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Abstract
BACKGROUND 
Tumor mutational burden (TMB) is an important independent biomarker for the 
response to immunotherapy in multiple cancers. However, the clinical 
implications of TMB in gastric cancer (GC) have not been fully elucidated.

AIM 
To explore the landscape of mutation profiles and determine the correlation 
between TMB and microRNA (miRNA) expression in GC.

METHODS 
Genomic, transcriptomic, and clinical data from The Cancer Genome Atlas were 
used to obtain mutational profiles and investigate the statistical correlation 
between mutational burden and the overall survival of GC patients. The 
difference in immune infiltration between high- and low-TMB subgroups was 
evaluated by Wilcoxon rank-sum test. Furthermore, miRNAs differentially 
expressed between the high- and low-TMB subgroups were identified and the 
least absolute shrinkage and selection operator method was employed to 
construct a miRNA-based signature for TMB prediction. The biological functions 
of the predictive miRNAs were identified with DIANA-miRPath v3.0.

RESULTS 
C>T single nucleotide mutations exhibited the highest mutation incidence, and 
the top three mutated genes were TTN, TP53, and MUC16 in GC. High TMB 
values (top 20%) were markedly correlated with better survival outcome, and 
multivariable regression analysis indicated that TMB remained prognostic 
independent of TNM stage, histological grade, age, and gender. Different TMB 
levels exhibited different immune infiltration patterns. Significant differences 
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between the high- and low-TMB subgroups were observed in the infiltration of 
CD8+ T cells, M1 macrophages, regulatory T cells, and CD4+ T cells. In addition, 
we developed a miRNA-based signature using 23 differentially expressed 
miRNAs to predict TMB values of GC patients. The predictive performance of the 
signature was confirmed in the testing and the whole set. Receiver operating 
characteristic curve analysis demonstrated the optimal performance of the 
signature. Finally, enrichment analysis demonstrated that the set of miRNAs was 
significantly enriched in many key cancer and immune-related pathways.

Key Words: Tumor mutational burden; Gastric cancer; Prognosis; Immune infiltration; 
microRNA; Immunotherapy

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Whether tumor mutation burden (TMB) is associated with a favorable 
prognosis remains controversial in various cancers. Accumulating evidence highlights 
that it is necessary to explore clinical impact of TMB in gastric cancer (GC). We 
defined the highest mutation load quintile (top 20%) in GC as the high-TMB group and 
found that high TMB values were associated with improved clinical outcomes, which 
might be attributed to the induction of antitumor immune responses in the 
microenvironment. We developed a microRNA-based signature to predict TMB values, 
which might serve as a surrogate biomarker for TMB in GC and aid physicians in 
clinical medical decision-making.

Citation: Zhao DY, Sun XZ, Yao SK. Mining The Cancer Genome Atlas database for tumor 
mutation burden and its clinical implications in gastric cancer. World J Gastrointest Oncol 
2021; 13(1): 37-57
URL: https://www.wjgnet.com/1948-5204/full/v13/i1/37.htm
DOI: https://dx.doi.org/10.4251/wjgo.v13.i1.37

INTRODUCTION
Gastric cancer (GC) represents the fifth most frequent malignant disease around the 
globe. GC alone accounts for 8.2% of cancer-related deaths worldwide and represents 
a heavy economic burden and a serious public health concern, especially in China[1,2]. 
Despite the considerable benefits of current therapies, such as targeted biological 
agents and combination therapies, prognosis for advanced GC is still poor with a 
median survival of less than 12 mo[3,4]. Thus, it is urgently important to develop new 
therapeutic approaches to prolong patient life. More recently, immunotherapy with 
immune checkpoint inhibitors (ICIs) has emerged as one of the most promising 
therapeutic approaches for various solid tumors[5-7]. ICIs, specifically programmed 
death receptor-1/ligand 1 (PD-1/L1) antibodies, have been approved for the treatment 
of advanced and refractory GC[8,9]. However, only a small subset of these patients have 
shown a response to ICIs owing to the complexity of immunosuppressive mechanisms 
and genetic heterogeneity among tumors[10-13]. Therefore, a reliable biomarker is 
required to determine which patients can respond to ICIs and guide the selection of 
GC patients for immunotherapy.

Currently, tumor mutational burden (TMB), referring to the amount of 
nonsynonymous mutations per one million bases, is in the spotlight as a novel 
biomarker and a rational target for predicting response to ICIs. High TMB may be a 
response biomarker for immunotherapy, based on the established notion that high 
mutational burden could facilitate neoantigen accumulation on tumor cells, enhancing 
immune cell activities in the microenvironment, subsequently eliciting T-cell-
dependent immune responses, and thereby inhibiting tumor development[14,15]. ICIs 
can restore neoantigen-mediated antitumor immune responses, thus patients with 
high TMB are more likely to respond to immunotherapy and exhibit improved clinical 
outcomes. For example, patients with high mutational load, including bladder cancer, 
melanoma, and lung adenocarcinoma, have appeared to benefit from ICIs[16-18]. A 
positive correlation between high incidence of TMB and overall survival benefit has 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1948-5204/full/v13/i1/37.htm
https://dx.doi.org/10.4251/wjgo.v13.i1.37


Zhao DY et al. Clinical implications of TMB in GC

WJGO https://www.wjgnet.com 39 January 15, 2021 Volume 13 Issue 1

been found in a small cohort of patients suffering from refractory GC treated with PD-
1 antibody[19]. However, studies of TMB in GC patients treated with ICIs are limited in 
number to date[19,20]. The association of mutational load with clinical characteristics/ 
outcomes and immune infiltration in the microenvironment also remains lacking. 
Continued research is needed to delineate the somatic mutation profile of GC and 
explore the correlations of TMB with immune cell fractions.

There are two traditional approaches used to assess TMB in formalin-fixed, paraffin-
embedded tissue of patients in most studies to date, including whole genome 
sequencing and whole exome sequencing (WES). WES is generally regarded as the 
definitive standard for mutation load assessment, but it is currently still clinically 
impractical because of high cost, turnaround time, and tissue heterogeneity[21,22]. 
Furthermore, WES requires the analysis of the matched normal tissue to remove 
germline mutations, and it is difficult for clinical doctors to use complex bioinform-
atics algorithms to quantify TMB[23]. Several targeted gene panels focusing on cancer-
related regions have recently developed as new methods to determine TMB; however, 
the demand for larger amounts of tumor DNA limits their use in clinical practice[24]. 
Thus, to find surrogate biomarkers that can predict TMB status accurately in GC is 
highly desirable. Lv et al[25] have identified a classifier based on microRNA (miRNA) 
expression patterns to predict mutational load in lung adenocarcinoma. MiRNAs are 
endogenous non-coding RNAs with the capacity to modulate many biological 
processes through gene regulation and have the potential to be biomarkers in GC 
immunotherapy[26,27]. Therefore, we hypothesized that miRNAs can also be surrogate 
biomarkers that highly correlate with the TMB status in GC.

In the current study, we determined the tumor mutational profiles of patients with 
GC by using the Cancer Genome Atlas (TCGA) data (https://portal.gdc.cancer.
gov/repository). Specifically, we attempted to answer the following questions: Is the 
TMB an independent predictive biomarker for GC patients? Is the abundance of 
immune cell fractions in the microenvironment of high mutational load subgroup 
different from that of low subgroup? Do miRNAs have the potential to predict TMB 
values in GC?

MATERIALS AND METHODS
Data acquisition
Data on somatic mutations, RNA-seq, and miRNA expression profiles for GC were 
obtained from the TCGA database. For mutation data, we chose the “Masked Somatic 
Mutation” data which were based on VarScan software and subsequently applied the 
Maftools package for mutational analysis and comprehensive visual presentation[28]. 
The TCGA database is freely available and open to the public; therefore, there is no 
requirement for additional ethical approval.

Estimation of TMB values
The TMB values for each sample were determined by measuring the total amount of 
nonsynonymous mutations, including somatic substitutions, coding deletions and 
insertions, and coding errors of genes via Perl scripts and represented as the amount of 
mutations per mega-base (Mb) of the genomic region being sequenced. Based on a 
previous study, we used a cut-off of the top 20% of the TMB (9 mutations/Mb) in this 
study as the cut-off value. Samples with TMB ≥ 9 mutations/Mb were defined as high 
mutational burden (TMB-H), whereas samples with TMB < 9 mutations/Mb were 
defined as low mutational burden (TMB-L)[19].

Prognosis analysis
Based on the requirement for the prognosis analysis, we excluded the GC patients 
having a survival time of less than 1 mo, potentially implying death caused by other 
disease. The Kaplan-Meier curve was utilized to explore the association of somatic 
mutation count with overall survival, and the survival difference between the TMB-H 
and TMB-L group was assessed by log-rank test. We also performed Wilcoxon rank-
sum tests to evaluate the relationships of TMB levels with clinicopathological 
parameters, including TNM status, histological grade, age, gender, and American Joint 
Committee on Cancer (AJCC) stage. In addition, in order to determine whether the 
prognostic value of TMB was independent of other clinicopathological parameters, 
Cox proportional hazards regression analyses (univariate and multivariable) were 
utilized to determine statistical significance, representing results as hazard ratios (HR) 
and 95% confidence intervals (95%CI).

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository


Zhao DY et al. Clinical implications of TMB in GC

WJGO https://www.wjgnet.com 40 January 15, 2021 Volume 13 Issue 1

Immune infiltration analysis
Based on RNA-seq expression data, the R package “CIBERSORT” was utilized to 
quantify the levels of 22 immune cells in GC patients with a threshold P value < 0.05. 
CIBERSORT is a deconvolution algorithm that requires an input matrix of a known 
reference set and accurately determines the relative levels of leukocyte subtypes from 
their gene expression profiles[29]. Next, we used the R package “pheatmap” to visualize 
the distributions of immune cell fractions in the high- and low-TMB subgroups. The 
difference in immune cell abundance between the high- and low-TMB groups was 
compared by Wilcoxon rank-sum test and visualized with the R package “vioplot”.

Construction of a miRNA-based signature
The patients diagnosed as GC were randomly sorted into a training dataset (60%) and 
a testing dataset (40%). The training set was used to construct a miRNA-based 
signature for TMB prediction. First, the miRNAs differentially expressed between the 
high mutation load and low mutation load groups were identified by analyzing the 
training set using the R package ‘limma’, and only the miRNAs with a P value < 0.01 
and fold change (FC) > 1.5 were selected for subsequent analysis. We illustrated the 
differential expression patterns of miRNAs in the TMB-L and TMB-H subgroups by 
performing bidirectional hierarchical clustering and generating a heatmap plot. To 
construct the miRNA-based signature for predicting TMB values, we used the package 
“glmnet” in R software to conduct least absolute shrinkage and selection operator 
(LASSO) regression analysis. LASSO analysis is a powerful method that can improve 
prediction accuracy by constructing a penalty function, shrinking some coefficients to 
zero, reducing the number of variables, and finally selecting only a subset of variables 
into the model[30]. Then, ten-fold cross-validation was performed with type.measure = 
“auc” to identify the optimal tuning parameters (minimum value of lambda) in the 
LASSO model. The final model retained all predictors with coefficients not equal to 
zero. Finally, the individual index score was constructed as a linear combination of the 
expression level of miRNA multiplied with a regression coefficient (β) for the 
corresponding miRNA obtained from the LASSO regression model: The index = 
(βmiRNA1 * expression level of miRNA1) + (βmiRNA2 * expression level of miRNA2) + 
(βmiRNA3 * expression level of miRNA3) + (βmiRNAn * expression level of miRNAn).

Performance of the miRNA-based signature 
The testing set and the whole set were utilized to validate the robustness and 
predictive performance of this signature. The ability of the signature to predict TMB 
value was assessed by using receiver operating characteristic (ROC) curve 
methodology and calculating the area under the curve (AUC) with the R package 
“survival ROC”. Sensitivity and specificity of this signature, as well as positive 
predictive value (PPV) and negative predictive value (NPV), were determined in all 
the sets. The relationship between the signature index of each sample and TMB value 
was determined by the Spearman method. With the aim to investigate the association 
between this signature and immune checkpoint molecules, we explored the correlation 
of the signature index with gene expression levels of immune checkpoints including 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), PD-L1, and PD-1.

Determination of miRNA functions
To identify the biological functions of the list of miRNAs generated to construct the 
predictive signature, pathway enrichment analysis including KEGG pathways and GO 
was conducted using DIANA-miRPath v3.0, an online software suite capable of 
deciphering miRNA function with experimental support (http://www.microrna.
gr/miRPathv3)[31]. The results of GO and KEGG pathway analyses were considered to 
indicate significance at a threshold of P value < 0.01 and were visualized with the R 
package “ggplot2”.

Statistical analysis
R software (version 3.6.1) was employed to implement the statistical analyses in the 
study. P values < 0.05 were considered significant unless otherwise specified.

RESULTS
Mutational genomic landscape in GC
We included 433 GC patients for mutational analysis in this study. As depicted in 
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Figure 1A-F missense mutation was the most common mutational category, and single 
nucleotide polymorphism accounted for the most frequent variant type. We classified 
single nucleotide variants into six classes and the results revealed that C>T mutations 
exhibited the highest incidence (91939) in GC. The number of variants per sample 
ranged from 0 to 5612, and the median number was 89. The waterfall map presented 
the top 30 mutated genes and their status with respect to mutational categories 
(Figure 1G). The top 20 mutated genes were as follows: TTN, TP53, MUC16, ARID1A, 
LRP1B, SYNE1, FLG, FAT4, CSMD3, PCLO, DNAH5, KMT2D, FAT3, OBSCN, HMCN1, 
RYR2, ZEFX4, SPTA1, CSMD1, and PIK3CA. We used the interaction plot to display 
the co-occurrence and exclusive correlations among the top 20 mutated genes (
Supplementary Figure 1). Blackish green represents the coincident associations across 
mutated genes, whereas yellow represents the exclusive associations. A gene-cloud 
plot is used to present mutation information for genes in Supplementary Figure 2.

Prognosis value of TMB in GC
First, the value of TMB was calculated for each sample in the whole set and patients 
were classified into the TMB-H (n = 87) and TMB-L group (n = 346) on the basis of the 
cut-off of the top 20% of TMB value. Then, the prognosis capacity of TMB was 
determined by Kaplan-Meier analysis and log-rank test, which indicated that patients 
in the high mutational burden subgroup showed a significantly better overall survival 
than those in the low subgroup (P = 0.020, Figure 2A). In addition, we included age as 
a continuous variable and gender, histological grade, and TNM stage as categorical 
variables for univariate and multivariable Cox regression analyses to further 
investigate the clinical value of TMB (Figure 3). Results of the Cox regression indicated 
that TMB value was an independent and favorable prognostic biomarker for overall 
survival in GC (HR = 0.982, 95%CI: 0.967−0.997, P = 0.021), as were gender (HR = 
1.693, 95%CI: 1.119−2.561, P = 0.013) and lymph node metastasis (HR = 1.280, 95%CI: 
1.022−1.604, P = 0.032) (Figure 3B). High TMB was considered a favorable prognostic 
factor, while other parameters were confirmed to be unfavorable prognostic factors for 
GC. We further compared the differences of TMB among different subgroups. High 
levels of TMB were observed in the GC patients with the following characteristics 
(Figure 2): Over the age of 65 years (P < 0.001, Figure 2B), female gender (P = 0.033, 
Figure 2C), early AJCC stage (P = 0.044, Figure 2E), AJCC T1-2 stage (P = 0.039, 
Figure 2F), and lack of lymph node metastasis (P = 0.018, Figure 2G). However, there 
were no significant differences observed in the correlations of TMB value with AJCC 
M stage (P = 0.104, Figure 2H) or histological grade (P = 0.051, Figure 2D).

TMB and immune cell infiltration
To further explore the potential relationships between TMB value and immune 
infiltration in the tumor microenvironment, we used a deconvolution algorithm to 
calculate the 22 immune cell fractions and present the immune infiltration landscape 
for each sample in Figure 4A. We further used Wilcoxon rank-sum tests to compare 
the difference in immune infiltration between the high mutational load and low 
mutational load subgroups, and the results demonstrated that patients with high 
mutational load exhibited significantly increased abundance of CD8+ T cells (P = 
0.023), T follicular helper cells (Tfh, P < 0.001), M1 macrophages (P < 0.001), and 
activated CD4+ T memory cells (P < 0.001). However, resting CD4+ memory T cells (P 
= 0.026), regulatory T cells (Tregs, P < 0.001), and naïve B cells (P < 0.001) displayed 
notably decreased proportions in the TMB-H group (Figure 4B).

Identification of a miRNA-based signature for TMB prediction from the training 
dataset
Patients with complete miRNA expression information were enrolled for subsequent 
study (n = 425) and randomly sorted into a training dataset (n = 255) and a testing 
dataset (n = 170). No clinicopathological characteristics, including age, gender, 
histological grade, or AJCC stage, were significantly different between the training and 
testing cohorts, as shown in Supplementary Table 1. Next, we conducted differential 
expression analysis in the training set, and 70 miRNAs were identified based on a cut-
off point (|log2FC| > 0.585 and P < 0.01) to be differentially expressed between the 
TMB-L and TMB-H groups. Among these miRNAs, 22 differentially expressed 
miRNAs were downregulated and 48 miRNAs were upregulated. A heatmap of the 
top 50 differentially expressed miRNAs is shown in Figure 5. Next, the differentially 
expressed miRNAs were input into LASSO analysis. Ten-fold cross-validation was 
used for selecting parameters in the LASSO model by minimum criteria. At the 
optimal values log (λ), dotted vertical lines were set via the minimum criteria, where 23 

https://f6publishing.blob.core.windows.net/113f1e9b-04c0-4dd9-8ea5-974e1104bc2c/WJGO-13-37-supplementary-material.pdf
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Figure 1 Mutational genomic landscape in The Cancer Genome Atlas gastric cancer cohort. A: Variant categories; B: Variant types; C: Single 
nucleotide variant types; D: Number of variants per sample; E: Summary of variant categories; F: Top 10 mutated genes. G: Waterfall map of the top 30 mutated 
genes and their status of variant categories. Various colors with annotations at the bottom represent the different variant categories while the barplot above the 
legend exhibits the value of tumor mutational burden. SNV: Single nucleotide variants; SNP: Single nucleotide polymorphism; INS: Insertion; DEL: Deletion; TCGA: 
The Cancer Genome Atlas.

features were selected to establish the prognostic model (Figure 6A). Subsequently, the 
index of each patient was measured to predict the value of TMB as follows: Index = -
4.801 + miR-452-5p*(-0.773) + miR-203b-3p*(0.081) + miR-582-3p*(0.194) + miR-582-
5p*(0.140) + miR-27a-5p*(0.032) + miR-651-5p*(0.057) + miR-508-3p*(0.273) + miR-410-
3p*(0.139) + miR-181d-5p*(-0.760) + miR-96-5p*(0.467) + miR-30a-3p*(-0.238) + miR-
155-5p*(0.773) + miR-4662a-5p*(-0.130) + miR-196b-5p*(0.264) + miR-3913-5p*(-0.205) + 
let-7g-3p*(-0.338) + miR-210-3p*(0.352) + miR-497-5p*(-0.727) + miR-9-5p*(-0.037) + 
miR-625-5p*(-0.061) + miR-181b-5p*(-0.869) + miR-100-5p*(0.527) + miR-338-5p*(0.453).

Performance of the miRNA signature for TMB prediction 
In the study, we used AUC, sensitivity, specificity, PPV, and NPV to describe the 
performance of the miRNA signature. The performance of the signature for predicting 
TMB in each set is displayed in Figure 6B and Table 1. The AUCs reached 0.982, 0.887, 
and 0.947 for the training set, the testing set, and the whole set, respectively, 
demonstrating the competitive power of the signature for predicting the TMB values 
of GC patients. We obtained an accuracy of 0.934 with a sensitivity of 0.802, specificity 
of 0.968, PPV of 0.863, and NPV of 0.951 for the whole set. The accuracy in the training 
set was 0.953 and 0.906 in the testing set, respectively, with a sensitivity of 0.750 and 
specificity of 0.937. These results revealed that the miRNA-based signature predicted 
TMB values with high efficiency and could be used as a predictor. Previous studies 
have shown PD-L1 expression and TMB to be independent of each other in most 
cancer subtypes[32,33]. Hence, it would be meaningful to explore the association between 
the miRNA signature index and immune checkpoint molecules. Clearly, the signature 
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Table 1 Performance of the miRNA-based signature to predict tumor mutation burden in gastric cancer

Type Training set Testing set Whole set

sensitivity 0.828 0.750 0.802

specificity 0.990 0.937 0.968

PPV 0.960 0.700 0.863

NPV 0.951 0.950 0.951

Accuracy 0.953 0.906 0.934

AUC 0.982 0.887 0.947

PPV: Positive predictive value; NPV: Negative predictive value; AUC: Area under curve.

index exhibited a significant strong correlation with the level of TMB (r = 0.57, P < 
0.001). However, the index showed a low correlation with the gene expression of PD-1 
(r = 0.13, P = 0.013) and CTLA4 (r = 0.13, P = 0.011) and a moderate correlation with 
that of PD-L1 (r = 0.33, P < 0.001) (Figure 7).

Determination of miRNA function
Functional enrichment analysis showed that 48 KEGG pathways (Supplementary 
Table 1) and 104 GO terms (Supplementary Table 2) were enriched for the 23 miRNAs 
(P < 0.01). It was noted that several KEGG pathways are involved in the development 
and progression of GC, including the HIPPO, PI3K-Akt, WNT, ERBB, and 
transforming growth factor-beta (TGF-β) signaling pathways (Figure 8A). GO 
enrichment analysis demonstrated significant enrichment of immune related 
pathways, such as Toll-like receptor signaling pathway, Fc-epsilon receptor signaling 
pathway, immune system process, innate immune response, and Fc-gamma receptor 
signaling pathway involved in phagocytosis (Figure 8B). Taken together, the 
functional enrichment analysis revealed the potential roles of the miRNAs in cancer-
related immune processes.

DISCUSSION
Biological behaviors of cancers, including tumor initiation, angiogenesis, tumor 
invasion, and metastasis, are driven by genome instability, expression-level 
modulation, and immune cells present in the tumor microenvironment[34]. With the 
widespread use of high-throughput molecular technologies, TMB, one of the 
manifestations of genetic instability, has attracted the attention of researchers. 
Currently, TMB is considered an innovative biomarker of immunotherapy response 
for multiple cancers, including GC. Further understanding of TMB and its relationship 
with immune cells becomes more important in the field of personalized medicine. 
Therefore, the present study focused on the clinical implications of TMB in GC.

In the current study, we summarize the mutational genomic landscape in GC 
patients based on the TCGA dataset. The top 3 mutated genes were TTN, TP53, and 
MUC16. TP53 is one of the most extensively studied tumor suppressor genes, and its 
mutation not only inhibits the suppression of tumor development, but also produces 
certain cancer-promoting proteins[35]. TTN, the longest known gene, originally known 
for its effects on the development and regulation of cardiac and skeletal muscles, has 
been confirmed to be highly correlated with TMB levels and the responsiveness to ICIs 
in solid tumors[36]. Despite the length of the gene contributing to a greater number of 
somatic mutations, the molecular mechanisms of TTN in the production of tumor 
mutations require further study. MUC16 is one of the most frequently mutated genes 
in various cancers and contributes to tumor proliferation and metastasis by regulating 
immune response to cancer[37]. In a recent study, it has been suggested that MUC16 
was associated with high TMB and favorable prognosis in GC[38].

Our study analyzed the correlation between TMB values and overall survival rates 
in patients with GC. The Kaplan-Meier analysis in the GC cohort from the TCGA 
dataset was performed by defining the highest TMB quintile (top 20%) as the high 
TMB group. Based on this approach, we found that GC patients with high mutational 
burden had a favorable prognosis. In addition, higher mutational load in GC was also 

https://f6publishing.blob.core.windows.net/113f1e9b-04c0-4dd9-8ea5-974e1104bc2c/WJGO-13-37-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/113f1e9b-04c0-4dd9-8ea5-974e1104bc2c/WJGO-13-37-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/113f1e9b-04c0-4dd9-8ea5-974e1104bc2c/WJGO-13-37-supplementary-material.pdf
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Figure 2 Clinical significance of tumor mutation burden in gastric cancer patients. A: Survival analysis to explore the overall survival of gastric 
cancer patients between the high and low tumor mutation burden groups; B-H: Correlation between tumor mutation burden values and clinical characteristics in 
gastric cancer. TMB: Tumor mutation burden.
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significantly associated with older ages, female gender, earlier tumor stage, and lack of 
lymph node metastasis. However, the prognostic impact of mutational burden in 
different types of cancer remains controversial. Yuan et al[39] demonstrated that patients 
with higher mutational load had a worse prognosis in esophageal cancer[39], consistent 
with previous studies in clear cell renal cell carcinoma and prostate cancer[40,41], 
whereas bladder cancer with higher mutational load was associated with better 
outcomes[42]. In these previous studies, they used the median value as the cut-off to 
distinguish TMB-H and TMB-L groups.

Currently, a universal cut-off value for defining high TMB is lacking. Previous 
studies have revealed that there are several factors that influence the threshold for 
high TMB, such as cancer types, sample types, pre-analytic variables, and detection 
methods[43]. Some studies have been exploratory, distributing TMB into three groups. 
For example, a study on a total of 908 resected lung cancer species measured TMB 
levels by using targeted gene panels and divided TMB into terciles: High (> 8 
mutations/Mb), low (4 mutations/Mb), and intermediate subgroup (> 4 and ≤ 8 
mutations/Mb)[44]. In a large cohort focusing on diverse cancers, TMB levels was 
separated into three subgroups: Low-(50% of patients), intermediate-(40% of patients), 
and high-TMB subgroup (10% of patients)[23]. Most published clinical studies were 
likely to distribute TMB into two groups. In a study with small sample size, 
researchers defined the higher mutation load quintile (top 20%, 14.31 mutations/Mb) 
in advanced GC treated with ICIs as the high TMB group and found that TMB was 
correlated with clinical outcomes[20]. Wang et al[19] have studied the correlation of TMB 
with survival in chemo-refractory GC under treatment with toripalimab and 
demonstrated that high TMB (top 20%, 12 mutations/Mb) was significantly correlated 
with improved survival[19]. A large-scale study also used an upper 20th percentile cut-
off to define high TMB and analyzed the association between tumor mutational load 
and the clinical responses to ICIs across multiple cancer types[45]. Therefore, we took 
the same approach of separating TMB-H and TMB-L groups (top 20%, 9 
mutations/Mb) in order to dichotomize the data, but this was not a universal number 
of high TMB in GC and might not have any clinical significance. When we set the cut-
off at the median of mutational load (2.671 mutations/Mb) in the current study, the 
difference of overall survival rates between the high mutational load and low 
mutational load subgroups was still statistically significant (P = 0.016, Supplementary 
Figure 3). Thus, it is critical and urgent to develop a satisfactory and reproducible 
definition of the predictive TMB cut-off value before implementing TMB as a 
biomarker of immunotherapy response in individualized treatment. To further clarify 
whether TMB is a favorable dependent factor in GC, Cox proportional hazards 
regression analysis was implemented and demonstrated that TMB was significantly 
correlated with overall survival as a continuous variable, indicating that it was able to 
predict the survival of GC patients without consideration of other conventional 
clinicopathological variables.

Immune cells, a large proportion of infiltrating cells in the tumor microenvironment, 
interact with tumor cells by releasing inflammatory cytokines and chemokines, which 
drive biological behaviors of cancers and influence their therapeutic responses to 
immunotherapy. In the present study, we explored the potential relationships between 
TMB values and immune infiltration in GC patients. The abundance of CD8+ T cells, 
CD4+ T cells, and Tfh cells were markedly higher in the TMB-H group than in the 
TMB-L group. Accumulating evidence has shown that high mutational load tends to 
cause neoantigens to accumulate in cancer and results in the activation of CD8+ 
cytotoxic T cells and subsequent initiation of tumor cell lysis, consistent with our 
results[14,15]. CD4+ T cells were considered a component of anticancer immunomech-
anisms and an independent indicator of favorable prognosis in multiple cancers[46]. It is 
to be noted that not all mutations would generate high neoantigens on the surfaces of 
tumor cells, and further research is warranted to determine which gene mutations are 
responsible for the induction of immune response. Different from the conventional 
view on immune cells, TAMs play a dual role in tumor development depending on 
their polarization status. The M1 macrophages are involved in antitumor response 
whereas M2 macrophages have pro-tumorigenic properties[47]. In our study, M1 
macrophages, but not M2, were significantly elevated in the tumor microenvironment 
with high TMB levels. Furthermore, we found that patients with high mutational load 
showed significantly decreased infiltrating naïve B cells and Tregs. Tregs have been 
considered to have a central role in inhibiting effective antitumor immunity and 
correlate with an unfavorable prognosis in many cancers[48]. The mechanisms 
underlying the decreased level of naïve B cells in the TMB-H group remain unclear. 
We hypothesize that B-cell differentiation factors secreted by tumor cells may be 
responsible for decreased infiltration of naïve B cells. In summary, these results 

https://f6publishing.blob.core.windows.net/113f1e9b-04c0-4dd9-8ea5-974e1104bc2c/WJGO-13-37-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/113f1e9b-04c0-4dd9-8ea5-974e1104bc2c/WJGO-13-37-supplementary-material.pdf
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Figure 3 Identifying independent prognostic parameters in gastric cancer. A: Forrest plot of the univariate Cox regression analysis in gastric cancer; 
B: Forrest plot of the multivariate Cox regression analysis in gastric cancer. Solid squares indicate the hazard ratios of death, and close-ended horizontal lines 
represent the 95% confidence intervals. TMB: Tumor mutation burden.

indicate that tumor microenvironment exhibited a significant antitumor response in 
patients with high TMB.

Growing evidence has revealed that aberrant expression of miRNAs can be found in 
various cancer types and plays a crucial role in the carcinogenesis, migration, and 
invasion of tumor cells by regulating adaptive and innate immune responses in the 
tumor microenvironment[26,27]. It  has been suggested that miRNA-targeted 
immunotherapeutics have great potential in clinical practice. However, the 
relationship between miRNA and mutational load in GC has not previously been 
explored. In the present study, we screened the differentially expressed miRNAs 
between the TMB-H and TMB-L groups in the GC cohort and found that different 
mutational load values were correlated with different miRNA profiles. Next, we 
conducted LASSO analysis to select parameters from differentially expressed miRNAs 
and established a 23-miRNA classifier to predict TMB values based on the training 
dataset, which was further validated in the whole dataset and testing dataset. The 
accuracies of this predictive model for the training set, the testing set, and the whole 
set were 0.951, 0.906, and 0.934, respectively, and specificities were 0.990, 0.937, and 
0.968, respectively, which implied that this signature was very effective with a high 
accuracy and specificity in predicting TMB values. The efficiency of this signature was 
also evaluated by ROC analysis and the results revealed that this signature was 
credible in predictive performance throughout the testing set and whole set. Moreover, 
the strong correlation between the signature index and TMB values in GC patients 
further confirmed the robustness of this signature. However, PPV in the testing set 
was lower than that in the training and whole set, indicating that the ability of the 
signature to recognize high mutational load needs to be improved. We also explored 
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Figure 4 Quantitative analysis of immune infiltration in two groups based on tumor mutation burden status. A: The box plot of 22 tumor-
infiltrating immune cells in each sample; B: Expression comparison of 22 tumor-infiltrating immune cells between the high tumor mutation burden (TMB) and low TMB 
groups. TMB: Tumor mutation burden.

the association of the signature with immune checkpoint molecules and demonstrated 
that the signature showed a low correlation with PD-1, PD-L1, and CTLA4. These 
results were consistent with previous studies, which demonstrated that TMB was 
independent of the expression of immune checkpoint molecules[32,33].

With respect to the biological functions of the miRNAs in the predictive signature, 
functional annotation was conducted. KEGG pathway analysis indicated that the 
functions of the 23 miRNAs were potentially associated with HIPPO, PI3K-Akt, WNT, 
ERBB, and TGF-β signaling pathways, and those were supposed to play a critical role 
in the tumorigenesis of GC[49]. Moreover, the miRNA sets were found to be involved in 
immune-related pathways, including immune system process and innate immune 
response. Increasing evidence has demonstrated that high mutational burden might 
lead to the activation of antitumor immune responses[14,15]. The enrichment analysis 
indicated that the 23 miRNAs contributed to vital cancer and immune pathways, 
which might provide strong biological evidence for the feasibility of the miRNA-based 
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Figure 5  Heatmap of top 50 differentially expressed miRNAs between the high and low tumor mutation burden groups.
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signature in predicting TMB values.
This study has several limitations. First, all of our samples and clinical data were 

based on the TCGA dataset, and most of patients were Westerners. Cohorts with 
larger sample sizes from other regions are needed to confirm our results, and external 
validation of the miRNA-based signature is necessary in the future. Second, the cut-off 
definition used in the present study to distinguish the TMB-H and TMB-L groups was 
not uniform, and multi-center randomized controlled studies focusing on 
immunotherapy in GC to identify TMB cut-off values are proposed. Third, all the 
results in the present study were based on a bioinformatics analysis and description. 
Mechanistic investigation should be performed to clarify the underlying mechanism of 
high mutation load in the activation of antitumor immune responses in GC patients. In 
addition, the functions of 23 miRNAs in immune responses were not characterized 
using in vitro or in vivo experimentation.

CONCLUSION
Taken together, mutational burden is considered an independent and favorable 
prognostic biomarker in patients suffering from GC. High TMB is notably correlated 
with a good survival and might lead to the activation of antitumor immune cells in the 
tumor microenvironment. Moreover, different mutational load is associated with 
different miRNA expression patterns, and a miRNA-based signature was established 
to predict TMB values in GC, which might aid physicians in clinical medical decision-
making.
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Figure 6 Least absolute shrinkage and selection operator analysis for prognostic features screening and receiver operating 
characteristic curves for the miRNA-based signature. A: Least absolute shrinkage and selection operator regression with ten-fold cross-validation obtained 
23 prognostic parameters using minimum lambda value; B: Receiver operating characteristic analysis showed that the areas under curves for the training set, the 
testing set, and the whole set were 0.982, 0.887, and 0.947, respectively. λ: Lambda; AUC: Area under curve.
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Figure 7 Correlation of the miRNA-based signature with tumor mutation burden values and immune checkpoint molecules (programmed 
death-1, programmed death ligand-1, and cytotoxic T lymphocyte associated antigen 4). TMB: Tumor mutation burden; PD-1: Programmed death-
1; PD-L1: Programmed death ligand-1; CTLA4: Cytotoxic T lymphocyte associated antigen 4.
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Figure 8 Functional enrichment analysis of the 23 miRNAs. A: Significant enriched cancer-related KEGG pathways; B: Significant enriched immune-
related GO terms. X axis refers to the number of targeted genes. Y axis refers to GO or KEGG entry name. Bubble color refers to the enrichment P value. Bubble size 
refers to the number of targeting miRNAs.

ARTICLE HIGHLIGHTS
Research background
Tumor mutational burden (TMB) is in the spotlight as a novel biomarker and a 
rational target for predicting response to immunotherapy in multiple cancers. Gastric 
cancer (GC) is one of the most common gastrointestinal malignant tumors worldwide. 
Accumulating evidence highlights that it is necessary to further explore clinical impact 
of TMB in GC.

Research motivation
The association of TMB with clinical outcomes and immune infiltration in the tumor 
microenvironment in GC patients has not yet been elucidated. MicroRNAs (miRNAs) 
have a crucial role in the carcinogenesis, migration, and invasion of tumor cells by 
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regulating adaptive and innate immune responses, but the relationship between 
miRNA expression patterns and mutational load is not clear in GC.

Research objectives
This study aimed to explore the clinical impact of TMB and establish a miRNA-based 
signature for TMB prediction in GC patients.

Research methods
The Kaplan-Meier analysis in the GC cohort from The Cancer Genome Atlas dataset 
was performed by defining the highest TMB quintile (top 20%) as the high-TMB 
group. The difference in immune infiltration between the high- and low-TMB 
subgroups was evaluated by Wilcoxon rank-sum test. The least absolute shrinkage and 
selection operator analysis was conducted to select parameters from differentially 
expressed miRNAs between the high- and low-TMB subgroups and construct a 
miRNA-based signature classifier for TMB prediction.

Research results
Higher mutational load in GC was significantly associated with better prognosis, older 
ages, female gender, earlier tumor stage, and lack of lymph node metastasis. Different 
mutational load levels exhibited different immune infiltration patterns and different 
miRNA expression patterns. In addition, we developed a miRNA-based signature 
using 23 differentially expressed miRNAs to predict TMB values of GC patients.

Research conclusions
High TMB is notably correlated with good survival and might lead to the activation of 
antitumor immune cells in the tumor microenvironment in GC. The miRNA-based 
signature might be developed as a surrogate biomarker for TMB in GC.

Research perspectives
The miRNA-based signature for TMB prediction might help develop treatment 
strategies for GC patients and have an impact on the clinical practice in the course of 
GC.
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