five amino acid residues[74].

Podosomes are dot-like structures of densely packed 
F-actin and serve as regulatory proteins by their capacity 
to degrade ECM components due to the presence of 
MMPs within. It has been shown in a model of primary 
hepatocytes and hepatoma cell lines that H. pylori can 
enhance the formation of podosomes by the induction of 
inflammatory cytokines such as TGFβ[75], thus providing 
additional evidence of the capacity of H. pylori to modify 
actin structures. Actin-remodeling activity has also been 
described in another Helicobacter species, H. pullorum. 
Its cytolethal distending toxin, responsible for the cy-
topathological effects observed upon infection, induces 
actin cytoskeleton remodeling that is accompanied by 
delocalization of vinculin and up-regulation of cortactin 
in large, cortical actin-rich lamellipodia[76].

Another important component of the cellular cytos-
keleton is the microtubules. Structurally, they are formed 
by tubulins and regulated by microtubule-associated 
proteins. The microtubular network organizes the cell 
movement of organelles and is part of specialized 
structures such as cilia, flagella, mitotic spindles, cen-
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the induction of members of the PA system, primarily 
uPAR. Part of the experimental evidence supporting this 
phenomenon comes from in vitro studies, for example 
global gene-expression analyses ranking uPAR among the 
top up-regulated genes in AGS and T84 cell lines, when 
co-cultured with H. pylori[85-87]. This has been confirmed 
by more specific in vitro studies, showing that in co-
cultures, the bacterium rapidly induces uPAR expression 
in GC cell lines[88-91]. A few of these reports indicate that 
uPAR induction is predominantly linked to CagA-positive 
strains[87,89]. The potential connection between H. pylori 
and uPAR induction has also been documented in non-
neoplastic tissue adjacent to GC lesions[92] and in gastric 
biopsies from healthy patients who are infected with the 
bacterium[93]. Interestingly, it has been reported that the 
expression of uPAR in neoplastic tissue may be correlated 
with the presence of H. pylori in adjacent non-neoplastic 
tissue[94].

The link between H. pylori and uPAR has been 
systematically investigated in a mouse model of H. 
pylori-induced gastritis (Figure 3)[95]. In this model, uPAR 
expression is up-regulated very early in response to the 
infection and increases progressively during the course 
of infection, and this is reverted to its physiological 
baseline levels if H. pylori is eradicated by antimicrobial 
therapy[95]. Additional experiments in this model 
suggest that uPAR expression is directly induced by the 
bacterium (and Alpízar-Alpízar, unpublished results)[95]. It 
is not possible to rule out, however, that uPAR induction 
in murine gastric epithelium is a consequence of the 
inflammatory reaction against H. pylori.

A few signaling pathways and transcription factors 
have been proposed as potential inducers of uPAR in 
cancer; however, much less is known about the me-
chanisms of induction in response to H. pylori. Studies 
in cancer cell lines have found that the NF-κB can drive 
uPAR expression by direct binding to specific sequences 
within the regulatory region of the gene encoding 
uPAR[96] or indirectly via HIF1α activation[97]. It is well 
known that H. pylori infection can lead to the activation 
of NF-κB[36,98]. Therefore, NF-κB is a likely transcriptional 
inducer of uPAR in epithelial cells of H. pylori-colonized 
mucosa, both in human and mouse. In vitro evidence 
supports this idea[88], but no experimental data have 
been generated in vivo. 

AP-1 is another transcriptional regulator that is 
activated by H. pylori infection[36] and has been im-
plicated in the induction of uPAR in cancer[99,100]. Thus, 
AP-1 may explain the potential connection between 
these two parameters[90]. Both NF-κB and AP-1 can be 
activated via the Ras–ERK MAPK signaling pathway[99,101]. 
This pathway is often manipulated by H. pylori[36], which 
makes it an interesting study target to gain further 
insight about the mechanism of induction of uPAR in the 
gastric epithelium colonized with H. pylori.

MMPs and H. pylori
The MMP family comprises more than 23 zinc-depen-
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trosomes, and basal bodies. During cell migration, the 
small Rho-GTPase protein Cdc42 controls the actin 
microfilaments in the cell migration front and binds 
PAR6. The Cdc42-PAR6 dimer recruits the microtubule-
regulating dynein/dynactin complex, which directs the 
machinery of the secretory pathway to the migration 
front. Importantly, this facilitates the delivery of integrins 
and other proteins that mediate the interaction with the 
ECM to the sites of migration. 

Although not many, some studies have addressed 
the role of H. pylori infection in microtubule regulation in 
the context of cell migration. Slomiany and colleague[77], 
for example, concluded that H. pylori lipopolysaccharide 
induced the secretion of MMP9 in a primary culture of 
murine gastric mucosal cells. In that study, the authors 
also found an accompanying increase of microtubule 
stabilization. Presumably, those changes are modulated 
by ghrelin and involve the activation of PKCδ and SFK.

Focal adhesions provide the structural link between 
the stress fibers and the ECM. They need to be dyna-
mically assembled and disassembled in order to allow 
cell migration. H. pylori impairs focal adhesion release 
during cell migration, which leads to the characteristic 
elongation of infected cells[68]. Paxillin, a multidomain 
protein that acts as an adaptor between the cytoplasmic 
tail of integrins and the actin cytoskeleton, has been 
designated as the convergent point of the epithelial 
growth factor receptor, FAK/Src, and PI3K/Akt signaling 
pathways in the context of H. pylori infection[78]. Paxillin 
phosphorylation is dependent on the presence of a 
functional Cag-PAI or OipA. The phosphorylated paxillin 
was localized along the elongations, suggesting a role in 
the formation of stress fibers[78].

PA system and H. pylori
The PA system comprises a few proteins that, by acting 
in sequence, lead to the conversion of zymogenic 
plasminogen into its active enzymatic form, plasmin. 
Extravascular activation of plasminogen is controlled 
by the urokinase-type plasminogen activator (uPA), its 
receptor (uPAR), its inhibitor PAI-1, and α2-antiplasmin. 
Besides degrading major ECM proteins (e.g., fibrin 
fibronectin, laminins, and vitronectin), the generated 
plasmin also releases latent growth and angiogenic 
factors sequestered in the matrix[79,80]. The expression 
of uPA, uPAR, and PAI-1 under normal homeostatic 
conditions is almost undetectable; however, in cancer 
and other pathologies, their expressions increase 
significantly[81]. An important body of evidence corre-
lates uPAR expression in cancer lesions with invasive 
and metastatic disease. Accordingly, high levels of uPAR 
in tissue and plasma are associated with poor patient 
survival in various types of cancer, including GC[82-84]. 
Most of these reports have focused on uPAR, since this 
receptor is crucial for the initiation of the sequential 
series of events that ultimately result in the activation 
of plasminogen.

As already mentioned, H. pylori has been linked to 
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dent endopeptidases, subdivided into eight groups 
according to structural characteristics[42,102]. MMPs are 
synthesized in the form of zymogens (pro-MMPs) by 
several cell types of the tumor microenvironment; and, 
when released to the extracellular space, they become 
activated by other proteases, including MMPs themselves 
and plasmin[42]. Besides their role in invasion and 
metastasis, MMPs are involved in other aspects of tumor 
biology. The degradation of ECM constituents results in 
the liberation of sequestered growth, proliferative and 
angiogenic factors but also in the generation of ECM-
derived peptides with similar biological properties to 
those factors. Some MMPs can cleave membrane-bound 
growth factor precursors, thus releasing their active form, 
for example TGFβ[42]. Elevated expression of several 
MMPs has been consistently correlated with poor cancer 
patient survival in several types of cancer, including 
GC. Of note, a few MMPs actually inhibit malignant 
transformation and tumor growth, including MMP8, 
MMP12, and MMP26[103-107].

The possible connection between H. pylori infection 
and induction of MMPs (e.g., MMP2, MMP3 and MMP9) 
in gastric epithelial cells has been suggested; however, 
the most compelling evidence is probably for MMP7. 
MMP7 enhances tumor formation in rodents[108], and it 
is particularly interesting in the context of the gastric 

carcinogenesis because its expression is increased in 
human GC lesions[109,110]. In human gastric cell lines 
co-cultured with H. pylori, it was found that cag-PAI-
positive strains augment the levels of MMP7 up to 7-fold 
compared to uninfected controls or to cells incubated 
with specific isogenic mutant strains[111]. According 
to that report, the induction of MMP7 in the in vitro 
system was dependent on the activation of ERK 1/2 
and required an active interplay between viable bacteria 
and epithelial cells[111]. That study also evaluated the 
expression of MMP7 in gastric biopsies of human patients 
and found that it was over-expressed in epithelial cells of 
gastritis-affected individuals infected with CagA-positive 
strains[111], which has also been previously documented 
by an independent report[112]. 

These observations served as the driving force for 
conducting subsequent investigations in MMP7 kno-
ckout mouse models. Such studies concluded that 
gastric inflammation and epithelial cellular turnover 
are substantially increased in MMP7-deficient mice 
infected with H. pylori, compared to their wild-type coun-
terparts[113,114]. It is speculated that over-expression of 
MMP7 in response to H. pylori colonization may be a 
mechanism to protect the gastric mucosa from damage 
and development of lesions that could ultimately result 
in GC[112,113]. Nevertheless, it is also proposed that sus-
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Figure 3  Plasminogen activator receptor induction in gastric epithelial cells in response to Helicobacter pylori infection. Stomach tissue sections of a mouse 
infected with H. pylori and euthanized 14 wk after inoculation processed for immunohistochemistry against H. pylori (A) and uPAR (C), and with H&E staining (B). 
Clusters of H. pylori bacteria (arrows) are observed in the upper third of the gastric glands along the gastric epithelium of the mouse stomach (A). Histopathological 
alterations are seen, including inflammation and mucous metaplasia (B). uPAR expression becomes evident at the apical membrane of foveolar epithelial cells in 
the corpus epithelium of H. pylori-colonized mice, such as the representative immunohistochemistry staining shown here (C). uPAR-positive scattered neutrophils 
are seen in the microphotograph (C) since they constitutively express this molecule. Scale bars: A: 100 μm; B and C: 200 μm. H. pylori: Helicobacter pylori; H&E: 
Hematoxylin and eosin; uPAR: Plasminogen activator receptor.
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tained expression of MMP7 in the gastric epithelium 
could lead to malignant transformation[112]. In fact, a few 
studies suggest that MMP7 proteolytically cleaves specific 
pro-apoptotic molecules, such as Fas ligand, from tumors 
cells, thus promoting tumor survival[115,116].

CONCLUSION
H. pylori is a determining factor in the development of 
GC, due to the multiple ways in which it manipulates 
the host gastric epithelial cells. A key aspect of car-
cinogenesis is the acquisition of invasive capacities, 
and H. pylori could modulate several factors associated 
with invasion. A number of bacterial virulence factors 
may be of relevance in the manipulation of cellular and 
molecular programs that lead to increased invasive 
behavior; however, Cag-PAI stands out as a major or-
chestrator in hijacking these host cell pathways. 

A number of key effectors of the EMT and cell polarity 
are deregulated in response to H. pylori infection. The 
two processes enhance cell motility and regulate the 
attachment of preneoplastic cells to the ECM and to 
other cells. This finally translates into an increased 
versatility of the cells to initiate the invasive process 
and adapt to the physiological changes suffered by the 
cell through the dedifferentiation induced by EMT. The 
acquisition of stem-like properties is a pivotal event 
that results from the activation of the EMT programs 
in response to H. pylori, since it confers the cells with 
augmented capability of survival and proliferation.

The induction of members of the PA system and 
MMPs by H. pylori could have important implications 
in the genesis of GC, given the wide array of aspects 
in which these molecules participate. Particularly in-
teresting is the fact that this bacterium up-regulates 
the expression in non-neoplastic gastric mucosa of the 
uPAR, a protein that until now has been implicated in 
processes related to late stages of cancer development 
and progression, and has been correlated with the 
prognosis of cancer patients in general. 

Altogether, the findings reviewed here show that H. 
pylori alters a fundamental process in gastric malignant 
transformation and invasiveness. Although we have 
discussed aspects related to EMT, cell polarity and ECM 
remodeling as independent processes, there are several 
points of interconnection among them (Figure 2). For 
instance, some factors implicated in the activation of 
EMT programs that are deregulated by H. pylori lead 
to the induction of MMPs and changes in cytoskeletal 
reorganization. Some of these proteinases, in the 
meantime, are capable of activating mediators of the 
EMT and cell polarity programs. 

Therefore, the link between H. pylori and cell 
invasive properties is complex and an exciting open 
area of research where many aspects remain far from 
being clear. For instance, there is a need to gain further 
insight on how and under what circumstances H. pylori 
manipulates regulatory networks controlling the EMT 
and stem-cell programs. Also, it is important to unravel 

the cellular and molecular mechanisms underlying the 
induction of members of the PA system and MMPs in H. 
pylori-colonized gastric epithelium. 

Elucidation of the key orchestrators governing these 
invasion-related programs is crucial to understanding 
the implications that these processes may have for 
the survival of the bacterium or in the pathological 
context. All this information could be of relevance for 
identifying individuals with an increased risk of GC, who 
may require H. pylori eradication therapy, especially in 
countries with limited resources and high prevalence 
of this bacterial infection. Finally, this may contribute 
to prediction of pre-neoplastic lesions that are more 
likely to progress in the pathogenic series of steps to 
malignancy, which may be of relevance to reducing GC 
burden.
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