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Abstract
Modern liver ultrasonography (US) has become a “one-stop shop” able to provide 
not only anatomic and morphologic but also functional information about 
vascularity, stiffness and other various liver tissue properties. Modern US 
techniques allow a quantitative assessment of various liver diseases. US scanning 
is no more limited to the visualized plane, but three-dimensional, volumetric 
acquisition and consequent post-processing are also possible. Further, US scan can 
be consistently merged and visualized in real time with Computed Tomography 
and Magnetic Resonance Imaging examinations. Effective and safe microbubble-
based contrast agents allow a real time, dynamic study of contrast kinetic for the 
detection and characterization of focal liver lesions. Ultrasound can be used to 
guide loco-regional treatment of liver malignancies and to assess tumoral 
response either to interventional procedures or medical therapies. Microbubbles 
may also carry and deliver drugs under ultrasound exposure. US plays a crucial 
role in diagnosing, treating and monitoring focal and diffuse liver disease. On the 
basis of personal experience and literature data, this paper is aimed to review the 
main topics involving recent advances in the field of liver ultrasound.

Key Words: Ultrasonography; Contrast-enhanced ultrasound; Elastography; Interventional; 
Doppler ultrasonography
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only anatomic and morphologic but also vascularity, stiffness and dynamic assessment 
of contrast agent kinetic. Over the years, ultrasound has seen a dramatic increase of its 
clinical applications in diagnosing, treating and monitoring focal and diffuse liver 
disease. In this review we will focus on the main topics involving recent advances and 
modern applications in the field of liver ultrasound.

Citation: Bartolotta TV, Taibbi A, Randazzo A, Gagliardo C. New frontiers in liver ultrasound: 
From mono to multi parametricity. World J Gastrointest Oncol 2021; 13(10): 1302-1316
URL: https://www.wjgnet.com/1948-5204/full/v13/i10/1302.htm
DOI: https://dx.doi.org/10.4251/wjgo.v13.i10.1302

INTRODUCTION
In 1942 the neurologist Karl Dussik produced a brain “ventriculogram”, paving the 
way for the use of ultrasound (US) for medical purposes[1]. Since then, the field of 
medical US has experienced tremendous technical improvement.

In particular liver US has progressively achieved an unprecedented B-mode image 
quality, being even capable of processing and displaying “harmonic frequencies” 
which were previously considered “noise” and simply cut off[2]. US is no more a 
merely bi-dimensional technique but it is also possible to acquire and display in real 
time entire liver volumes, which can be in turn post-processed for volume calculation 
or rendering[3].

First (Color) and second (Power) generation Doppler modules have tremendously 
increased their sensitivity in blood flow detection, yet US is rapidly moving towards 
third-generation Doppler techniques[4]. Furthermore, the availability of safe and 
effective contrast agents allows for a real time assessment of the kinetic of contrast 
enhancement, also providing quantitative parameters about vascularity on a 
micrometric scale[5].

Analysis of ultrasonic waves propagation allows for objective analysis of tissue 
properties such as stiffness and fat content, thus providing a useful tool for a non-
invasive assessment of various diffuse liver disease[6].

US equipment can consistently fuse and synchronize in a real time and dynamic 
fashion the US scan of a patient with corresponding computed tomography (CT) or 
magnetic resonance imaging (MRI) examinations[7].

Also, US can be used to locally deliver drugs or genetic material[8].
On the basis of personal experience and literature data, the main topics involving 

recent advances in the field of liver US will be presented and discussed.

B-MODE
Tissue harmonic imaging
Introduced in 1997, tissue harmonic imaging (THI) is a nonlinear US image-processing 
technology aimed at improving conventional gray-scale US image quality.

In B-mode US, the transmitted ultrasounds pulses travel through the tissues in a 
linear fashion and the frequency of the returning echoes is the same of the transmitted 
pulses, also known as fundamental frequency. However, when high-pressure 
ultrasounds waves (> 0.5 MPa) travel through tissues, the transmitted ultrasounds 
pulse will interact with tissues in a non-linear fashion and from this interaction new 
frequencies will be generated, which are integer multiples of the fundamental 
frequency: Harmonic frequencies.

Clinical US systems usually employ second harmonic echoes in order to generate 
THI images. Among the advantages of THI, a better signal-to-noise ratio and less 
artifacts deriving from side and grating lobes as well as reverberation are included 
(Figure 1)[2].

https://www.wjgnet.com/1948-5204/full/v13/i10/1302.htm
https://dx.doi.org/10.4251/wjgo.v13.i10.1302
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Figure 1 Gallbladder images acquired with fundamental imaging (A), and Harmonic Imaging (B). Note the marked reduction in reverberation 
artifact in the gallbladder lumen (arrow).

DOPPLER TECHNIQUE
Angiogenesis, the process of formation of new blood vessels, plays an important role 
in cirrhosis and liver cancer development, invasion, and metastasis[9]. In this regard, 
first- and second- generation Doppler techniques, namely color Doppler (CD) and 
power Doppler (PD), have been extensively used to detect the presence of vascularity 
associated with malignancy in liver masses[10,11]. However, CD and PD adopt wall 
filters to minimize clutter artifacts. As a consequence, they can detect tumoral 
vascularization only in larger vessels or when blood flows relatively fast.

More recently, newer Doppler-based techniques have been introduced which can 
separate slow or small-vessel flow signals from clutter artifacts, including superb 
microvascular imaging (SMI), microflow imaging (MFI), and microvascular flow 
imaging (MVFI, MV-FlowTM)[4].

These new, third-generation Doppler-based techniques enable the depiction of slow 
flowing blood at very high spatial resolution and frame rate by using advanced clutter 
suppression, thus improving the sensitivity of Doppler US in the assessment of 
vascularity in hepatic tumors with a safe, inexpensive and readily available modality 
(Figure 2)[4].

In a study encompassing 70 focal liver lesions, mainly composed of hepatocellular 
carcinoma (HCC; n = 43) and aiming to examine the number of vessels present within 
or at the periphery of each lesion, SMI was able to detect more vessels than Color or 
Power Doppler (P < 0.001) [11]. Another study focusing on detecting the vascularity of 
51 HCC, confirmed the higher sensitivity of MFI (58%) than Color (14%) or power 
(14%) Doppler (P < 0.001)[12].

MVFI also has been proved to be superior to Color or power Doppler (P < 0.05) for 
the detection of intratumoral vascularity in 100 HCCs treated by means of transarterial 
chemoembolization, with excellent intra-observer and good inter-observer agreements
[13].

Although a pivotal study evaluating a small series of 29 focal liver lesions (FLLs) 
has suggested the possibility of differentiating benign from malignant liver masses by 
detecting different intratumoral vascular patterns at SMI evaluation, to this purpose 
more powerful and flow-sensitive techniques are available in clinical practice: In 
particular contrast-enhanced ultrasound[14].

CONTRAST-ENHANCED US
By the late 1990s, the availability of intravenously injected microbubble-based contrast 
agents and the development of contrast-specific US techniques, has enabled US to 
depict not only macro-vascularity but also micro-vessels as thin as 40 μm[15].

At the beginning of the 2000s, the development of microbubbles with flexible shells 
(e.g., phospholipids) and filled with low-solubility gases such as perfluoropropane, 
perfluorocarbon, or sulfur hexafluoride, has led to a full real time contrast enhanced 
US (CEUS) examination[16]. CEUS allows to assess liver perfusion non-invasively and 
in real time, without the need of ionizing radiation, potentially nephrotoxic contrast 
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Figure 2 Liver metastasis: conventional color Doppler shows lack of vascularity (A), at microvascular imaging (MV-FlowTM) both 
vascularity is clearly depicted at the periphery and within the mass (B).

agents or costly and not widespread equipment, such as CT or MRI. Of note, 
microbubble-based contrast agents present a radius ranging from 1 to 10 μm, so they 
can pass through the pulmonary filter but they do not exit the vascular space, acting as 
purely vascular tracers (blood-pool agents), although one of them exhibits an 
additional Kupffer phase[17]. CEUS is safe and well tolerated: It can be performed in 
patients with hepatic or renal failure. Renal obstruction or chronic obstructive 
pulmonary disease are not a contraindication and laboratory tests of renal function are 
no necessary in advance. In a study encompassing 23188 patients, the overall reporting 
rate of serious adverse event was 0.0086%. In the same study no deaths have been 
reported and the life-threatening anaphylactoid reaction rate was less than 0.002%[18].

Nowadays, CEUS is suggested as useful tool for diagnostic work-up of FLLs, 
including incidental masses detected in non-oncologic non-cirrhotic patients, suspect 
metastases in oncologic patients and HCC in cirrhotic patients, aiming at optimizing 
patient management and at cost-effective therapy delivering[5,19].

A recent meta-analysis focusing on the role of CEUS in the characterization of FLLs 
showed pooled sensitivity, specificity, diagnostic odds ratio, positive and negative 
likelihood ratio and area under the curve of 92%, 87%, 104.20, 7.38, 0.09, and 0.9665, 
respectively[20].

In the clinical setting of a non-oncologic non cirrhotic patient, the pre-test 
probability of a lesion being benign is high, hence a good specificity is mandatory in 
order to avoid unnecessary, invasive and unethical treatment.

At CEUS, the main feature indicating a benign lesion is a sustained and prolonged 
contrast-enhancement in the portal-venous (i.e., 30-45 to 120 s after contrast injection) 
and late phases (i.e., 120 s up to 4-6 min after contrast injection) (Figure 3)[21,22]. The 
main caveat to this observation is that well differentiated HCC may show prolonged 
and sustained contrast-enhancement too, although the clinical setting is usually 
different[23].

However, considering the appropriate clinical setting, further clues to the diagnosis 
may be obtained by looking at the arterial phase (i.e., 10-45 s after contrast injection)
[5]. A peripheral globular contrast-enhancement pattern followed by a centripetal fill-
in, either complete or incomplete, is typical of hemangioma (Figure 3)[21]. A 
centrifugal contrast-enhancement pattern with a spoke-wheel appearance and a 
central avascular area is typical of Focal nodular hyperplasia[24]. Finally, a peripheral 
contrast-enhancement without globular appearance followed by a rapid centripetal 
fill-in may suggest the diagnosis of hepatocellular adenoma (HA)[5]. Nevertheless, as 
a caveat, HA may appear as hypoechoic lesion in the portal and late phases[25].

In a study of 174 indeterminate FLLs incidentally detected at US, CEUS allowed a 
correct differentiation of benign from malignant masses in 168 out of 174 (96.5%) cases 
(P < 0.0001), thus reducing the need for further radiological work-up[21].

In oncologic patients the task of the radiologic work-up of the liver is twofold, 
aiming first to detect a FLL and second to characterize it: Hence sensitivity also plays a 
crucial role. US may present equivocal results in liver metastasis detection, with 
sensitivity values ranging from 40% to 80%, according to the lesion size and the skill 
and experience of the sonologist[26].

At CEUS, the typical contrast-enhancement pattern of liver metastases is a marked 
and early wash-out, usually occurring earlier than 60 s after the contrast injection 
(Figure 4). Wash-out is defined as hypoechoic appearance in comparison to adjacent 
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Figure 3 Hemangioma. A: Contrast enhanced ultrasound examination in the arterial phase (20 s after the i.v. injection of contrast agent) shows a peripheral 
globular contrast enhancement pattern (arrows); B: In the portal phase (67 s after the injection) a centripetal but still incomplete fill-in is occurring (arrows); C: In the 
extended portal phase (3 minutes after the injection) the fill-in is now complete and the lesion is still hyperechoic in comparison with adjacent liver parenchyma 
(arrows).

Figure 4 Liver metastasis. Contrast enhanced ultrasound examination in the early portal phase (50 s after the i.v. injection of contrast agent) shows a 
heterogeneously vascularized mass, hypoechoic to the surrounding liver parenchyma (black arrow). An anechoic simple cyst is located nearby (black arrow).

liver parenchyma in the portal-venous or late phases, irrespective of the appearance in 
the arterial phase[26].

For the detection of liver metastases, CEUS has been proved to improve sensitivity 
compared to unenhanced US and to provide a diagnostic performance comparable to 
that of CT and MRI[27,28].
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In particular, in the detection of FLLs CEUS showed sensitivity and specificity 
values of 77.5%-100% and 76.7%-97.6%, respectively, when compared to CT[17].

CEUS can be very valuable when fatty infiltration of the liver and focal fatty sparing 
occur in a geographic pattern, in atypical location or shape, thus further worsening US 
performance both in the detection and the characterization of focal liver lesions[5].

In cirrhotic patients, CEUS allows to detect in real time the typical contrast-
enhancement behavior of HCC, without using ionizing radiation and at a higher 
temporal resolution than CT and MRI[5].

At CEUS, the typical contrast-enhancement pattern of HCC in comparison with 
liver parenchyma is arterial hyperenhancement followed by late (later than 60 s after 
contrast injection) and mild washout (Figure 5)[29]. On the other hand, the presence of 
a marked and early (earlier than 60 s) washout is more typical of non-HCC 
malignancies, such as intrahepatic cholangiocarcinoma or metastases[30].

Several international guidelines currently recommend CEUS as a useful imaging 
modality for the radiological work-up of HCC, such as the LI-RADS lexicon of the 
American College of Radiology[22,30,31].

Compared with CT or MRI, CEUS is real-time dynamic enhancement, every second 
imaging can be read and tracted, so it’s able to avoid or markedly reduce imaging 
information losing. But it is not suitable for simultaneous evaluation of several liver 
focal lesions, and not suitable for large liver focal lesion of diameter > 10 cm.

A systematic comparison of the accuracy of CEUS, CT and MRI in the character-
ization of FLLs, reported sensitivities values of 88% (95%CI 87% to 90%), 90% (95%CI 
88% to 92%) and 86% (95%CI 83% to 88%), respectively, with specificities values of 
81% (95%CI 79% to 84%), 77% (95%CI 71% to 82%) and 81% (95%CI 76% to 85%)[32]. 
CEUS is not deemed to completely replace CT or MRI but, depending on the clinical 
setting, CEUS could reduce the use of CT and MRI[28].

CEUS may play a role in the guidance, response assessment and detection of 
complications of interventional procedures[33].

A multi-center study by Lu et al[34], aimed at comparing CEUS with CT or MRI in 
detecting tumor vascularity after thermal ablation procedure in 151 HCC patients, 
found out specificity and accuracy values for CEUS of 98.2% and 96.6%, respectively.

CEUS may be performed during or after the interventional procedure[29]. In 
particular, the use of CEUS during the procedure has been reported to have a 
significant clinical impact, reducing the need for re-treatments and increasing the cost-
effectiveness of the therapy[35].

More recent US advances allow a three-dimensional assessment of tumor volume 
and shape, promising further refinement of CEUS role in planning, treatment and 
tumor response assessment of HCC treated by means of loco-regional therapies 
(Figure 6)[3].

An emerging field of clinical utility for dynamic CEUS (D-CEUS) is the monitoring 
of tumoral response to antiangiogenic drugs. By detecting flow in vessels as tiny as 40 
μm, with D-CEUS it is possible to assess in real time tumor contrast kinetycs, to 
compose time-intensity curves and extract quantitative parameters related to: (1) 
Blood Volume, such as peak contrast enhancement intensity, Area Under the Curve 
(AUC), AUC during contrast wash-in, AUC during contrast wash-out; (2) Blood Flow, 
such as time to peak contrast intensity, slope of the contrast wash-in; and (3) Mean 
Transit Time. Literature data show encouraging results in the use of D-CEUS to 
separate the responders from non-responders earlier than CT or MRI by means of 
AUC or MTT in oncologic patients[36].

ELASTOSONOGRAPHY
In the last decade, new ultrasound-based techniques have been developed which 
enable a real-time, non-invasive evaluation of liver tissue properties other than 
echogenicity, such as mechanical characteristics: Elasticity or its counterpart, stiffness.

Ultrasound elastography enables quantitative assessment of liver stiffness by 
applying an external force by means either of a mechanically-induced impulse, as in 
transient elastography (TE), or ultrasound-induced focused radiation impulse, as in 
acoustic radiation force impulse (ARFI) and measuring the velocity of propagated 
ultrasound waves axially (TE) or perpendicularly (ARFI quantification) to the 
ultrasound beam pathway[37,38]. Since the velocity is directly proportional to the 
tissue stiffness, the Young modulus (measured in kilopascal, kPa) or wave speed (m/s) 
can be calculated and usually displayed[39].
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Figure 5 Hepatocellular carcinoma. A: Contrast enhanced ultrasound examination in the arterial phase (15 s after the i.v. injection of contrast agent) shows a 
vivid heterogeneous contrast enhancement (arrows); B: In the portal phase (78 s after the injection) the hepatocellular carcinoma (HCC) is isoechoic in comparison to 
adjacent liver parenchyma (arrows); C: In the extended portal phase (3 min after the injection) the HCC shows a mild wash-out, being hypoechoic in comparison to 
adjacent liver parenchyma (arrows).

TE is widespread and well validated, but limited in terms of size and guidance of 
liver-sampling area, whereas the more recent ARFI-based techniques, such as shear 
wave elastography (SWE) allow a better US guidance of the liver-sampling either for 
small (point SWE: pSWE) or larger (two dimensional SWE: 2D SWE) areas of liver 
parenchyma[39] (Figure 7). New developments of US Elastography also include a 
volumetric assessment of liver stiffness (3D SWE) as well as its variations in real time 
(4D SWE)[40].
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Figure 6 Contrast enhanced ultrasound 3D. Contrast-enhanced ultrasound of a hepatocellular carcinoma in the arterial phase: three-dimensional rendering 
and volume calculation.

Figure 7 Shearwave. 2D shearwave assessment of a normal liver: both qualitative (blue coloured box) and quantitative information (ROI measurement: 5.1 kPa) 
are available.

Stiffness is strongly related to fibrotic changes which characterize various chronic 
liver diseases, which ultimately may end in cirrhosis, such as viral infections, alcohol 
abuse, nonalcoholic fatty liver disease (NAFLD) and biliary disease among others. 
Hence, accurate staging of liver fibrosis is crucial for patient management, in terms of 
prognosis, surveillance and treatment[6].

Despite of being operator dependent, prone to technical artifacts and confounding 
factors which may affect liver stiffness measurements, ultrasound Elastography 
provides a widespread, noninvasive, low cost, and repeatable method to assess liver 
fibrosis and several guidelines recommend its use in diagnostic work-up of chronic 
liver disease[37]. A recent meta-analysis showed that ARFI elastography is accurate 
and reliable in the diagnosis of liver fibrosis in chronic hepatitis B and C patients and 
is especially suitable for the evaluation of advanced stages (F ≥ 3 and F = 4)[41].

Another issue related to the clinical use of ultrasound Elastography is the 
inconsistency of the cut-off values suggested by various manufacturers for the staging 
of liver fibrosis.

Recently, to overcome this issue, a consensus panel has proposed a manufacturer-
neutral “rule of four” with values of 5, 9, 13, 17 kPa for ARFI assessment of liver 
fibrosis of viral etiologies and NAFLD. Liver stiffness < 5 kPa (1.3 m/s) has high 
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probability of being normal; liver stiffness < 9 kPa (1.7 m/s), without other known 
clinical signs, rules out compensated advanced chronic liver disease (cACLD); values 
between 9 kPa (1.7 m/s) and 13 kPa (2.1 m/s) are suggestive of cACLD (further test 
may be needed for confirmation); and values > 13 kPa (2.1 m/s) are highly suggestive 
of cACLD[42].

Clinically significant portal hypertension may be present with liver stiffness values 
> than 17 kPa (2.4 m/s)[42]. More in general, liver stiffness values < 7 kPa (1.5 m/s) 
(pSWE and 2D SWE) indicate the absence of significant fibrosis[42].

In a recent study, 2D SWE, MRE and TE showed comparable and very good to 
excellent diagnostic accuracy for advanced fibrosis and comparable but lower accuracy 
for significant fibrosis in patients with biopsy-proven NAFLD[43].

ATTENUATION IMAGING
Steatosis is characterized by an abnormal accumulation of lipids (mainly triglycerides) 
within the hepatocytes, leading to an overall hepatic-fat content greater than 5% of 
liver weight or, more practically, when more than 5% of hepatocytes contains fatty 
droplets[6]. The two most frequent causes of liver steatosis are alcoholic fatty liver 
disease and NAFLD. This latter may evolve into nonalcoholic steatohepatitis in those 
15%-20% of cases with inflammation and fibrosis[6].

Recently, the controlled attenuation parameter (CAP) has been suggested as a new 
method for the assessment of liver steatosis. CAP measurements rely on the degree of 
US beam attenuation through the hepatic parenchyma and the energy attenuation is 
expressed in decibel/meter (dB/m). In clinical practice, CAP is measured simultan-
eously to liver stiffness with the transient elastography device (FibroScan, Echosens, 
France)[44,45]. A recent meta-analysis reported a sensitivity of 68.8%-88.2% and a 
specificity of 77.6%-82.2% for CAP in monitoring the grade of steatosis in chronic liver 
disease[46]. One limitation of CAP is the lack of a B-mode guidance for choosing the 
sampling area. To overcome such a limitation, software for quantifying the attenuation 
of the ultrsound beam is under development or already available from different 
vendors. The attenuation coefficient (AC) is expressed in decibel per centimeter per 
megahertz (dB/cm/MHz) (Figure 8)[47].

In a prospective study encompassing 108 patients the AC values derived from ATI 
have been shown to present good diagnostic performance in distinguishing the 
different degrees of hepatic steatosis. Of note, AC values were affected only by the 
actual degree of steatosis whereas fibrosis and inflammation were not influencing 
factors[48].

Another recent study conducted on 101 patients found out that an AC of > 0.69 
dB/cm/MHz showed sensitivity and specificity values of 76%and 86%, respectively, 
for diagnosing steatosis (S1–S3), and AC > 0.72 dB/cm/MHz had sensitivity and 
specificity values of 96% and 74%, respectively, for diagnosing steatosis of grade 
S2–S3. The concomitant presence of advanced fibrosis (F3–F4) did not influenced the 
AC values[49]. Hence, the AC is a promising quantitative technique for the 
noninvasive diagnosis and quantification of liver steatosis. Of note, Magnetic 
resonance (MRI-PDFF) is another valuable tool to quantify liver steatosis. In a study, 
MRI-PDFF detected any grade of steatosis with an AUROC of 0.99 (95%CI, 0.98-1.00): 
A value significantly better than that of CAP (AUROC, 0.85; 95%CI, 0.75-0.96)[44].

THREE-DIMENSIONAL ULTRASOUND
Three-dimensional ultrasound (3D-US) has been found useful in obstetrics, 
gynecology and cardiology[50]. More recently, 3D-US has also gained interest for liver 
assessment[50]. Of note, 3D-US techniques cast "rays" through the 3D voxel-based 
volume: The resulting image is projected onto a two-dimensional plane. When the 
contrast between the examined structure and the adjacent tissues is not wide enough, 
such as it occurs in liver parenchyma, the results are suboptimal[50]. The adminis-
tration of microbubble-based contrast agents may overcome this limitation, allowing 
3D-CEUS to indicate the way for new applications in hepatic US.

In a study on 83 FLLs, when compared to 2D US, 3D CEUS revealed more details of 
the boundary and feeding vessels of the mass, as well as distorted features of supply 
vessels of HCC[51]. 3D-CEUS may also provide volume calculations with almost 
perfect intrareader agreement which can be used in preoperative planning for loco-
regional treatment of focal liver tumors and for effective tumor response assessment 
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Figure 8 Attenuation calculation in a normal liver: Software provides quantitative assessment in a defined ROI: 0.55 dB/cm/MHz.

after treatment (Figure 6)[3].
New technologic improvements, such as electronic matrix probes, allows real-time 

3D volumetric evaluation of FLLs during the entire vascular phase, also providing 
effective flow quantification[52].

FUSION IMAGING
Fusion imaging software provided by different vendors can be embedded in the 
ultrasound unit in order to synchronize previously acquired CT, MR or PET/CT liver 
studies with real time US scanning (Figure 9)[53]. Clinical applications of fusion 
imaging in the liver are mainly related to interventional procedures, including pre-, 
intra- and post-procedural phases of loco-regional treatment of liver malignancies[53].

Fusion imaging has proved useful for performing effective percutaneous biopsy of 
FLLs poorly visible at US[54]. The additional use of CEUS may further improve lesion 
conspicuity allowing a better rate of accurate percutaneous biopsy for FLLs invisible 
even on fusion imaging[55].

In a study by Song KD et co-workers, 64 of 120 (53.3%) HCCs not visible on conven-
tional ultrasound could be ablated under the guidance of the fusion imaging technique
[56]. This is of particular importance for HCC smaller than 2 cm[57]. In order to 
improve the efficacy of treatment, CEUS can be used if the target HCC lesions have 
poor conspicuity even on fusion imaging[58].

Fusion imaging has also been suggested as a method to assess tumor response both 
intra-procedurally and during postoperative follow-up[59]. In a study of 126 HCCs, 
intraprocedural use of CEUS-CT/MR image fusion was able to accurately evaluate 
ablative margin and to improve complete ablation rate in 12/55 (21.8%) lesions, which 
were immediately treated in the same session[60]. The study by Xu et al[61] also 
confirms that 3D US-CEUS fusion imaging is an useful technique for the intrapro-
cedural evaluation and guidance of supplementary ablation in 76 patients with HCC, 
liver metastases and cholangiocarcinoma.

In their series, 30 out of 95 tumors have been re-ablated immediately during the 
same procedure[61].

DRUG-DELIVERY
Ultrasound may play a promising role as tool for delivering therapeutic agents, such 
as genetic material, proteins, and chemotherapeutic drugs[62].

Currently, microbubbles are studied not only as ultrasound contrast agents but also 
as tool for delivering drugs locally under ultrasound exposure[63]. More elaborated 
drug delivery carriers are studied for both simultaneous imaging and focal therapy in 
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Figure 9 Fusion imaging. Image shows ultrasound scan of the liver (A) consistently fused in real time with a magnetic resonance study of the same patient (B).

the setting of different cancer types, including hepatic malignancies[64].

ARTIFICIAL INTELLIGENCE AND RADIOMIC ULTRASOUND ANALYSIS
Radiomics is defined as the process of extraction, analysis, and modeling of a large 
quantity of features from medical imaging dataset and to correlate this information to 
prediction parameters, such as clinical end-points, pathological and genomic features
[65]. Radiomics is a complex process that can be divided into different phases, 
including: Acquisition of imaging dataset, tumor segmentation, feature extraction, 
exploratory analysis, and model building[66].

Radiomics can be applied in liver imaging, including US images. A study by Peng et 
al[67] has found out that US radiomics models can be useful in distinguishing different 
histopathological types of primary liver cancer, each of one needing specific treatment. 
A study by Mao et al[68] showed that US radiomics features allowed to non-invasively 
distinguish primary from metastatic liver tumors. In another study encompassing 482 
HCC patients an US-based radiomics score was found to be an independent predictor 
of microvascular invasion in HCC[69].

Artificial intelligence, such as deep learning algorithms, is gaining extensive 
attention in medical imaging and studies applying deep learning to US are being 
actively conducted, mainly in the field of diffuse liver disease, especially hepatic 
fibrosis and steatosis evaluation[70,71]. In a recent study of 3446 patients a deep 
convolutional neural network showed high accuracy in the assessment of METAVIR 
score using US images and achieved better performance than that of radiologists in the 
diagnosis of cirrhosis[72].

CONCLUSION
Modern liver US is no more a simple mono-parametric “B-Mode” technique. US has 
become fully multiparametric: A “one-stop shop” able to provide not only anatomic 
and morphologic but also functional information about vascularity, stiffness and other 
various liver tissue properties, including dynamic assessment of contrast agent kinetic. 
US plays a crucial role in diagnosing, treating and monitoring focal and diffuse liver 
disease. Ultrasound beam may be focused to directly ablate tumoral tissue or 
adequately modulated to deliver drugs and genetic materials locally.

Mastering this complex and multiparametric technique is a cultural challenge. 
Nevertheless, this challenge needs to be fully taken up in order to provide our patients 
the best care option in various liver diseases.
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