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Abstract
Hepatocellular carcinoma (HCC) is the most common cancer and the second 
major contributor to cancer-related mortality. Radiomics, a burgeoning tech-
nology that can provide invisible high-dimensional quantitative and mineable 
data derived from routine-acquired images, has enormous potential for HCC 
management from diagnosis to prognosis as well as providing contributions to 
the rapidly developing deep learning methodology. This article aims to review the 
radiomics approach and its current state-of-the-art clinical application scenario in 
HCC. The limitations, challenges, and thoughts on future directions are also 
summarized.

Key Words: Hepatocellular carcinoma; Radiomics; Deep learning; Artificial intelligence; 
Medical imaging; Predictive modeling
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Core Tip: Medical imaging plays an indispensable role in hepatocellular carcinoma 
(HCC) clinical settings. Conventional imaging methods, however, provide limited and 
insufficient information. Recent studies have shown that radiomics and deep learning 
enable comprehensive insightful data mining that has achieved favorable performance 
in the detection and classification, diagnosis and differentiation, staging and grading, 
aggressive behavior, treatment responses, prognosis, and survival rates of HCC. Ne-
vertheless, the wide implementation of radiomics and deep learning in actual routine 
clinical practice requires sustainable validation and optimization.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common cancer with fast rising incidence 
in both males and females and the second major contributor to cancer-related 
mortality worldwide[1,2]. Medical imaging has been playing a pivotal role in the 
entire diagnosis and management process of HCC, with the capacity to non-invasively 
provide multi-parameter, multidimensional, and multi-modality structural and 
functional information on lesion and peri-tissues on computed tomography (CT) and 
magnetic resonance imaging (MRI)[3-7].

Although the current diagnosis and treatment system continues to improve 
progressively, some crucial aspects such as the high heterogeneity and diverse 
biological behaviors of HCC tumors, which directly affect the prognosis and survival 
of patients, remain a concern and need to be addressed[8,9].

However, certain limitations of traditional imaging and report methods such as 
insufficient depth of imaging feature interpretations, the influence of subjective 
variability among observers, and unavailability to meet the needs of modern precise 
medicine may hinder comprehensive evaluations and personalized treatment of HCC.

In recent years, with rapid developments in big data mining and artificial intelli-
gence (AI) fields, medical imaging in gastrointestinal and abdominal diseases has been 
empowered with more efficient combinations of data[10-12]. Radiomics, a burgeoning 
technology that could transform potential pathological and physiological information 
from routine-acquired images into high-dimensional quantitative and mineable 
imaging data[13-15], has been demonstrating great potential in the diagnosis, classi-
fication and staging, clinical decision assistance, and prognosis and survival predic-
tions of HCC.

Hence, this article reviews the radiomics approach and its current state-of-the-art 
clinical application scenario in HCC. Additionally, the limitations, challenges, and 
thoughts on future directions are summarized.

RADIOMICS BASIC WORKFLOW IN HCC
Radiomics is a multi-disciplinary technology that refers to extraction and analysis of a 
large number of advanced and quantitative image features from medical imaging such 
as CT, MRI, positron emission tomography (PET), or ultrasound (US), with high 
fidelity and high throughput[13,15,16]. The core steps include data acquisition, image 
segmentation, feature extractions, analysis, and model building and validation. Most 
current research on radiomics in HCC was performed with the general procedure 
described above (Figure 1).

Image acquisition and preprocessing
At the beginning and as the basis of radiomics flow, medical images can be acquired 
using CT, MRI, US, or PET for single- or multi-center studies with retrospective or 
prospective cohorts and different task targets. CT and MRI-based, retrospective, 
single-center studies account for the vast majority of HCC radiomics publications. 
Given that the reproducibility and comparability of image characteristic analysis are 
influenced by facilities, platforms, parameters, and factors like those in clinical 
practice, there is a clear need for standardized image acquisition and reconstruction 
protocols[15,16]. Besides, in order to avoid bias due to inconsistent pixels, gray levels, 
or variable resolutions, image preprocessing mainly using resampling and normal-
ization is indispensable to ensure a feasible and repeatable subsequent analysis[17,18].

Segmentation
Segmentation of the regions of interest (ROIs) or the volumes of interest (VOIs) is 
normally performed in three ways: Manual, semi-automatic, and automatic, among 
which the first is used most often at present. Manual segmentation relies on the 
radiologists to identify and annotate lesions manually. It has the advantage of higher 
accuracy, although it is time-consuming with low efficiency and inter-operator 
variability. There is a great availability of open-source software for segmentation, such 
as ITK-SNAP (www.itksnap.org), 3D Slicer (www.slicer.org), MIM (www.mimsoft
ware.com), and ImageJ (https://imagej.nih.gov/ij/). In recent years, semi-automatic 
and automatic segmentations have been more developed with the assistance of a series 
of computer algorithms[19-23].

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://www.itksnap.org
http://www.slicer.org
http://www.mimsoftware.com
http://www.mimsoftware.com
https://imagej.nih.gov/ij/
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Figure 1 General workflow of radiomics and deep learning in hepatocellular carcinoma.

Feature extraction and selection
A number of features can be extracted from the 2D ROIs or 3D VOIs, which are 
attributed to the basis of radiomics analysis. Features can be divided into two types: 
“Semantic” and “agnostic”[15]. The “semantic” features include qualitative features 
like location, size, shape, and vascularity. The “agnostic” features refer to mathemat-
ically quantitative descriptions of the invisible characteristics of lesions, which can be 
roughly classified into four types: (1) Morphologic features that are expressed as 
statistical values; (2) First-order features (histogram features) reflecting the distri-
butions of different gray levels of lesion, mainly including the standard deviation, 
energy, entropy, kurtosis, sharpness, skewness, and variance; (3) Second-order 
features (textual features) that describe the tumor heterogeneity addressing the spatial 
relationships of pixels or voxels, commonly using a gray-level co-occurrence matrix 
and gray-level run-length matrix[24,25]; and (4) Higher-order features that were 
extracted utilizing various filters, such as wavelet transforms, Laplacian filters, and 
Minkowski functionals.

However, several features are not desirable. Redundant and irrelevant features 
affect the accuracy and robustness of the model. In order to avoid overfitting and 
improve accuracy, it is necessary to select the most significant and informative features 
from a large number of extracted features for dimensionality reduction prior to 
modeling. This step has been commonly carried out in a variety of machine learning 
methods, such as filter-type methods like correlation or univariate regression, and 
embedding methods like least absolute shrinkage and the selection operator (LASSO) 
algorithm[26].

Model construction and validation
Clinical task-oriented models are built utilizing selected significant features, ap-
propriately with the addition of some clinical indicators and laboratory indexes. In 
traditional machine learning, the commonly used methods are logistic regression, 
support vector machines (SVMs), decision trees, random forest (RF), K-nearest 
neighbor, and clustering analysis, etc. According to Parmar et al[26], the choice of 
modeling method has a dominant influence on the radiomics analysis results. Hence, 
various methods can be applied to select the model with the best performance in 
practice.

Taking into account the reliability and generalizability, each model must be 
evaluated and validated. The area under the receiver operating characteristic curve 
(AUC), decision curve analysis, and nomograms are commonly used for performance 
evaluations. Internal validation is indispensable, and external (multi-center) validation 
should also be conducted if conditions permit. However, most of the present studies 
are single-center studies with small samples, and by contrast, only a few omics models 
have been validated externally by multiple centers.
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APPLICATIONS OF RADIOMICS IN HCC
Radiomics has been widely applied in diagnosis or differential diagnosis, pathological 
grading, aggressiveness evaluation, clinical treatment assistance, and recurrence and 
survival predictions of HCC. The tasks, methods, and results of some representative 
studies are listed in Table 1.

Diagnosis and differentiation of HCC
Early and accurate diagnosis of tumors is decisive for clinical decision-making and 
treatments. As the most common primary liver cancer, HCC can be diagnosed based 
on medical imaging findings without histopathological confirmation according to 
clinical practice guidelines[27,28].

However, some lesions with similar imaging manifestations to HCC, such as 
combined hepatocellular cholangiocarcinoma (cHCC-CC), intrahepatic cholangiocar-
cinoma (ICC), hepatic adenoma (HCA), and hepatic hemangioma (HH), are still 
challenging regarding diagnosis in conventional imaging. Liu et al[29] investigated the 
differentiation of HCC from non-HCC tumors (cHCC-CC and CC) with MRI and CT 
radiomics features using an SVM machine learning algorithm. Their results showed 
that contrast-enhanced MRI (CE-MRI) phases were quite useful for differentiation of 
HCC from non-HCC with an AUC of 0.79-0.81, as well as pre-contrast and portal 
phase CT with an AUC of 0.81 and 0.71, respectively. Although the study was limited 
by inconsistent imaging protocols and a sample size that was too small to separate into 
training and validation cohorts. Lewis et al[30] used the histogram parameters of 
apparent diffusion coefficient (ADC) of diffusion weighted imaging (DWI) and liver 
imaging reporting and data system (LI-RADS) classifications to distinguish HCC from 
other primary liver cancers (ICC and cHCC-ICC). The results presented that the 
prediction model combined with gender, ADC fifth percentile, and LI-RADS classi-
fication obtained the best predictive performance with an AUC of 0.90[30]. Regarding 
the distinction of HCA and HCC, Nie et al[31] reported that the CT-based radiomics 
nomogram was a potential tool to accurately differentiate HCA from HCC in the 
noncirrhotic liver with favorable performance (AUC of 0.96 in the training set and 0.94 
in the test set). Similarly, this CT-based radiomics nomogram also achieved effective 
values in the preoperative differential diagnosis of FNH and HCC in the noncirrhotic 
liver (AUC of 0.979 in the training set and 0.917 in the test set)[32]. Another study by 
Wu et al[33] developed and validated a radiomics signature using derived features 
from pre-contrast MR imaging sets to distinguish HCC and HH. The results witnessed 
an improved diagnostic performance of combination of in-phase, out-phase, T2 
weighted imaging (T2WI), and DWI with logistic regression (AUC: 0.86 in the training 
set and 0.89 in the test set), which outperformed the less experienced radiologist and 
was nearly equal to the experienced radiologist. These radiomics studies contributed 
potential supplements to accurate diagnosis and differentiation of HCC in medical 
imaging, but the results remain to be widely validated and amended in the clinical 
practice.

Pathological grading of HCC
The pathological grade is one of the vital factors affecting intrahepatic tumors re-
currence, that is, high-grade tumors are associated with a high intrahepatic recurrence 
rate[34,35]. The management of HCC varies with different pathological grades, and 
patients with higher intrahepatic recurrence rates require special treatments for 
surgery and follow-up compared with the lower-risk patients[6,36]. Thus, accurate 
prediction of HCC pathological grade might promote clinical decision-making and 
formulation of the most appropriate treatment plan. Wu et al[37] built radiomics 
signatures on the basis of T1-weighted imaging (T1WI) and T2WI generated in LASSO, 
and assessed the predicted values of radiomics, clinical factors, and the combined 
models. The results showed that there were significant differences in categorization of 
high- and low-grade HCCs in MRI-based radiomics signatures (P < 0.05). The 
predictive value of the radiomics signature model outperformed the clinical factors-
based model (AUC: 0.74 vs 0.60, respectively), whereas the combined model incor-
porating both achieved the best performance with an AUC of 0.80 [95% confidence 
interval (CI): 0.65-0.90][37]. Another similar study by Mao et al[38] aimed to predict the 
pathological grades of HCC preoperatively based on contrast-enhanced CT (CECT)-
derived radiomics signatures. They established models using shape, first-order, second 
order, and higher-order features extracted from arterial phase (AP)- and venous 
phase-CECT images via recursive feature elimination and eXtreme Gradient Boosting 
(XGBoost). They also found that combining radiomics signatures with clinical factors 
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Table 1 Some representative studies of radiomics in hepatocellular carcinoma

Ref. Application 
task Study design Imaging 

modality
Radiomics 
features Algorithm Sample 

size
Training 
set

Test/validation 
set Performance

Liu et 
al[29], 
2021

Differentiation 
of cHCC-CC 
from HCC and 
CC

Retrospective, 
single-center

CT, MRI 1419 SVM 85 
patients 
with 
HCC 
(37), 
cHCC-
CC (24) 
and CC 
(24)

85 NA Excellent performance 
for differentiation of 
HCC from non-HCC 
(AUC: 0.79-0.81 in 
MRI, AUC: 0.71-0.81 
in CT)

Nie et 
al[32], 
2020

Differentiation 
of HCA from 
HCC

Retrospective, 
two-institutes

CT 3768 mRMR, 
LASSO

131 
patients 
with 
HCC (85) 
and 
HCA (46)

93 38 Favorable 
performance (AUC: 
0.96 in training set, 
AUC: 0.94 in test set)

Wu et 
al[33], 
2019

Pathological 
grade of HCC

Retrospective, 
single-center

MRI 656 LASSO 170 
patients 
with 
HCCs

125 45 Radiomics signature 
model outperformed 
the clinical factors-
based model; the 
combined model 
achieved the best 
performance (AUC: 
0.80)

Mao et 
al[38], 
2020

Pathological 
grade of HCC

Retrospective, 
single-center

CT 3376 RFE, XGBoost 297 
patients 
with 
HCCs

237 60 The radiomics 
signatures combined 
with clinical factors 
significantly achieved 
the best performance 
(AUC: 0.8014)

Xu et al
[43], 
2019

Preoperative 
prediction of 
MVI in HCC

Retrospective, 
single-center

CT 7260 Ref-SVM, 
Multivariable 
logistic 
regression

495 
patients 
with 
HCC

300 145 (test); 50 
(validation)

Good performance 
(AUC: 0.909 in the 
training/validation 
set, AUC: 0.889 in the 
test set)

Chong 
et al
[47], 
2021

Preoperative 
prediction of 
MVI in HCC

Retrospective, 
single-center

MRI 854 LASSO, RF, 
logistic 
regression

356 
patients 
with 
HCCs ≤ 5 
cm

250 106 AUC: 0.920 using RF; 
AUC: 0.879 using 
logistic regression (in 
validation set)

Fu et al
[54], 
2019

Assistant in 
optimal 
treatment 
choices of HCC 
between LR 
and TACE

Retrospective, 
multi-center (5 
institutions)

MRI 708 LASSO, 
Akaike 
information 
criterion

520 
patients 
with 
HCC

302 218 Good discrimination 
and calibrations for 3-
year PFS (AUC: 0.80 
in training set, AUC: 
0.75 in validation set); 
threshold ≤ -5.00: 
suggesting LR, 
threshold > -5.00: 
suggesting TACE

Sun et 
al[56], 
2020

Predicting the 
outcome of 
TACE for 
unresectable 
HCC

Retrospective, 
single-center

MRI 3376 LASSO, 
multivariable 
logistic 
regression

84 
patients 
with 
BCLC B 
stage 
HCC

67 17 The radiomics 
signatures combined 
with clinical factors 
significantly achieved 
the best performance 
(AUC: 0.8014)

Ji et al
[66], 
2020

Predicting early 
recurrence after 
LR

Retrospective, 
multi-center (3 
institutions)

CT 846 LASSO-Cox 
regression

295 
patients 
with 
HCC

177 
(Institution 
1)

118 (Institution 2 
and 3, external 
validation)

Better prognostic 
ability (C-index: 0.77, 
P < 0.05), lower 
prediction error 
(integrated brier 
score: 0.14), and better 
clinical usefulness 
than rival models and 
staging systems

The nomogram 
integrating the Rad 
score and 
clinicopathologic-
radiologic risk factors 

Zhao 
et al
[67], 
2020

Predicting early 
recurrence after 
LR

Retrospective, 
single-center

MRI 1146 LASSO, 
stepwise and 
multivariable 
logistic 
regression

113 
patients 
with 
HCC

78 35
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showed better 
discrimination and 
clinical utility (AUC: 
0.873)

Wang 
et al
[75], 
2020

Predicting 5-
year survival 
after LR

Retrospective, 
multi-center (2 
institutions)

MRI 3144 RF, 
multivariate 
logistic 
regression

201 
patients 
with 
HCC

160 41 (five-fold 
cross-validation)

The model 
incorporating the 
radiomics signature 
and clinical risk 
factors obtained good 
calibration and 
satisfactory 
discrimination (AUC: 
0.9804 in training set, 
AUC: 0.7578 in 
validation set)

Song et 
al[76], 
2020

Predicting RFS 
after TACE

Retrospective, 
single-center

MRI 396 LASSO-Cox 
regression, 
multivariate 
Cox 
regression

184 
patients 
with 
HCC

110 74 The model using the 
radiomics signature 
with the clinical-
radiological risk 
factors showed the 
best performance (C-
index: 0.802)

cHCC-CC: Combined hepatocellular cholangiocarcinoma; NA: Not available; HCC: Hepatocellular carcinoma; CC: Cholangiocarcinoma; CT: Computed 
tomography; MRI: Magnetic resonance imaging; GLCM: Gray-level co-occurrence matrix; SVM: Support vector machine; AUC: Area under the receiver 
operating characteristic curve; HCA: Hepatic adenoma; mRMR: Maximal relevance and minimum redundancy; LASSO: Least absolute shrinkage and the 
selection operator; RFE: Recursive feature elimination; XGBoost: eXtreme gradient boosting; MVI: Microvascular invasion; Ref-SVM: Recursive feature 
selection support vector machine; RF: Random forest; LR: Liver resection; TACE: Transarterial chemoembolization; PFS: Progression-free survival; BCLC: 
Barcelona clinic liver cancer; C-index: Concordance index; RFS: Recurrence free survival.

significantly improved the prediction performance at an AUC of 0.8014 (95%CI: 
0.6899-0.9129)[38]. It can be known that radiomics is a powerful tool for predicting the 
pathological grade of HCC closely related to the follow-up management, as well as 
extending the predictive value of clinical factors.

Aggressiveness evaluation of HCC
The aggressive tumor behavior is strongly linked to the prognosis of HCC patients. 
Microvascular invasion (MVI), defined as tumor cell nest in vessels lined with the 
endothelium that can only be determined on the postoperative histologic examination, 
is one of the crucial independent predictors of early recurrence (ER) of HCC patients 
after surgical treatment[39-41]. So, it is of remarkable importance to accurately eva-
luate and predict the MVI of HCC preoperatively, so as to ensure and improve the 
prognosis of patients. Since Bakr et al[42] pointed out the potential of a CT-based 
radiomics signature as a surrogate for MVI in HCC (AUC: 0.76, 95%CI: 0.58-0.94) 
though in a small cohort, various researchers have explored an underlying association 
focusing on this field. Xu et al[43] developed a CT-based radiomics model integrating 
large-scale clinical factors and imaging features to predict the MVI and outcomes in 
surgically resected patients with HCC. The approach demonstrated good performance 
with an AUC of 0.909 in the training/validation set and 0.889 in the test set[43]. A 
radiomics nomogram based on CECT established by Ma et al[44] showed that portal 
venous phase (PVP) radiomics signatures exhibited better performance to predict MVI 
than AP and delay phase (DP) (AUC in validation sets: 0.793 vs 0.684 and 0.490, 
respectively). Another study performed in two independent centers by Zhang et al[45] 
shared the same goal as those above, constructing CECT-based radiomics signatures in 
a LASSO algorithm and multivariable logistic regression. Enrolled patients from 
institution 1 were divided into the training and the test set, and patients from 
institution 2 served as an independent validation set, of which the AUC of MVI status 
predictions were 0.780, 0.776, and 0.743, respectively, and the AUC of the final MVI 
risk classifier-integrated clinical stage reached 0.783, 0.778, and 0.740, respectively[45].

Regarding an MRI radiomics model for MVI prediction in HCC, Feng et al[46] first 
reported that the combined intratumoral and peritumoral radiomics model derived 
from gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced MRI 
showed effective value with an AUC of 0.83 (95%CI: 0.71-0.95) in the validation cohort 
along with a sensitivity of 90% and specificity of 75%[46]. Additionally, specific to 
solidary HCCs ≤ 5 cm, Chong et al[47] built a multi-scale and multi-parametric 
radiomics nomogram based on Gd-EOB-DTPA MRI, and this also yielded favorable 
performance for preoperative MVI predictions, of which the AUC reached up to 0.920 
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(95%CI: 0.861-0.979) using RF and 0.879 (95%CI: 0.820-0.938) using logistic regression 
in the validation set[47]. Another study by Yang et al[48] indicated the helpful value of 
hepatobiliary phase (HBP) for predicting MVI, showing that HBP T1WI images and 
HBP T1 maps were independent risk factors for MVI and the model incorporating the 
clinicoradiological factors and HBP-derived radiomic features outperformed the 
former only in the training cohort (AUC: 0.943 vs 0.850, P = 0.002), though there was 
no statistical significance in the validation set (AUC: 0.861 vs 0.759, P = 0.111)[48]. 
These studies provided new perspectives and approaches for aggressiveness eva-
luation of HCC and might help to improve the prognosis of patients and assist in the 
precise treatment plan making.

Clinical treatment assistance for HCC
Caution needs to be taken comprehensively when it comes to selecting the optimal 
treatment for HCC patients. In addition to the patients’ conditions and tumor stage, 
the trauma of the treatments which is associated with deterioration of liver function 
leading to death should be also given full consideration[49]. For example, liver 
resection (LR) is curative to remove the tumor completely but highly traumatic. 
Transarterial chemoembolization (TACE) is minimally invasive while may leave some 
residual tumors. And their adaptation has expanded and even overlapped with the 
development of medical technologies[50-53]. Focusing on this, Fu et al[54] proposed an 
individualized model to assist appropriate treatment choices for HCC patients 
between LR and TACE. They extracted radiomics features from CT images of HCC 
patients in five centers and combined them with clinical factors and radiological 
characteristics to construct a progression-free survival (PFS) model. The model yielded 
good discrimination and calibrations for 3-year PFS with an AUC of 0.80 in the 
training set and 0.75 in the validation set, outperforming the other four state-of-the-art 
models. And a nomogram was built to subdivide patients for optimal treatments by 
the threshold of the score difference. In the threshold ≤ -5.00 group, LR provided better 
PFS than TACE, which suggested LR to be a potential better option [hazard ratio (HR) 
= 0.50, P = 0.014 in the training set; HR = 0.52, P = 0.026 in the validation set]. For the 
other patients, LR and TACE had similar PFS (HR = 0.84, P = 0.388 in the training set; 
HR = 1.14, P = 0.614 in the validation set). TACE seemed to be a better choice as it was 
less invasive and helped to control unnecessary trauma and risks[54]. Moreover, for 
HCC patients who underwent hepatectomy, Cai et al[55] developed and validated a 
radiomics-based nomogram derived from PVP-CT images to predict posthepatectomy 
liver failure (PHLF) preoperatively, which exhibited superior discrimination with an 
AUC of 0.896 (95%CI: 0.774-1.000) in the validation set rather than other three methods 
[Child-Pugh, Model of End Stage Liver Disease (MELD), and albumin bilirubin]. 
Furthermore, another 13 patients served for a pilot prospective analysis, and the 
radiomics nomogram predicted PHLF effectively with an AUC of 0.833 (95%CI: 0.591-
1.000)[55]. For unresectable HCC patients, Sun et al[56] established a radiomics model 
based on preoperative multiparameter MRI (mp-MRI) predicting early progression 
after TACE. The results identified the radiomics signature as an independent pa-
rameter of progressive disease (PD), and the mp-MRI signature achieved the greatest 
benefit with an AUC of 0.800 compared with the single ones[56]. These studies 
demonstrated the guiding significance of radiomics in assisting clinical treatment 
selections for HCC, especially when there were more controversies, which could help 
patients and doctors weigh the advantages and disadvantages and choose the optimal 
personalized plan.

Recurrence and survival prediction in HCC
In routine clinical settings, LR is preferred as the first-line treatment option for HCC 
patients at an early stage and with preserved liver function, whereas liver trans-
plantation (LT) is recommended for end-stage HCC patients with clinically proven 
portal hypertension and early-stage HCC meeting the Milan criteria. For patients who 
are not suitable for LR or LT (Barcelona Clinic Liver Cancer (BCLC) stage 0-A and 
some selected BCLC stage B), non-surgical local ablation techniques are considered as 
best choices[27,28,57,58]. However, post-treatment recurrence remains a thorny pro-
blem that hinders clinical management progress and patient survival[59-65]. There-
fore, it is of emerging significance to preoperatively predict the recurrence risk after 
treatments.

Several radiomics studies based on preoperative CT or MRI have yielded favorable 
performance in post-LR ER predictions[66-72]. In a recent multi-center study by Ji et al
[66], recurrence-related radiomic features were extracted from preoperative CECT 
images of 295 surgically proven HCC patients from three independent institutions and 
then built with LASSO and Cox regression. The two radiomics-based models pre-
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sented better prognostic ability [concordance index (C-index): 0.77, P < 0.05)], lower 
prediction error (integrated Brier score: 0.14), and better clinical usefulness than rival 
models and staging systems[66]. Another mp-MRI based radiomics study by Zhao et al
[67] established radiomics models deriving from in-out-phase T1WI, T2WI, DWI, and 
CE-MRI images. The combined nomogram integrating the Rad score and clinicopath-
ologic-radiologic (CPR) risk factors showed better discrimination and clinical utility 
than the CPR and radiomics models alone (AUC: 0.873 vs 0.742, respectively). For 
recurrence predictions for HCC after LT, Guo et al[73] also combined the CT-based 
radiomics signature and clinical risk factors to develop and validate a radiomics 
nomogram in LASSO and Cox regression algorithm, which achieved good predictive 
performance for recurrence-free survival with a C-index of 0.785 (95%CI: 0.674-0.895) 
in the training set and 0.789 (95%CI: 0.620-0.957) in the validation set. As for HCC 
patients who underwent ablation, Yuan et al[74] extracted radiomics features from 
three-phase preoperative CECT images (AP, PVP, and parenchymal phase), selected 
the significant features by mMRM, and then built a radiomics signature using LASSO 
and Cox regression. Similarly, the PVP-combined model adding the clinicopatho-
logical factors produced the best predictive performance to predict ER after curative 
ablation with a C-index of 0.792 (95%CI: 0.727-0.857) in the training set and 0.755 
(95%CI: 0.651-0.860) in the validation set[74].

A radiomics approach has demonstrated encouraging results in survival analysis of 
post-treatment HCC patients[75-78]. In a recent multi-center study, Wang et al[75] 
worked on predicting the 5-year survival of HCC patients after LR using an MRI-
based radiomics model. They built radiomics signatures with an RF method and 
developed a combined model incorporating radiomics signatures and clinical risk 
factors, which obtained good calibration and satisfactory discrimination for survival 
prediction with an AUC of 0.9804 in the training set and 0.7578 in the validation set
[75]. Kim et al[77] predicted the overall survival (OS) of HCC patients who underwent 
TACE with the use of a pretreatment CT-based radiomics model. They applied 
LASSO-Cox regression algorithm for optimal survival-related feature selection and 
constructed a predictive model combining radiomics signature with clinical factors. 
The results suggested that the composite model can better predict the OS after TACE 
(HR: 19.88, 95%CI: 6.37-92.02, P < 0.001) compared with radiomics and clinical models 
only[77]. In these studies, a substantial growth was observed in the performance of the 
state-of-the-art conventional models when adding the radiomics signature. They 
demonstrated the considerable value of radiomics approach to predict the ER risk and 
survival conditions of post-treatment HCC patients, which may facilitate personalized 
risk stratification and enlighten a new way for further clinical decision-making for 
HCC patients.

DEEP LEARNING BASED RADIOMICS
Deep learning, a ramification of machine learning algorithms developed from neural 
networks with multiple layers, has been widely used in medical image analysis with 
promising expectations[79,80]. As a type of representation learning method, deep 
learning takes the strength of excellent self-taught ability which enables automatic 
learning and training of target-related features without manual segmentation and 
extraction (Figure 1). It has demonstrated deeper and more comprehensive data mi-
ning compared with radiomics based on traditional machine learning. Convolutional 
neural network (CNN) is the most popular model, meanwhile stacked autoencoders 
(SAEs), restricted Boltzmann machines (RBM), deep belief network (DBN), GAN, and 
U-net have been also applied[81-85]. CNNs are mainly composed of three network 
layers, namely, the convolutional, the sampling, and the full connection layer, of which 
the core mechanisms include multi-layer stacking, local connection, weight sharing, 
and pooling. Automatic learning of informative features of medical images is ac-
complished without the need for manual segmentation and feature extraction. SAE is 
an unsupervised learning method, which trains the models by adjusting the advantage 
parameters of the encoder and layer. RBM, composed of visible units and hidden 
units, is a kind of generative stochastic neural network that learns probability distri-
butions from input data sets. DBN can train the weights between its multiple neurons, 
which enables the whole neural network to generate training data according to the 
maximum probability. The models are chosen for different oriented tasks in HCC, 
including segmentation, tumor detection or classification, diagnosis and differen-
tiation, aggressiveness evaluation, prognosis and survival analysis, and image quality 
improvement. The tasks, methods, and results of some representative studies of deep 
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learning in HCC are presented in Table 2.

APPLICATIONS OF DEEP LEARNING-BASED RADIOMICS IN HCC
Detection and segmentation of HCC
Manual segmentation is limited as it is time-consuming with low efficiency and inter-
operator variability. Thus, accurate and automatic liver and tumor segmentation 
methods are demanded in clinical practice. Deep learning algorithms, by contrast, 
enable automated segmentation and have been applied in various studies[86-91]. 
Bousabarah et al[91] trained a deep CNN (DCNN) with a U-net architecture using 
multiphasic CE-MRI images and the dice similarity coefficient (DSC) was used to 
evaluate the performance. Their approach demonstrated the feasibility of automat-
ically detecting and segmenting the liver and HCCs, and the mean DSC between 
automatically detected lesions using the DCNN + RF + thresholding and corres-
ponding manual segmentations was 0.64/0.68 (validation/test), and 0.91/0.91 for liver 
segmentations[91]. However, most studies investigated the whole liver, liver tissues, 
or malignant tumors, whereas a few focused specifically on automatic segmentation of 
HCC, which should be developed and validated in further studies.

Diagnosis, differentiation, and classification of HCC 
Yasaka et al[92] utilized a deep learning algorithm with CNN to differentiate HCCs 
and other liver masses based on three-phase CT images (pre-contrast, AP, and DP) and 
obtained an accuracy of 84% in the test set. Hamm et al[93] designed a proof-of-
concept CNN-based deep learning system (DLS) for liver tumor diagnosis on the basis 
of mp-MRI. The DLS achieved an accuracy of 92% and an AUC of 0.992 for HCC 
classification. And they further indicated an “interpretable” DLS that could identify 
the correct radiological features of each test lesion on MR images with a positive 
predictive value of 76.5% and sensitivity of 82.9%[94]. Another pilot study by 
Yamashita et al[95] developed a CNN-based model with LIRADS to diagnose and 
categorize HCC on CT and MRI. It exhibited that the transfer learning model outper-
formed the custom-made model with an overall accuracy of 60.4% and AUCs of 0.85, 
0.90, 0.63, and 0.82 for LR-1/2, LR-3, LR-4, and LR-5, respectively, whereas the external 
validation results were not accurate enough[95]. Although the results were promising, 
those studies were preliminary and demonstrated the initial feasibility of deep 
learning in the diagnosis, differentiation, and classification of HCC.

Aggressiveness, treatment outcomes, and survival evaluation of HCC
The application of deep learning in aggressiveness behavior evaluation, treatment 
outcome prediction, and recurrence and survival analysis of HCC were not as sophist-
icated as those of conventional radiomics, but they also witnessed dramatic potential 
and clinical value. For MVI prediction, Wang et al[96] established a deep learning 
model with a CNN based on preoperative DWI and reported that the combination of 
deep features from the b = 0, b = 100, b = 600, and ADC images presented the best 
results (AUC: 0.79, P = 0.002)[96]. With regard to prediction of treatment responses, 
Peng et al[97] trained and validated a deep learning model using ResNet50 on pre-
operative CT images of HCC patients who underwent TACE from three independent 
institutions. This multi-center study yielded excellent predictive performance for 
complete response, partial response, stable disease, and PD with an accuracy of 84.3% 
and AUC of 0.97, 0.96, 0.95, and 0.96, respectively, in the training set, and an accuracy 
of 85.1% and 82.8% in the two validation sets[97]. Another multi-center study by 
Zhang et al[98] involved preoperative CECT images and they adopted a deep learning-
based model utilizing DenseNet to predict OS of HCC patients treated with TACE 
plus sorafenib, which achieved favorable prediction performance with a C-index of 
0.717 in the training set and 0.714 in the validation set.

Image quality improvement
Deep learning has been applied for image quality improvement, which helps with the 
diagnosis and interpretation of HCC and other liver lesions more accurately. For 
example, Tamada et al[99] indicated a CNN-based method in Gd-enhanced MR images 
in the AP to improve the imaging quality, and the magnitude of the artifacts and 
blurring induced by respiratory motion were significantly reduced. Additionally, 
Esses et al[100] described an CNN-based method in T2WI liver MRI images for 
automated image quality evaluation, which yielded a high negative predictive value 
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Table 2 Some representative studies of deep learning in hepatocellular carcinoma

Ref. Application 
task Study design Imaging 

modality Algorithm Sample 
size

Training 
set

Test/validation 
set Performance

Bousabarah 
et al[91], 
2021

Automatic 
detection and 
segmentation of 
HCC

Retrospective, 
single-center

CT DCNN, U-
net

174 
patients 
with 231 
lesions

165 33 (test); 33 
(validation)

Mean DSC between 
automatically detected 
lesions using the DCNN + 
RF + TR and corresponding 
manual segmentations: 
0.64/0.68 (validation/test), 
and 0.91/0.91 for liver 
segmentations

Yasaka et al
[92], 2018

Differentiation of 
HCC and other 
liver tumors

Retrospective, 
single-center

CT CNN 560 
patients

460 100 Accuracy: 84% in test set

Hamm et al
[93], 2019

Diagnosis and 
classification of 
HCC

Retrospective, 
single-center

MRI CNN 494 
patients 

434 60 Accuracy: 92%, AUC: 0.992

Yamashita 
et al[95], 
2020

Diagnosis and 
categorization of 
HCC with LI-
RADS 

Retrospective, 
multi-center

CT, MRI CNN 314 
patients 
(163 CT, 
151 MRI)

220 47 (test); 47 
(internal 
validation); 112 
(external 
validation)

Overall accuracy: 60.4% and 
AUCs: 0.85, 0.90, 0.63, and 
0.82 for LR-1/2, LR-3, LR-4, 
and LR-5, respectively

Wang et al
[96], 2020

Preoperative 
prediction of 
MVI in HCC

Retrospective, 
single-center

MRI CNN 97 
patients 
with 100 
HCCs

60 HCCs 40 HCCs The combination of deep 
features from the b = 0, b = 
100, b = 600, and ADC 
images presented the best 
results (AUC: 0.79)

Peng et al
[97], 2020

Prediction of 
treatment 
response of 
TACE

Retrospective, 
multi-center (3 
institutions)

CT ResNet50 789 
patients 
with 
HCC

562 
(Institution 
1)

89 (Institution 2); 
138 (Institution 3)

Excellent predictive 
performance for CR, PR, SD, 
and PD (accuracy: 84.3%; 
AUCs: 0.97, 0.96, 0.95, and 
0.96 in training set, 
accuracies: 85.1% and 82.8% 
in the two validation sets)

Zhang et al
[98], 2020

Predicting OS 
after TACE + 
Sorafenib

Retrospective, 
multi-center (3 
institutions)

CT DenseNet 
(CNN)

201 
patients 
with 
HCC

120 
(Institutions 
1 and 2)

81 (Institution 3) Favorable prediction 
performance (C-index: 0.717 
in training set, C-index: 
0.714 in validation set)

Tamada et al
[99], 2020

Motion artifact 
reduction

Retrospective, 
single-center

MRI CNN 34 
patients 
with 
HCC

14 20 Significant reduction of the 
magnitude of the artifacts 
and blurring induced by 
respiratory motion

Esses et al
[100], 2018

Automated 
image quality 
evaluation

Retrospective, 
single-center

MRI CNN 522 
patients 
with 
HCC

351 171 High negative predictive 
value (94% and 86% relative 
to two readers)

DCNN: Deep convolutional neural network; TR: Thresholding; DSC: Dice similarity coefficient; CNN: Convolutional neural network; LI-RADS: Liver 
imaging reporting and data system; CR: Complete response; PR: Partial response; SD: Stable disease; PD: Progressive disease.

(94% and 86% relative to two readers) for screening diagnostic and nondiagnostic liver 
T2WI. The applications of deep learning for medical imaging technologies will be 
strikingly expanded in further explorations.

LIMITATIONS, CHALLENGES, AND FUTURE DIRECTIONS
Despite the encouraging achievements and progress of radiomics and deep learning in 
HCC, the prior studies also highlighted the limitations and challenges that must be 
addressed (Figure 2). First and most critically, the majority of current studies were 
retrospective with a small sample size performed in single center, lacking of uniform 
standards and external validation. The enrolled samples, imaging acquisition pro-
tocols, facilities, platforms, segmentation methods, modeling algorithms, and 
radiomics tools differed in various studies, which accounted for variations and poor 
generalizability. The studies based on radiomics quality score and Transparent 
Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis 
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Figure 2 Summary of the clinical application scenario, limitations, challenges, and further work of state-of-the-art radiomics and deep 
learning in hepatocellular carcinoma.

have also emphasized these insufficiencies[101,102]. Getting with the consensus 
guidelines published by the image biomarker standardization initiative may help to 
cope with the problem[103]. More importantly, prospective-design, multi-center, 
large-sample studies are urgently warranted in further investigation on HCC, along 
with intensive and standardized quality controls throughout the entire workflow.

Deep learning has been putting a brand-new step forward in radiomics, demon-
strating superior potential in HCC-oriented tasks while requiring large-scale va-
lidation and long-term justification in further studies. Besides, the insufficient 
interpretability of these AI-medical imaging-combined approaches remains a concern, 
meaning that it is still quite challenging to adequately explain the underlying associ-
ations of radiomics analysis results and tumor heterogeneity and biological behaviors 
of HCC.

Moreover, few valuable datasets were shared with open access, which got in the 
way of accumulating sufficient numbers for statistical power. Therefore, it is an 
expecting choice to share open access database sources across institutions to streng-
then the generalization ability and establish well-curated databases and networks, as 
the Quantitative Imaging Network (QIN) proposing[104]. By the way, the cost-effect-
iveness of a radiomics or deep learning approach is also supposed to be weighted 
when applying it to a specific clinical situation of HCC, as it is procedure-complex, 
time-consuming, labor-intensive, and hardware- and software-demanding.

To date, radiomics and deep leaning have been applied in numerous HCC studies, 
but they have not been widely implemented into routine clinical practice, which 
requires to be extensively validated and optimized through further appropriate 
clinical trials. Radiogenomics, an encouraging field considered as a bridge connecting 
radiomics with genomics[105], is also of promising value in HCC whereas not in the 
scope of this review.  Radiologists ought to get more involved to take full advantage of 
AI to improve the working efficiency and tackle problems driven by clinical de-
manding. For the foreseeable future, the multi-modality, multi-dimensional, and 
multi-model radiomics integrating clinical factors, laboratory information, and other 
omics has become the next trend of AI-driven medicine for novel evaluation and 
management of HCC.

CONCLUSION
To conclude, radiomics has enormous potential to become a powerful tool for HCC 
management covering detection and classification, diagnosis and differentiation, 
staging and grading, assessment of aggressive behavior and treatment responses, and 
prognosis and survival prediction. However, the underlying value of radiomics and 
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deep learning based radiomics in HCC has not been fully investigated, as well as the 
applicability and generalizability in routine clinical practice. In the face of great 
opportunities albeit with challenges, the multi-modality, multi-dimensional, multi-
model radiomics and multi-omics studies will become the most appropriate clinical 
research approaches, so as to meet the developing needs of precision medicine and 
enhance precision medicine initiatives.

REFERENCES
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69: 7-34 [PMID: 
30620402 DOI: 10.3322/caac.21551]

1     

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in 
China, 2015. CA Cancer J Clin 2016; 66: 115-132 [PMID: 26808342 DOI: 10.3322/caac.21338]

2     

Villanueva A. Hepatocellular Carcinoma. N Engl J Med 2019; 380: 1450-1462 [PMID: 30970190 
DOI: 10.1056/NEJMra1713263]

3     

Yang JD, Heimbach JK. New advances in the diagnosis and management of hepatocellular 
carcinoma. BMJ 2020; 371: m3544 [PMID: 33106289 DOI: 10.1136/bmj.m3544]

4     

Roberts LR, Sirlin CB, Zaiem F, Almasri J, Prokop LJ, Heimbach JK, Murad MH, Mohammed K. 
Imaging for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. 
Hepatology 2018; 67: 401-421 [PMID: 28859233 DOI: 10.1002/hep.29487]

5     

Bruix J, Sherman M; American Association for the Study of Liver Diseases. Management of 
hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020-1022 [PMID: 21374666 DOI: 
10.1002/hep.24199]

6     

Hricak H. Oncologic imaging: a guiding hand of personalized cancer care. Radiology 2011; 259: 
633-640 [PMID: 21493796 DOI: 10.1148/radiol.11110252]

7     

Lu LC, Hsu CH, Hsu C, Cheng AL. Tumor Heterogeneity in Hepatocellular Carcinoma: Facing the 
Challenges. Liver Cancer 2016; 5: 128-138 [PMID: 27386431 DOI: 10.1159/000367754]

8     

Calderaro J, Ziol M, Paradis V, Zucman-Rossi J. Molecular and histological correlations in liver 
cancer. J Hepatol 2019; 71: 616-630 [PMID: 31195064 DOI: 10.1016/j.jhep.2019.06.001]

9     

Jiménez Pérez M, Grande RG. Application of artificial intelligence in the diagnosis and treatment 
of hepatocellular carcinoma: A review. World J Gastroenterol 2020; 26: 5617-5628 [PMID: 
33088156 DOI: 10.3748/wjg.v26.i37.5617]

10     

Goyal H, Mann R, Gandhi Z, Perisetti A, Zhang Z, Sharma N, Saligram S, Inamdar S, Tharian B. 
Application of artificial intelligence in pancreaticobiliary diseases. Ther Adv Gastrointest Endosc 
2021; 14: 2631774521993059 [PMID: 33644756 DOI: 10.1177/2631774521993059]

11     

Goyal H, Mann R, Gandhi Z, Perisetti A, Ali A, Aman Ali K, Sharma N, Saligram S, Tharian B, 
Inamdar S. Scope of Artificial Intelligence in Screening and Diagnosis of Colorectal Cancer. J Clin 
Med 2020; 9 [PMID: 33076511 DOI: 10.3390/jcm9103313]

12     

Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, 
Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: extracting more information from medical 
images using advanced feature analysis. Eur J Cancer 2012; 48: 441-446 [PMID: 22257792 DOI: 
10.1016/j.ejca.2011.11.036]

13     

Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, 
Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, 
Quackenbush J, Gillies RJ, Lambin P. Decoding tumour phenotype by noninvasive imaging using a 
quantitative radiomics approach. Nat Commun 2014; 5: 4006 [PMID: 24892406 DOI: 
10.1038/ncomms5006]

14     

Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. 
Radiology 2016; 278: 563-577 [PMID: 26579733 DOI: 10.1148/radiol.2015151169]

15     

Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, 
Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ. 
Radiomics: the process and the challenges. Magn Reson Imaging 2012; 30: 1234-1248 [PMID: 
22898692 DOI: 10.1016/j.mri.2012.06.010]

16     

Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, 
Schabath MB, Goldgof DG, Mackin D, Court LE, Gillies RJ, Moros EG. Intrinsic dependencies of 
CT radiomic features on voxel size and number of gray levels. Med Phys 2017; 44: 1050-1062 
[PMID: 28112418 DOI: 10.1002/mp.12123]

17     

Scalco E, Belfatto A, Mastropietro A, Rancati T, Avuzzi B, Messina A, Valdagni R, Rizzo G. T2w-
MRI signal normalization affects radiomics features reproducibility. Med Phys 2020; 47: 1680-1691 
[PMID: 31971614 DOI: 10.1002/mp.14038]

18     

Massoptier L, Casciaro S. A new fully automatic and robust algorithm for fast segmentation of liver 
tissue and tumors from CT scans. Eur Radiol 2008; 18: 1658-1665 [PMID: 18369633 DOI: 
10.1007/s00330-008-0924-y]

19     

Smeets D, Loeckx D, Stijnen B, De Dobbelaer B, Vandermeulen D, Suetens P. Semi-automatic level 
set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel 
classification. Med Image Anal 2010; 14: 13-20 [PMID: 19828356 DOI: 
10.1016/j.media.2009.09.002]

20     

http://www.ncbi.nlm.nih.gov/pubmed/30620402
https://dx.doi.org/10.3322/caac.21551
http://www.ncbi.nlm.nih.gov/pubmed/26808342
https://dx.doi.org/10.3322/caac.21338
http://www.ncbi.nlm.nih.gov/pubmed/30970190
https://dx.doi.org/10.1056/NEJMra1713263
http://www.ncbi.nlm.nih.gov/pubmed/33106289
https://dx.doi.org/10.1136/bmj.m3544
http://www.ncbi.nlm.nih.gov/pubmed/28859233
https://dx.doi.org/10.1002/hep.29487
http://www.ncbi.nlm.nih.gov/pubmed/21374666
https://dx.doi.org/10.1002/hep.24199
http://www.ncbi.nlm.nih.gov/pubmed/21493796
https://dx.doi.org/10.1148/radiol.11110252
http://www.ncbi.nlm.nih.gov/pubmed/27386431
https://dx.doi.org/10.1159/000367754
http://www.ncbi.nlm.nih.gov/pubmed/31195064
https://dx.doi.org/10.1016/j.jhep.2019.06.001
http://www.ncbi.nlm.nih.gov/pubmed/33088156
https://dx.doi.org/10.3748/wjg.v26.i37.5617
http://www.ncbi.nlm.nih.gov/pubmed/33644756
https://dx.doi.org/10.1177/2631774521993059
http://www.ncbi.nlm.nih.gov/pubmed/33076511
https://dx.doi.org/10.3390/jcm9103313
http://www.ncbi.nlm.nih.gov/pubmed/22257792
https://dx.doi.org/10.1016/j.ejca.2011.11.036
http://www.ncbi.nlm.nih.gov/pubmed/24892406
https://dx.doi.org/10.1038/ncomms5006
http://www.ncbi.nlm.nih.gov/pubmed/26579733
https://dx.doi.org/10.1148/radiol.2015151169
http://www.ncbi.nlm.nih.gov/pubmed/22898692
https://dx.doi.org/10.1016/j.mri.2012.06.010
http://www.ncbi.nlm.nih.gov/pubmed/28112418
https://dx.doi.org/10.1002/mp.12123
http://www.ncbi.nlm.nih.gov/pubmed/31971614
https://dx.doi.org/10.1002/mp.14038
http://www.ncbi.nlm.nih.gov/pubmed/18369633
https://dx.doi.org/10.1007/s00330-008-0924-y
http://www.ncbi.nlm.nih.gov/pubmed/19828356
https://dx.doi.org/10.1016/j.media.2009.09.002


Yao S et al. Radiomics in HCC

WJGO https://www.wjgnet.com 1611 November 15, 2021 Volume 13 Issue 11

Häme Y, Pollari M. Semi-automatic liver tumor segmentation with hidden Markov measure field 
model and non-parametric distribution estimation. Med Image Anal 2012; 16: 140-149 [PMID: 
21742543 DOI: 10.1016/j.media.2011.06.006]

21     

Li G, Chen X, Shi F, Zhu W, Tian J, Xiang D. Automatic Liver Segmentation Based on Shape 
Constraints and Deformable Graph Cut in CT Images. IEEE Trans Image Process 2015; 24: 5315-
5329 [PMID: 26415173 DOI: 10.1109/TIP.2015.2481326]

22     

Huang Q, Ding H, Wang X, Wang G. Fully automatic liver segmentation in CT images using 
modified graph cuts and feature detection. Comput Biol Med 2018; 95: 198-208 [PMID: 29524804 
DOI: 10.1016/j.compbiomed.2018.02.012]

23     

Haralick RM, Shanmugam K, Dinstein IH. Textural Features for Image Classification. IEEE 
Transact Sys Man Cybernet 1973; SMC-3: 610-621 [DOI: 10.1109/TSMC.1973.4309314]

24     

Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image Process 1975; 
4: 172-179 [DOI: 10.1016/S0146-664X(75)80008-6]

25     

Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine Learning methods for 
Quantitative Radiomic Biomarkers. Sci Rep 2015; 5: 13087 [PMID: 26278466 DOI: 
10.1038/srep13087]

26     

European Association for the Study of the Liver; European Organisation for Research and 
Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular 
carcinoma. J Hepatol 2012; 56: 908-943 [PMID: 22424438 DOI: 10.1016/j.jhep.2011.12.001]

27     

European Association for the Study of the Liver. EASL Clinical Practice Guidelines: 
Management of hepatocellular carcinoma. J Hepatol 2018; 69: 182-236 [PMID: 29628281 DOI: 
10.1016/j.jhep.2018.03.019]

28     

Liu X, Khalvati F, Namdar K, Fischer S, Lewis S, Taouli B, Haider MA, Jhaveri KS. Can machine 
learning radiomics provide pre-operative differentiation of combined hepatocellular 
cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal 
treatment planning? Eur Radiol 2021; 31: 244-255 [PMID: 32749585 DOI: 
10.1007/s00330-020-07119-7]

29     

Lewis S, Peti S, Hectors SJ, King M, Rosen A, Kamath A, Putra J, Thung S, Taouli B. Volumetric 
quantitative histogram analysis using diffusion-weighted magnetic resonance imaging 
to differentiate HCC from other primary liver cancers. Abdom Radiol (NY) 2019; 44: 912-922 
[PMID: 30712136 DOI: 10.1007/s00261-019-01906-7]

30     

Nie P, Wang N, Pang J, Yang G, Duan S, Chen J, Xu W. CT-Based Radiomics Nomogram: A 
Potential Tool for Differentiating Hepatocellular Adenoma From Hepatocellular Carcinoma in the 
Noncirrhotic Liver. Acad Radiol 2021; 28: 799-807 [PMID: 32386828 DOI: 
10.1016/j.acra.2020.04.027]

31     

Nie P, Yang G, Guo J, Chen J, Li X, Ji Q, Wu J, Cui J, Xu W. A CT-based radiomics nomogram for 
differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver. 
Cancer Imaging 2020; 20: 20 [PMID: 32093786 DOI: 10.1186/s40644-020-00297-z]

32     

Wu J, Liu A, Cui J, Chen A, Song Q, Xie L. Radiomics-based classification of hepatocellular 
carcinoma and hepatic haemangioma on precontrast magnetic resonance images. BMC Med Imaging 
2019; 19: 23 [PMID: 30866850 DOI: 10.1186/s12880-019-0321-9]

33     

Sasaki A, Kai S, Iwashita Y, Hirano S, Ohta M, Kitano S. Microsatellite distribution and indication 
for locoregional therapy in small hepatocellular carcinoma. Cancer 2005; 103: 299-306 [PMID: 
15578688 DOI: 10.1002/cncr.20798]

34     

Martins-Filho SN, Paiva C, Azevedo RS, Alves VAF. Histological Grading of Hepatocellular 
Carcinoma-A Systematic Review of Literature. Front Med (Lausanne) 2017; 4: 193 [PMID: 
29209611 DOI: 10.3389/fmed.2017.00193]

35     

Bruix J, Sherman M; Practice Guidelines Committee, American Association for the Study of Liver 
Diseases. Management of hepatocellular carcinoma. Hepatology 2005; 42: 1208-1236 [PMID: 
16250051 DOI: 10.1002/hep.20933]

36     

Wu M, Tan H, Gao F, Hai J, Ning P, Chen J, Zhu S, Wang M, Dou S, Shi D. Predicting the grade of 
hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature. Eur Radiol 
2019; 29: 2802-2811 [PMID: 30406313 DOI: 10.1007/s00330-018-5787-2]

37     

Mao B, Zhang L, Ning P, Ding F, Wu F, Lu G, Geng Y, Ma J. Preoperative prediction for 
pathological grade of hepatocellular carcinoma via machine learning-based radiomics. Eur Radiol 
2020; 30: 6924-6932 [PMID: 32696256 DOI: 10.1007/s00330-020-07056-5]

38     

Lim KC, Chow PK, Allen JC, Chia GS, Lim M, Cheow PC, Chung AY, Ooi LL, Tan SB. 
Microvascular invasion is a better predictor of tumor recurrence and overall survival following 
surgical resection for hepatocellular carcinoma compared to the Milan criteria. Ann Surg 2011; 254: 
108-113 [PMID: 21527845 DOI: 10.1097/SLA.0b013e31821ad884]

39     

Sumie S, Nakashima O, Okuda K, Kuromatsu R, Kawaguchi A, Nakano M, Satani M, Yamada S, 
Okamura S, Hori M, Kakuma T, Torimura T, Sata M. The significance of classifying microvascular 
invasion in patients with hepatocellular carcinoma. Ann Surg Oncol 2014; 21: 1002-1009 [PMID: 
24254204 DOI: 10.1245/s10434-013-3376-9]

40     

Rodríguez-Perálvarez M, Luong TV, Andreana L, Meyer T, Dhillon AP, Burroughs AK. A 
systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic 
variability. Ann Surg Oncol 2013; 20: 325-339 [PMID: 23149850 DOI: 
10.1245/s10434-012-2513-1]

41     

Bakr S, Echegaray S, Shah R, Kamaya A, Louie J, Napel S, Kothary N, Gevaert O. Noninvasive 42     

http://www.ncbi.nlm.nih.gov/pubmed/21742543
https://dx.doi.org/10.1016/j.media.2011.06.006
http://www.ncbi.nlm.nih.gov/pubmed/26415173
https://dx.doi.org/10.1109/TIP.2015.2481326
http://www.ncbi.nlm.nih.gov/pubmed/29524804
https://dx.doi.org/10.1016/j.compbiomed.2018.02.012
https://dx.doi.org/10.1109/TSMC.1973.4309314
https://dx.doi.org/10.1016/S0146-664X(75)80008-6
http://www.ncbi.nlm.nih.gov/pubmed/26278466
https://dx.doi.org/10.1038/srep13087
http://www.ncbi.nlm.nih.gov/pubmed/22424438
https://dx.doi.org/10.1016/j.jhep.2011.12.001
http://www.ncbi.nlm.nih.gov/pubmed/29628281
https://dx.doi.org/10.1016/j.jhep.2018.03.019
http://www.ncbi.nlm.nih.gov/pubmed/32749585
https://dx.doi.org/10.1007/s00330-020-07119-7
http://www.ncbi.nlm.nih.gov/pubmed/30712136
https://dx.doi.org/10.1007/s00261-019-01906-7
http://www.ncbi.nlm.nih.gov/pubmed/32386828
https://dx.doi.org/10.1016/j.acra.2020.04.027
http://www.ncbi.nlm.nih.gov/pubmed/32093786
https://dx.doi.org/10.1186/s40644-020-00297-z
http://www.ncbi.nlm.nih.gov/pubmed/30866850
https://dx.doi.org/10.1186/s12880-019-0321-9
http://www.ncbi.nlm.nih.gov/pubmed/15578688
https://dx.doi.org/10.1002/cncr.20798
http://www.ncbi.nlm.nih.gov/pubmed/29209611
https://dx.doi.org/10.3389/fmed.2017.00193
http://www.ncbi.nlm.nih.gov/pubmed/16250051
https://dx.doi.org/10.1002/hep.20933
http://www.ncbi.nlm.nih.gov/pubmed/30406313
https://dx.doi.org/10.1007/s00330-018-5787-2
http://www.ncbi.nlm.nih.gov/pubmed/32696256
https://dx.doi.org/10.1007/s00330-020-07056-5
http://www.ncbi.nlm.nih.gov/pubmed/21527845
https://dx.doi.org/10.1097/SLA.0b013e31821ad884
http://www.ncbi.nlm.nih.gov/pubmed/24254204
https://dx.doi.org/10.1245/s10434-013-3376-9
http://www.ncbi.nlm.nih.gov/pubmed/23149850
https://dx.doi.org/10.1245/s10434-012-2513-1


Yao S et al. Radiomics in HCC

WJGO https://www.wjgnet.com 1612 November 15, 2021 Volume 13 Issue 11

radiomics signature based on quantitative analysis of computed tomography images as a surrogate 
for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging (Bellingham) 
2017; 4: 041303 [PMID: 28840174 DOI: 10.1117/1.JMI.4.4.041303]
Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, Yang G, Yan X, Zhang YD, Liu XS. 
Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in 
hepatocellular carcinoma. J Hepatol 2019; 70: 1133-1144 [PMID: 30876945 DOI: 
10.1016/j.jhep.2019.02.023]

43     

Ma X, Wei J, Gu D, Zhu Y, Feng B, Liang M, Wang S, Zhao X, Tian J. Preoperative radiomics 
nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-
enhanced CT. Eur Radiol 2019; 29: 3595-3605 [PMID: 30770969 DOI: 
10.1007/s00330-018-5985-y]

44     

Zhang X, Ruan S, Xiao W, Shao J, Tian W, Liu W, Zhang Z, Wan D, Huang J, Huang Q, Yang Y, 
Yang H, Ding Y, Liang W, Bai X, Liang T. Contrast-enhanced CT radiomics for preoperative 
evaluation of microvascular invasion in hepatocellular carcinoma: A two-center study. Clin Transl 
Med 2020; 10: e111 [PMID: 32567245 DOI: 10.1002/ctm2.111]

45     

Feng ST, Jia Y, Liao B, Huang B, Zhou Q, Li X, Wei K, Chen L, Li B, Wang W, Chen S, He X, 
Wang H, Peng S, Chen ZB, Tang M, Chen Z, Hou Y, Peng Z, Kuang M. Preoperative prediction of 
microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced 
MRI. Eur Radiol 2019; 29: 4648-4659 [PMID: 30689032 DOI: 10.1007/s00330-018-5935-8]

46     

Chong HH, Yang L, Sheng RF, Yu YL, Wu DJ, Rao SX, Yang C, Zeng MS. Multi-scale and multi-
parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and 
outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm. Eur Radiol 2021; 31: 4824-4838 
[PMID: 33447861 DOI: 10.1007/s00330-020-07601-2]

47     

Yang L, Gu D, Wei J, Yang C, Rao S, Wang W, Chen C, Ding Y, Tian J, Zeng M. A Radiomics 
Nomogram for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma. 
Liver Cancer 2019; 8: 373-386 [PMID: 31768346 DOI: 10.1159/000494099]

48     

Dhir M, Melin AA, Douaiher J, Lin C, Zhen WK, Hussain SM, Geschwind JF, Doyle MB, Abou-
Alfa GK, Are C. A Review and Update of Treatment Options and Controversies in the Management 
of Hepatocellular Carcinoma. Ann Surg 2016; 263: 1112-1125 [PMID: 26813914 DOI: 
10.1097/SLA.0000000000001556]

49     

Pinter M, Hucke F, Graziadei I, Vogel W, Maieron A, Königsberg R, Stauber R, Grünberger B, 
Müller C, Kölblinger C, Peck-Radosavljevic M, Sieghart W. Advanced-stage hepatocellular 
carcinoma: transarterial chemoembolization vs sorafenib. Radiology 2012; 263: 590-599 [PMID: 
22438359 DOI: 10.1148/radiol.12111550]

50     

Yang T, Lin C, Zhai J, Shi S, Zhu M, Zhu N, Lu JH, Yang GS, Wu MC. Surgical resection for 
advanced hepatocellular carcinoma according to Barcelona Clinic Liver Cancer (BCLC) staging. J 
Cancer Res Clin Oncol 2012; 138: 1121-1129 [PMID: 22402598 DOI: 10.1007/s00432-012-1188-0]

51     

Yin L, Li H, Li AJ, Lau WY, Pan ZY, Lai EC, Wu MC, Zhou WP. Partial hepatectomy vs. 
transcatheter arterial chemoembolization for resectable multiple hepatocellular carcinoma beyond 
Milan Criteria: a RCT. J Hepatol 2014; 61: 82-88 [PMID: 24650695 DOI: 
10.1016/j.jhep.2014.03.012]

52     

Vitale A, Burra P, Frigo AC, Trevisani F, Farinati F, Spolverato G, Volk M, Giannini EG, Ciccarese 
F, Piscaglia F, Rapaccini GL, Di Marco M, Caturelli E, Zoli M, Borzio F, Cabibbo G, Felder M, 
Gasbarrini A, Sacco R, Foschi FG, Missale G, Morisco F, Svegliati Baroni G, Virdone R, Cillo U; 
Italian Liver Cancer (ITA. LI.CA) group. Survival benefit of liver resection for patients with 
hepatocellular carcinoma across different Barcelona Clinic Liver Cancer stages: a multicentre study. 
J Hepatol 2015; 62: 617-624 [PMID: 25450706 DOI: 10.1016/j.jhep.2014.10.037]

53     

Fu S, Wei J, Zhang J, Dong D, Song J, Li Y, Duan C, Zhang S, Li X, Gu D, Chen X, Hao X, He X, 
Yan J, Liu Z, Tian J, Lu L. Selection Between Liver Resection Versus Transarterial 
Chemoembolization in Hepatocellular Carcinoma: A Multicenter Study. Clin Transl Gastroenterol 
2019; 10: e00070 [PMID: 31373932 DOI: 10.14309/ctg.0000000000000070]

54     

Cai W, He B, Hu M, Zhang W, Xiao D, Yu H, Song Q, Xiang N, Yang J, He S, Huang Y, Huang 
W, Jia F, Fang C. A radiomics-based nomogram for the preoperative prediction of posthepatectomy 
liver failure in patients with hepatocellular carcinoma. Surg Oncol 2019; 28: 78-85 [PMID: 
30851917 DOI: 10.1016/j.suronc.2018.11.013]

55     

Sun Y, Bai H, Xia W, Wang D, Zhou B, Zhao X, Yang G, Xu L, Zhang W, Liu P, Xu J, Meng S, 
Liu R, Gao X. Predicting the Outcome of Transcatheter Arterial Embolization Therapy for 
Unresectable Hepatocellular Carcinoma Based on Radiomics of Preoperative Multiparameter MRI. J 
Magn Reson Imaging 2020; 52: 1083-1090 [PMID: 32233054 DOI: 10.1002/jmri.27143]

56     

Bruix J, Reig M, Sherman M. Evidence-Based Diagnosis, Staging, and Treatment of Patients With 
Hepatocellular Carcinoma. Gastroenterology 2016; 150: 835-853 [PMID: 26795574 DOI: 
10.1053/j.gastro.2015.12.041]

57     

Hasegawa K, Aoki T, Ishizawa T, Kaneko J, Sakamoto Y, Sugawara Y, Kokudo N. Comparison of 
the therapeutic outcomes between surgical resection and percutaneous ablation for small 
hepatocellular carcinoma. Ann Surg Oncol 2014; 21 Suppl 3: S348-S355 [PMID: 24566865 DOI: 
10.1245/s10434-014-3585-x]

58     

Poon RT, Fan ST, Lo CM, Liu CL, Wong J. Long-term survival and pattern of recurrence after 
resection of small hepatocellular carcinoma in patients with preserved liver function: implications for 
a strategy of salvage transplantation. Ann Surg 2002; 235: 373-382 [PMID: 11882759 DOI: 

59     

http://www.ncbi.nlm.nih.gov/pubmed/28840174
https://dx.doi.org/10.1117/1.JMI.4.4.041303
http://www.ncbi.nlm.nih.gov/pubmed/30876945
https://dx.doi.org/10.1016/j.jhep.2019.02.023
http://www.ncbi.nlm.nih.gov/pubmed/30770969
https://dx.doi.org/10.1007/s00330-018-5985-y
http://www.ncbi.nlm.nih.gov/pubmed/32567245
https://dx.doi.org/10.1002/ctm2.111
http://www.ncbi.nlm.nih.gov/pubmed/30689032
https://dx.doi.org/10.1007/s00330-018-5935-8
http://www.ncbi.nlm.nih.gov/pubmed/33447861
https://dx.doi.org/10.1007/s00330-020-07601-2
http://www.ncbi.nlm.nih.gov/pubmed/31768346
https://dx.doi.org/10.1159/000494099
http://www.ncbi.nlm.nih.gov/pubmed/26813914
https://dx.doi.org/10.1097/SLA.0000000000001556
http://www.ncbi.nlm.nih.gov/pubmed/22438359
https://dx.doi.org/10.1148/radiol.12111550
http://www.ncbi.nlm.nih.gov/pubmed/22402598
https://dx.doi.org/10.1007/s00432-012-1188-0
http://www.ncbi.nlm.nih.gov/pubmed/24650695
https://dx.doi.org/10.1016/j.jhep.2014.03.012
http://www.ncbi.nlm.nih.gov/pubmed/25450706
https://dx.doi.org/10.1016/j.jhep.2014.10.037
http://www.ncbi.nlm.nih.gov/pubmed/31373932
https://dx.doi.org/10.14309/ctg.0000000000000070
http://www.ncbi.nlm.nih.gov/pubmed/30851917
https://dx.doi.org/10.1016/j.suronc.2018.11.013
http://www.ncbi.nlm.nih.gov/pubmed/32233054
https://dx.doi.org/10.1002/jmri.27143
http://www.ncbi.nlm.nih.gov/pubmed/26795574
https://dx.doi.org/10.1053/j.gastro.2015.12.041
http://www.ncbi.nlm.nih.gov/pubmed/24566865
https://dx.doi.org/10.1245/s10434-014-3585-x
http://www.ncbi.nlm.nih.gov/pubmed/11882759


Yao S et al. Radiomics in HCC

WJGO https://www.wjgnet.com 1613 November 15, 2021 Volume 13 Issue 11

10.1097/00000658-200203000-00009]
Cheng Z, Yang P, Qu S, Zhou J, Yang J, Yang X, Xia Y, Li J, Wang K, Yan Z, Wu D, Zhang B, 
Hüser N, Shen F. Risk factors and management for early and late intrahepatic recurrence of solitary 
hepatocellular carcinoma after curative resection. HPB (Oxford) 2015; 17: 422-427 [PMID: 
25421805 DOI: 10.1111/hpb.12367]

60     

Xu XF, Xing H, Han J, Li ZL, Lau WY, Zhou YH, Gu WM, Wang H, Chen TH, Zeng YY, Li C, 
Wu MC, Shen F, Yang T. Risk Factors, Patterns, and Outcomes of Late Recurrence After Liver 
Resection for Hepatocellular Carcinoma: A Multicenter Study From China. JAMA Surg 2019; 154: 
209-217 [PMID: 30422241 DOI: 10.1001/jamasurg.2018.4334]

61     

Taketomi A, Fukuhara T, Morita K, Kayashima H, Ninomiya M, Yamashita Y, Ikegami T, 
Uchiyama H, Yoshizumi T, Soejima Y, Shirabe K, Maehara Y. Improved results of a surgical 
resection for the recurrence of hepatocellular carcinoma after living donor liver transplantation. Ann 
Surg Oncol 2010; 17: 2283-2289 [PMID: 20204531 DOI: 10.1245/s10434-010-0999-y]

62     

Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, Camerini T, Roayaie S, 
Schwartz ME, Grazi GL, Adam R, Neuhaus P, Salizzoni M, Bruix J, Forner A, De Carlis L, Cillo U, 
Burroughs AK, Troisi R, Rossi M, Gerunda GE, Lerut J, Belghiti J, Boin I, Gugenheim J, Rochling 
F, Van Hoek B, Majno P; Metroticket Investigator Study Group. Predicting survival after liver 
transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, 
exploratory analysis. Lancet Oncol 2009; 10: 35-43 [PMID: 19058754 DOI: 
10.1016/S1470-2045(08)70284-5]

63     

Pompili M, Saviano A, de Matthaeis N, Cucchetti A, Ardito F, Federico B, Brunello F, Pinna AD, 
Giorgio A, Giulini SM, De Sio I, Torzilli G, Fornari F, Capussotti L, Guglielmi A, Piscaglia F, 
Aldrighetti L, Caturelli E, Calise F, Nuzzo G, Rapaccini GL, Giuliante F. Long-term effectiveness of 
resection and radiofrequency ablation for single hepatocellular carcinoma ≤3 cm. Results of a 
multicenter Italian survey. J Hepatol 2013; 59: 89-97 [PMID: 23523578 DOI: 
10.1016/j.jhep.2013.03.009]

64     

Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, Zhu AX, Murad MH, 
Marrero JA. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67: 
358-380 [PMID: 28130846 DOI: 10.1002/hep.29086]

65     

Ji GW, Zhu FP, Xu Q, Wang K, Wu MY, Tang WW, Li XC, Wang XH. Radiomic Features at 
Contrast-enhanced CT Predict Recurrence in Early Stage Hepatocellular Carcinoma: A Multi-
Institutional Study. Radiology 2020; 294: 568-579 [PMID: 31934830 DOI: 
10.1148/radiol.2020191470]

66     

Zhao Y, Wu J, Zhang Q, Hua Z, Qi W, Wang N, Lin T, Sheng L, Cui D, Liu J, Song Q, Li X, Wu T, 
Guo Y, Cui J, Liu A. Radiomics Analysis Based on Multiparametric MRI for Predicting Early 
Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy. J Magn Reson Imaging 2021; 
53: 1066-1079 [PMID: 33217114 DOI: 10.1002/jmri.27424]

67     

Ji GW, Zhu FP, Xu Q, Wang K, Wu MY, Tang WW, Li XC, Wang XH. Machine-learning analysis 
of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: 
A multi-institutional study. EBioMedicine 2019; 50: 156-165 [PMID: 31735556 DOI: 
10.1016/j.ebiom.2019.10.057]

68     

Zhang Z, Jiang H, Chen J, Wei Y, Cao L, Ye Z, Li X, Ma L, Song B. Hepatocellular carcinoma: 
radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence 
prediction. Cancer Imaging 2019; 19: 22 [PMID: 31088553 DOI: 10.1186/s40644-019-0209-5]

69     

Zhou Y, He L, Huang Y, Chen S, Wu P, Ye W, Liu Z, Liang C. CT-based radiomics signature: a 
potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. 
Abdom Radiol (NY) 2017; 42: 1695-1704 [PMID: 28180924 DOI: 10.1007/s00261-017-1072-0]

70     

Shan QY, Hu HT, Feng ST, Peng ZP, Chen SL, Zhou Q, Li X, Xie XY, Lu MD, Wang W, Kuang 
M. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular 
carcinoma after curative tumor resection or ablation. Cancer Imaging 2019; 19: 11 [PMID: 
30813956 DOI: 10.1186/s40644-019-0197-5]

71     

Kim S, Shin J, Kim DY, Choi GH, Kim MJ, Choi JY. Radiomics on Gadoxetic Acid-Enhanced 
Magnetic Resonance Imaging for Prediction of Postoperative Early and Late Recurrence of Single 
Hepatocellular Carcinoma. Clin Cancer Res 2019; 25: 3847-3855 [PMID: 30808773 DOI: 
10.1158/1078-0432.CCR-18-2861]

72     

Guo D, Gu D, Wang H, Wei J, Wang Z, Hao X, Ji Q, Cao S, Song Z, Jiang J, Shen Z, Tian J, Zheng 
H. Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver 
transplantation. Eur J Radiol 2019; 117: 33-40 [PMID: 31307650 DOI: 10.1016/j.ejrad.2019.05.010]

73     

Yuan C, Wang Z, Gu D, Tian J, Zhao P, Wei J, Yang X, Hao X, Dong D, He N, Sun Y, Gao W, 
Feng J. Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a 
Radiomics nomogram. Cancer Imaging 2019; 19: 21 [PMID: 31027510 DOI: 
10.1186/s40644-019-0207-7]

74     

Wang XH, Long LH, Cui Y, Jia AY, Zhu XG, Wang HZ, Wang Z, Zhan CM, Wang ZH, Wang 
WH. MRI-based radiomics model for preoperative prediction of 5-year survival in patients with 
hepatocellular carcinoma. Br J Cancer 2020; 122: 978-985 [PMID: 31937925 DOI: 
10.1038/s41416-019-0706-0]

75     

Song W, Yu X, Guo D, Liu H, Tang Z, Liu X, Zhou J, Zhang H, Liu Y. MRI-Based Radiomics: 
Associations With the Recurrence-Free Survival of Patients With Hepatocellular Carcinoma Treated 
With Conventional Transcatheter Arterial Chemoembolization. J Magn Reson Imaging 2020; 52: 

76     

https://dx.doi.org/10.1097/00000658-200203000-00009
http://www.ncbi.nlm.nih.gov/pubmed/25421805
https://dx.doi.org/10.1111/hpb.12367
http://www.ncbi.nlm.nih.gov/pubmed/30422241
https://dx.doi.org/10.1001/jamasurg.2018.4334
http://www.ncbi.nlm.nih.gov/pubmed/20204531
https://dx.doi.org/10.1245/s10434-010-0999-y
http://www.ncbi.nlm.nih.gov/pubmed/19058754
https://dx.doi.org/10.1016/S1470-2045(08)70284-5
http://www.ncbi.nlm.nih.gov/pubmed/23523578
https://dx.doi.org/10.1016/j.jhep.2013.03.009
http://www.ncbi.nlm.nih.gov/pubmed/28130846
https://dx.doi.org/10.1002/hep.29086
http://www.ncbi.nlm.nih.gov/pubmed/31934830
https://dx.doi.org/10.1148/radiol.2020191470
http://www.ncbi.nlm.nih.gov/pubmed/33217114
https://dx.doi.org/10.1002/jmri.27424
http://www.ncbi.nlm.nih.gov/pubmed/31735556
https://dx.doi.org/10.1016/j.ebiom.2019.10.057
http://www.ncbi.nlm.nih.gov/pubmed/31088553
https://dx.doi.org/10.1186/s40644-019-0209-5
http://www.ncbi.nlm.nih.gov/pubmed/28180924
https://dx.doi.org/10.1007/s00261-017-1072-0
http://www.ncbi.nlm.nih.gov/pubmed/30813956
https://dx.doi.org/10.1186/s40644-019-0197-5
http://www.ncbi.nlm.nih.gov/pubmed/30808773
https://dx.doi.org/10.1158/1078-0432.CCR-18-2861
http://www.ncbi.nlm.nih.gov/pubmed/31307650
https://dx.doi.org/10.1016/j.ejrad.2019.05.010
http://www.ncbi.nlm.nih.gov/pubmed/31027510
https://dx.doi.org/10.1186/s40644-019-0207-7
http://www.ncbi.nlm.nih.gov/pubmed/31937925
https://dx.doi.org/10.1038/s41416-019-0706-0


Yao S et al. Radiomics in HCC

WJGO https://www.wjgnet.com 1614 November 15, 2021 Volume 13 Issue 11

461-473 [PMID: 31675174 DOI: 10.1002/jmri.26977]
Kim J, Choi SJ, Lee SH, Lee HY, Park H. Predicting Survival Using Pretreatment CT for Patients 
With Hepatocellular Carcinoma Treated With Transarterial Chemoembolization: Comparison of 
Models Using Radiomics. AJR Am J Roentgenol 2018; 211: 1026-1034 [PMID: 30240304 DOI: 
10.2214/AJR.18.19507]

77     

Liu Q, Li J, Liu F, Yang W, Ding J, Chen W, Wei Y, Li B, Zheng L. A radiomics nomogram for the 
prediction of overall survival in patients with hepatocellular carcinoma after hepatectomy. Cancer 
Imaging 2020; 20: 82 [PMID: 33198809 DOI: 10.1186/s40644-020-00360-9]

78     

Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A. Deep 
Learning: A Primer for Radiologists. Radiographics 2017; 37: 2113-2131 [PMID: 29131760 DOI: 
10.1148/rg.2017170077]

79     

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van 
Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal 
2017; 42: 60-88 [PMID: 28778026 DOI: 10.1016/j.media.2017.07.005]

80     

Shen D, Wu G, Suk HI. Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng 2017; 19: 
221-248 [PMID: 28301734 DOI: 10.1146/annurev-bioeng-071516-044442]

81     

Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, Kim N. Deep Learning in Medical Imaging: 
General Overview. Korean J Radiol 2017; 18: 570-584 [PMID: 28670152 DOI: 
10.3348/kjr.2017.18.4.570]

82     

Bernhard S, John P, Thomas H.   Greedy Layer-Wise Training of Deep Networks. Advances in 
Neural Information Processing Systems 19: Proceedings of the 2006 Conference: MIT Press, 2007: 
153-160

83     

Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked Denoising Autoencoders: 
Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J Mach 
Learn Res 2010; 11: 3371-3408

84     

Hinton GE.   A Practical Guide to Training Restricted Boltzmann Machines. In: Montavon G, Orr 
GB, Müller K-R, editors. Neural Networks: Tricks of the Trade: Second Edition. Berlin, Heidelberg: 
Springer, 2012: 599-619 [DOI: 10.1007/978-3-642-35289-8_32]

85     

Weston AD, Korfiatis P, Kline TL, Philbrick KA, Kostandy P, Sakinis T, Sugimoto M, Takahashi 
N, Erickson BJ. Automated Abdominal Segmentation of CT Scans for Body Composition Analysis 
Using Deep Learning. Radiology 2019; 290: 669-679 [PMID: 30526356 DOI: 
10.1148/radiol.2018181432]

86     

Guo X, Schwartz LH, Zhao B. Automatic liver segmentation by integrating fully convolutional 
networks into active contour models. Med Phys 2019; 46: 4455-4469 [PMID: 31356688 DOI: 
10.1002/mp.13735]

87     

Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson 
MJ, Barratt DC. Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks. 
IEEE Trans Med Imaging 2018; 37: 1822-1834 [PMID: 29994628 DOI: 
10.1109/TMI.2018.2806309]

88     

Li X, Chen H, Qi X, Dou Q, Fu CW, Heng PA. H-DenseUNet: Hybrid Densely Connected UNet for 
Liver and Tumor Segmentation From CT Volumes. IEEE Trans Med Imaging 2018; 37: 2663-2674 
[PMID: 29994201 DOI: 10.1109/TMI.2018.2845918]

89     

Ouhmich F, Agnus V, Noblet V, Heitz F, Pessaux P. Liver tissue segmentation in multiphase CT 
scans using cascaded convolutional neural networks. Int J Comput Assist Radiol Surg 2019; 14: 
1275-1284 [PMID: 31041697 DOI: 10.1007/s11548-019-01989-z]

90     

Bousabarah K, Letzen B, Tefera J, Savic L, Schobert I, Schlachter T, Staib LH, Kocher M, Chapiro 
J, Lin M. Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-
enhanced MRI using deep learning. Abdom Radiol (NY) 2021; 46: 216-225 [PMID: 32500237 DOI: 
10.1007/s00261-020-02604-5]

91     

Yasaka K, Akai H, Abe O, Kiryu S. Deep Learning with Convolutional Neural Network for 
Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study. Radiology 
2018; 286: 887-896 [PMID: 29059036 DOI: 10.1148/radiol.2017170706]

92     

Hamm CA, Wang CJ, Savic LJ, Ferrante M, Schobert I, Schlachter T, Lin M, Duncan JS, Weinreb 
JC, Chapiro J, Letzen B. Deep learning for liver tumor diagnosis part I: development of a 
convolutional neural network classifier for multi-phasic MRI. Eur Radiol 2019; 29: 3338-3347 
[PMID: 31016442 DOI: 10.1007/s00330-019-06205-9]

93     

Wang CJ, Hamm CA, Savic LJ, Ferrante M, Schobert I, Schlachter T, Lin M, Weinreb JC, Duncan 
JS, Chapiro J, Letzen B. Deep learning for liver tumor diagnosis part II: convolutional neural 
network interpretation using radiologic imaging features. Eur Radiol 2019; 29: 3348-3357 [PMID: 
31093705 DOI: 10.1007/s00330-019-06214-8]

94     

Yamashita R, Mittendorf A, Zhu Z, Fowler KJ, Santillan CS, Sirlin CB, Bashir MR, Do RKG. Deep 
convolutional neural network applied to the liver imaging reporting and data system (LI-RADS) 
version 2014 category classification: a pilot study. Abdom Radiol (NY) 2020; 45: 24-35 [PMID: 
31696269 DOI: 10.1007/s00261-019-02306-7]

95     

Wang G, Jian W, Cen X, Zhang L, Guo H, Liu Z, Liang C, Zhou W. Prediction of Microvascular 
Invasion of Hepatocellular Carcinoma Based on Preoperative Diffusion-Weighted MR Using Deep 
Learning. Acad Radiol 2020 [PMID: 33303346 DOI: 10.1016/j.acra.2020.11.014]

96     

Peng J, Kang S, Ning Z, Deng H, Shen J, Xu Y, Zhang J, Zhao W, Li X, Gong W, Huang J, Liu L. 
Residual convolutional neural network for predicting response of transarterial chemoembolization in 

97     

http://www.ncbi.nlm.nih.gov/pubmed/31675174
https://dx.doi.org/10.1002/jmri.26977
http://www.ncbi.nlm.nih.gov/pubmed/30240304
https://dx.doi.org/10.2214/AJR.18.19507
http://www.ncbi.nlm.nih.gov/pubmed/33198809
https://dx.doi.org/10.1186/s40644-020-00360-9
http://www.ncbi.nlm.nih.gov/pubmed/29131760
https://dx.doi.org/10.1148/rg.2017170077
http://www.ncbi.nlm.nih.gov/pubmed/28778026
https://dx.doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28301734
https://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://www.ncbi.nlm.nih.gov/pubmed/28670152
https://dx.doi.org/10.3348/kjr.2017.18.4.570
https://dx.doi.org/10.1007/978-3-642-35289-8_32
http://www.ncbi.nlm.nih.gov/pubmed/30526356
https://dx.doi.org/10.1148/radiol.2018181432
http://www.ncbi.nlm.nih.gov/pubmed/31356688
https://dx.doi.org/10.1002/mp.13735
http://www.ncbi.nlm.nih.gov/pubmed/29994628
https://dx.doi.org/10.1109/TMI.2018.2806309
http://www.ncbi.nlm.nih.gov/pubmed/29994201
https://dx.doi.org/10.1109/TMI.2018.2845918
http://www.ncbi.nlm.nih.gov/pubmed/31041697
https://dx.doi.org/10.1007/s11548-019-01989-z
http://www.ncbi.nlm.nih.gov/pubmed/32500237
https://dx.doi.org/10.1007/s00261-020-02604-5
http://www.ncbi.nlm.nih.gov/pubmed/29059036
https://dx.doi.org/10.1148/radiol.2017170706
http://www.ncbi.nlm.nih.gov/pubmed/31016442
https://dx.doi.org/10.1007/s00330-019-06205-9
http://www.ncbi.nlm.nih.gov/pubmed/31093705
https://dx.doi.org/10.1007/s00330-019-06214-8
http://www.ncbi.nlm.nih.gov/pubmed/31696269
https://dx.doi.org/10.1007/s00261-019-02306-7
http://www.ncbi.nlm.nih.gov/pubmed/33303346
https://dx.doi.org/10.1016/j.acra.2020.11.014


Yao S et al. Radiomics in HCC

WJGO https://www.wjgnet.com 1615 November 15, 2021 Volume 13 Issue 11

hepatocellular carcinoma from CT imaging. Eur Radiol 2020; 30: 413-424 [PMID: 31332558 DOI: 
10.1007/s00330-019-06318-1]
Zhang L, Xia W, Yan ZP, Sun JH, Zhong BY, Hou ZH, Yang MJ, Zhou GH, Wang WS, Zhao XY, 
Jian JM, Huang P, Zhang R, Zhang S, Zhang JY, Li Z, Zhu XL, Gao X, Ni CF. Deep Learning 
Predicts Overall Survival of Patients With Unresectable Hepatocellular Carcinoma Treated by 
Transarterial Chemoembolization Plus Sorafenib. Front Oncol 2020; 10: 593292 [PMID: 33102242 
DOI: 10.3389/fonc.2020.593292]

98     

Tamada D, Kromrey ML, Ichikawa S, Onishi H, Motosugi U. Motion Artifact Reduction Using a 
Convolutional Neural Network for Dynamic Contrast Enhanced MR Imaging of the Liver. Magn 
Reson Med Sci 2020; 19: 64-76 [PMID: 31061259 DOI: 10.2463/mrms.mp.2018-0156]

99     

Esses SJ, Lu X, Zhao T, Shanbhogue K, Dane B, Bruno M, Chandarana H. Automated image 
quality evaluation of T2 -weighted liver MRI utilizing deep learning architecture. J Magn Reson 
Imaging 2018; 47: 723-728 [PMID: 28577329 DOI: 10.1002/jmri.25779]

100     

Park JE, Kim D, Kim HS, Park SY, Kim JY, Cho SJ, Shin JH, Kim JH. Quality of science and 
reporting of radiomics in oncologic studies: room for improvement according to radiomics quality 
score and TRIPOD statement. Eur Radiol 2020; 30: 523-536 [PMID: 31350588 DOI: 
10.1007/s00330-019-06360-z]

101     

Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, Felli E, Saviano A, Agnus V, Savadjiev P, 
Baumert TF, Pessaux P, Marescaux J, Gallix B. Radiomics in hepatocellular carcinoma: a 
quantitative review. Hepatol Int 2019; 13: 546-559 [PMID: 31473947 DOI: 
10.1007/s12072-019-09973-0]

102     

Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, 
Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, 
Depeursinge A, Desseroit MC, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, 
Gillies RJ, Goh V, Götz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, 
Leijenaar RTH, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, 
Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema 
NM, Socarras Fernandez J, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost 
EGC, Upadhaya T, Valentini V, van Dijk LV, van Griethuysen J, van Velden FHP, Whybra P, 
Richter C, Löck S. The Image Biomarker Standardization Initiative: Standardized Quantitative 
Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020; 295: 328-338 [PMID: 
32154773 DOI: 10.1148/radiol.2020191145]

103     

Clarke LP, Nordstrom RJ, Zhang H, Tandon P, Zhang Y, Redmond G, Farahani K, Kelloff G, 
Henderson L, Shankar L, Deye J, Capala J, Jacobs P. The Quantitative Imaging Network: NCI's 
Historical Perspective and Planned Goals. Transl Oncol 2014; 7: 1-4 [PMID: 24772201 DOI: 
10.1593/tlo.13832]

104     

Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R. Radiogenomics: bridging 
imaging and genomics. Abdom Radiol (NY) 2019; 44: 1960-1984 [PMID: 31049614 DOI: 
10.1007/s00261-019-02028-w]

105     

http://www.ncbi.nlm.nih.gov/pubmed/31332558
https://dx.doi.org/10.1007/s00330-019-06318-1
http://www.ncbi.nlm.nih.gov/pubmed/33102242
https://dx.doi.org/10.3389/fonc.2020.593292
http://www.ncbi.nlm.nih.gov/pubmed/31061259
https://dx.doi.org/10.2463/mrms.mp.2018-0156
http://www.ncbi.nlm.nih.gov/pubmed/28577329
https://dx.doi.org/10.1002/jmri.25779
http://www.ncbi.nlm.nih.gov/pubmed/31350588
https://dx.doi.org/10.1007/s00330-019-06360-z
http://www.ncbi.nlm.nih.gov/pubmed/31473947
https://dx.doi.org/10.1007/s12072-019-09973-0
http://www.ncbi.nlm.nih.gov/pubmed/32154773
https://dx.doi.org/10.1148/radiol.2020191145
http://www.ncbi.nlm.nih.gov/pubmed/24772201
https://dx.doi.org/10.1593/tlo.13832
http://www.ncbi.nlm.nih.gov/pubmed/31049614
https://dx.doi.org/10.1007/s00261-019-02028-w


Published by Baishideng Publishing Group Inc 

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA 

Telephone: +1-925-3991568 

E-mail: bpgoffice@wjgnet.com 

Help Desk: https://www.f6publishing.com/helpdesk 

https://www.wjgnet.com

© 2021 Baishideng Publishing Group Inc. All rights reserved.

mailto:bpgoffice@wjgnet.com
https://www.f6publishing.com/helpdesk
https://www.wjgnet.com

