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Abstract
BACKGROUND 
Gastric cancer is a common malignancy with poor prognosis, in which ferroptosis 
plays a crucial function in its development. Propofol is a widely used anesthetic 
and has antitumor potential in gastric cancer. However, the effect of propofol on 
ferroptosis during gastric cancer progression remains unreported.

AIM 
To explore the function of propofol in the regulation of ferroptosis and malignant 
phenotypes of gastric cancer cells.

METHODS 
MTT assays, colony formation assays, Transwell assays, wound healing assay, 
analysis of apoptosis, ferroptosis measurement, luciferase reporter gene assay, 
and quantitative reverse transcription polymerase chain reaction were used in this 
study.

RESULTS 
Our data showed that propofol was able to inhibit proliferation and induce 
apoptosis of gastric cancer cells. Meanwhile, propofol markedly repressed the 
invasion and migration of gastric cancer cells. Importantly, propofol enhanced the 
erastin-induced inhibition of growth of gastric cancer cells. Consistently, propofol 
increased the levels of reactive oxygen species, iron, and Fe2+ in gastric cancer 
cells. Moreover, propofol suppressed signal transducer and activator of 
transcription (STAT)3 expression by upregulating miR-125b-5p and propofol 
induced ferroptosis by targeting STAT3 in gastric cancer cells. The miR-125b-5p 
inhibitor or STAT3 overexpression reversed propofol-attenuated malignant 
phenotypes of gastric cancer cells.
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CONCLUSION 
Propofol induced ferroptosis and inhibited malignant phenotypes of gastric 
cancer cells by regulating the miR-125b-5p/STAT3 axis. Propofol may serve as a 
potential therapeutic candidate for gastric cancer.

Key Words: Gastric cancer; Progression; Ferroptosis; Propofol; miR-125b-5p; STAT3
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Core Tip: In this study, we discovered that propofol induced ferroptosis and inhibited 
malignant phenotypes of gastric cancer cells by regulating the miR-125b-5p/STAT3 
axis. Propofol may serve as a potential therapeutic candidate for gastric cancer.
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INTRODUCTION
Gastric cancer is a severe, lethal type of cancer worldwide[1]. Despite improvement in 
treatment, gastric cancer remains the leading cause of cancer-associated death[2]. 
Adjuvant therapy, radical surgery, and early diagnosis enhance survival rates and 
prognosis for gastric cancer, but mortality is still unsatisfactory[3,4]. Ferroptosis is a 
type of regulated cell death that differs from apoptosis and is repressed by erastin, 
especially in RAS-mutated cancer cells[5]. It has been identified that the suppression of 
ferroptosis contributes to cancer progression, and ferroptosis has a crucial role in the 
development of gastric cancer[6-8]. However, the exploration of a treatment that can 
target ferroptosis is still limited.

Propofol is a broadly applied anesthetic because of rapid recovery and has some 
nonanesthetic functions in cancer development[9]. It has been identified that propofol 
inhibits cell invasion and growth and induces apoptosis in pancreatic cancer[10]. 
Meanwhile, propofol decreases cell proliferation and increases apoptosis of lung 
cancer cells by regulating caspases-3, Bim, forkhead box (FOX)O1, and FOXO3, in 
which miR-486 inhibitor can reverse this effect[11]. Propofol also represses the 
malignant progression of promyelocytic leukemia cells[12]. Moreover, it has been 
reported that propofol induces an inhibitory effect on gastric cancer cell invasion and 
migration in patients with gastric cancer[13,14]. However, the function of propofol in 
the modulation of ferroptosis during gastric cancer progression remains elusive. 
miRNAs can modulate gene expression in different cellular processes[15]. Previous 
studies have revealed that miRNAs participate in the development of gastric cancer
[16,17]. Meanwhile, a recent study has shown that miR-125b-5p is a tumor suppressor 
and involved in the modulation of gastric cancer[18]. In addition, signal transducer 
and activator of transcription (STAT)3 has been identified as an oncogene in gastric 
cancer[19-21]. However, the effect of propofol on miR-125b-5p and STAT3 during the 
development of gastric cancer remains obscure.

In this study, we focused on the investigation of the function of propofol in the 
development of gastric cancer. We found that propofol induced ferroptosis and 
inhibited malignant phenotypes of gastric cancer cells by regulating the miR-125b-5p/ 
STAT3 axis.

MATERIALS AND METHODS
Cell culture
The SGC7901 and BGC823 cells were maintained in the laboratory. The cells were 
cultured in Dulbecco’s modified Eagle’s medium (DMEM; Solarbio, China) with 0.1 
mg/mL streptomycin (Solarbio), 100 U/mL penicillin (Solarbio), and 10% fetal bovine 

http://creativecommons.org/Licenses/by-nc/4.0/
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serum (Solarbio), under the conditions of 37 °C with 5% CO2. The pcDNA3.1-STAT3 
overexpression vector, miR-125b-5p mimic, miR-125b-5p inhibitor, and corresponding 
control were purchased from Genscript Biotech Corporation (Nanjing, China) and 
GenePharma Co. Ltd. (Shanghai, China). The transfection in the cells was performed 
by Liposome 3000 (Invitrogen, Carlsbad, CA, United States). Propofol was purchased 
from Sigma (St. Louis, MO, United States).

MTT assays 
SGC7901 and BGC823 cells were treated with propofol for 48 h. MTT assays analyzed 
the proliferation of SGC7901 and BGC823 cells. About 2 × 105 cells were plated in 96-
well plates and incubated for 24 h. To assess cell viability, the cells were cultured with 
MTT solution (5 mg/mL) and incubated for 4 h, and 150 μL dimethyl sulfoxide 
(DMSO) was applied to treat the cells. The cell viability was measured at 570 nm 
absorbance by applying an ELISA browser (Bio-Tek EL 800, Winooski, VT, United 
States).

Colony formation assays
The SGC7901 and BGC823 cells were treated with propofol for 48 h. Colony formation 
assays measured proliferation. About 104 SGC7901 and BGC823 cells were placed in 
six-well plates and cultured in DMEM at 37 C. The cells were cleaned with phosphate-
buffered saline (PBS) after 2 wk, washed in methanol for ~30 min, and stained with 1% 
crystal violet dye, after which, the number of colonies was calculated.

Transwell assays
To analyze cell migration, the cells were cultured for 24 h and resuspended in serum-
free culture medium, then plated into the apical chamber of a Transwell chamber at 5 
× 103 cells/well. The culture medium was made up to 150 μL and 600 μL complete 
culture medium was added to the basolateral chamber. After 24 h culture at 37°C and 
5% CO2, the cells were fixed with 4% paraformaldehyde for 10 min, stained by crystal 
violet dye for 20 min, followed by analysis using the intelligent biological navigator 
(Olympus, Tokyo, Japan). The migrated cells were recorded and calculated by using 
the ImageJ software.

To analyze cell invasion, Matrigel was melted overnight at 4 °C and diluted by 
presold serum-free culture medium (ratio 8:1). The medium (50 μL) was plated into 
the Transwell polycarbonate membrane with a pore diameter of 8 μm, covering all the 
wells with Matrigel at 37°C for 2 h. The cells were cultured for 24 h and resuspended 
in serum-free culture medium, plated into the Transwell apical chamber at 105 
cells/well, and the medium was made up to 150 μL. Complete medium with 50% FBS 
(600 μL) was added to the basolateral chamber. After 24 h, the cells were fixed using 
4% paraformaldehyde for 15 min and stained with crystal violet dye for 10 min. The 
invaded cells were analyzed and calculated using the ImageJ software.

Wound healing assay 
SGC7901 and BGC823 cells were treated with propofol for 48 h. Approximately 3 × 105 

SGC7901 and BGC823 cells were plated into the 24-well plates and incubated 
overnight to reach a fully confluent monolayer. A 20-μL pipette tip was applied to 
slowly cut a straight line across the well. The well was washed by PBS three times and 
the medium was changed to serum-free medium and culture was continued. The 
wound healing percentage was calculated.

Analysis of apoptosis 
he SGC7901 and BGC823 cells were treated with propofol for 48 h. Approximately 2 × 
105 SGC7901 and BGC823 cells were plated in six-well dishes. Apoptosis was deter-
mined using the Annexin V-FITC Apoptosis Detection Kit (Cell Signaling Technology, 
Danvers, MA, United States). About 2 × 105 washed cells were collected by binding 
buffer and stained at 25 C, followed by flow cytometry analysis.

Ferroptosis measurement
SGC7901 and BGC823 cells were cotreated with erastin (5 mmol/L) or ferrostatin (1 
mmol/L). After 48 h, the cell viability was analyzed by MTT assay. Elevated iron level 
and accumulated lipid reactive oxygen species (ROS) were representative character-
istics of ferroptosis. We used an iron assay kit (Beyotime, China) to examine the level 
of intracellular Fe2+. The cells were homogenized to collect the supernatant, incubated 
with iron reducer, followed by labeling with iron probe. OD 590 nm was detected in a 
microplate reader (PerkinElmer, Waltham, MA, United States). For detection of lipid 
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ROS, cells were stained with BODIPY C-11 dye (Beyotime) for 30 min, and subse-
quently detected by flow cytometry (BD Biosciences, Franklin Lakes, NJ, United 
States). The levels of malondialdehyde (MDA) and glutathione peroxidase (GSH) was 
measured by the MDA detection kit (Beyotime) and GSH assay kit (Cayman, Ann 
Arbor, MI, United States), respectively.

Luciferase reporter gene assay
The luciferase reporter gene assays were performed using the Dual-luciferase Reporter 
Assay System (Promega, Madison, WI, United States). SGC7901 and BGC823 cells 
were treated with miR-125b-5p mimic, pmirGLO-STAT3 (contained STAT3 3‘UTR), 
and pmirGLO-STAT3 mutant transfected into the cells using Lipofectamine 3000 
(Invitrogen), followed by analysis of luciferase activities, in which Renilla was applied 
as a normalized control.

Quantitative reverse transcription polymerase chain reaction
Total RNA was extracted by TRIZOL (Invitrogen). The first-strand cDNA was 
manufactured according to the manufacturer’s instructions (Thermo Fisher Scientific, 
Waltham, MA, United States). qRT-PCR was carried out by SYBR Real-time PCR I kit 
(Takara, Japan). The standard control for miRNA and mRNA/circRNA was U6 and 
GAPDH, respectively. Quantitative determination of the RNA levels was conducted in 
triplicate independent experiments. The primer sequences were as follows: miR-125b-
5p forward: 5′-TCCCTGAGACCCTAACTTGTGA-3′; reverse: 5′-AGTCTCAGGGTC 
CGAGGTATTC-3′; STAT3 forward: 5′-GGCCATCTTGAGCACTAAGC-3′, reverse: 5′-
CGGACTGGATCTGGGTCTTA-3′; GAPDH forward: 5′-TATGATGATATCAAGA 
GGGTAGT-3′, reverse: 5′-TATGATGATATCAAGAGGGTAGT-3′; U6 forward: 5′-
CTCGCTTCGGCAGCACA-3′, U6 reverse: 5′-AACGCTTCACGAATT TGCGT-3′.

Western blot analysis
Total proteins were isolated from the cells with RIPA buffer (Cell Signaling Tech-
nology) and analyzed by BCA Protein Quantification Kit (Abbkine, United States). The 
protein was separated by 12% SDS-PAGE, and transferred to polyvinylidene di-
fluoride membranes (Millipore, Billerica, MA, United States). The membranes were 
treated with 5% milk and incubated overnight at 4°C with the primary antibodies for 
STAT3 (Rabbit monoclonal, 1:1000, diluted by 5% milk; Cell Signaling Technology), 
GPX4 (Rabbit monoclonal, 1:1000, diluted by 5% milk; Cell Signaling Technology) and 
SLC7A11 (Rabbit monoclonal, 1:1000, diluted by 5% milk; Cell Signaling Technology); 
and β-actin (Mouse monoclonal, 1:1000, diluted by 5% milk; Cell Signaling Tech-
nology), E-cadherin (Rabbit monoclonal, 1:1000, diluted by 5% milk; Cell Signaling 
Technology) and vimentin (Rabbit monoclonal, 1:1000, diluted by 5% milk; Cell 
Signaling Technology), in which β-actin served as the control. The corresponding 
secondary antibodies (Abcam, Cambridge, MA, United States) were incubated with 
the membranes for 1 h at room temperature, followed by visualization using an 
Odyssey CLx Infrared Imaging System.

Xenograft assays
All animal experiments were performed under the approval of Animal Ethics 
Committee of The First Affiliated Hospital of Harbin Medical University. Specific-
pathogen-free male nude mice aged 5-6 wk and weighted around 20 g were purchased 
from Vitalriver (China). All mice were maintained in a 12-h circadian rhythm, and had 
free access to water and food. SGC7901 and BGC823 cells were subcutaneously 
injected into the right flank of mice. Propofol (50 mg/kg/d) was administrated 
intraperitoneally after tumor volume approached 100 mm3 for 20 d[22]. For the control 
group, the mice were treated with an equal volume of DMSO. Tumor volume and 
body weight were monitored every 5 d. The tumor size was calculated using the 
formula: length × width2/2.

Statistical analysis
Data were expressed as mean ± SD, and the statistical analysis was conducted using 
GraphPad Prism 7. The unpaired Student’s t test was used to compare two groups, 
and one-way analysis of variance was used to compare among multiple groups. P < 
0.05 was considered statistically significant.
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RESULTS
Propofol decreases proliferation and induces apoptosis of gastric cancer cells
We evaluated the effect of propofol on proliferation and apoptosis of gastric cancer 
cells. Propofol repressed viability of SGC7901 and BGC823 cells in a dose-dependent 
manner and 10 µmol/L propofol had a greater effect, which was selected in the 
subsequent analysis (Supplementary Figure 1). Propofol was able to inhibit viability of 
SGC7901 and BGC823 cells (Figure 1A and B). Similarly, propofol markedly reduced 
proliferation of SGC7901 and BGC823 cells (Figure 1C and D). Apoptosis of SGC7901 
and BGC823 cells was enhanced by propofol (Figure 1E and F), suggesting that 
propofol decreases proliferation and induces apoptosis of gastric cancer cells.

Propofol reduces invasion and migration of gastric cancer cells
We further measured the effect of propofol on the migration and invasion of gastric 
cancer cells. Transwell assays indicated that the migration and invasion of SGC7901 
and BGC823 cells were markedly decreased by propofol (Figure 2A and B). Consisten-
tly, the treatment of propofol significantly repressed wound healing in SGC7901 and 
BGC823 cells (Figure 2C and D), indicating that propofol is able to attenuate the 
migration and invasion of gastric cancer cells. Consistently, propofol enhanced E-
cadherin expression and reduced vimentin expression in SGC7901 and BGC823 cells 
(Figure 2E).

Propofol enhances ferroptosis in gastric cancer cells
To analyze the impact of propofol on ferroptosis, we assessed the role of propofol in 
the erastin-induced inhibition of cell growth and the intracellular levels of ROS, iron 
and Fe2+, and expression of GPX4 and SLC7A11, which are considered to be ferroptosis 
markers. Propofol enhanced the erastin-induced inhibitory effect on SGC7901 and 
BGC823 cell growth, in which erastin served as an activator of ferroptosis (Figure 3A 
and B). Iron levels were induced by propofol in SGC7901 and BGC823 cells 
(Figure 3C). Propofol significantly promoted the levels of ROS in SGC7901 and 
BGC823 cells (Figure 3D). Propofol increased accumulation of Fe2+ in SGC7901 and 
BGC823 cells (Figure 3E). Consistently, the expression of GPX4 and SLC7A11 was 
inhibited by propofol in SGC7901 and BGC823 cells (Figure 3F). GSH levels were 
reduced and MDA levels were enhanced in SGC7901 and BGC823 cells by treatment 
with propofol (Figure 3G and H), suggesting that propofol enhances ferroptosis in 
gastric cancer cells.

Propofol represses STAT3 expression by upregulating miR-125b-5p in gastric 
cancer cells
We explored the potential mechanisms underlying propofol-mediated gastric cancer 
progression. Given that propofol can regulate colon cancer metastasis by regulating 
STAT3 signaling[23], we assessed the correlation of propofol with STAT3 in gastric 
cancer. Significantly, we identified that propofol was able to upregulate expression of 
miR-125b-5p in SGC7901 and BGC823 cells (Figure 4A). We identified the binding site 
between miR-125b-5p and STAT3 mRNA 3’ UTR in a bioinformatic analysis using 
Targetscan (http://www.targetscan.org/vert_72/) (Figure 4B). Treatment with miR-
125b-5p mimic reduced luciferase activities of wild-type STAT3, but not STAT3 with 
miR-125b-5p-binding site mutant in SGC7901 and BGC823 cells (Figure 4C and D). 
mRNA and protein expression of STAT3 was significantly suppressed by miR-125b-5p 
mimic in SGC7901 and BGC823 cells (Figure 4E). Propofol inhibited expression of 
STAT3, which was reversed by miR-125b-5p inhibitor (Figure 4F), indicating that 
propofol represses STAT3 expression by upregulating miR-125b-5p in gastric cancer 
cells.

Propofol enhances ferroptosis by targeting STAT3 in gastric cancer cells
We confirmed whether propofol modulated ferroptosis by targeting STAT3 in gastric 
cancer cells. As expected, overexpression of STAT3 was able to rescue propofol-
inhibited cell growth in the erastin-treated SGC7901 and BGC823 cells (Figure 5A). 
Similarly, STAT3 overexpression reversed propofol-induced levels of Fe2+, iron and 
ROS (Figure 5B-D), suggesting that propofol induces ferroptosis by inhibiting STAT3 
in gastric cancer cells.

Propofol attenuates gastric cancer progression by miR-125b-5p /STAT3 axis
We further investigated the role of the propofol/miR-125b-5p/STAT3 axis in 
regulating gastric cancer malignant phenotypes. Overexpression of STAT3 or miR-

https://f6publishing.blob.core.windows.net/cedb71ba-e17a-477f-8f1b-c6a70826d281/WJGO-13-2114-supplementary-material.pdf
http://www.targetscan.org/vert_72/
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Figure 1 Propofol decreases proliferation and induces apoptosis of gastric cancer cells. A–E: SGC7901 and BGC823 cells were treated with 
propofol (10 µmol/L). A and B: MTT assays analyzed cell viability; C and D: Colony formation assays measured cell proliferation; E and F: Flow cytometry analysis 
tested cell apoptosis. n = 3, mean ± SD, bP < 0.01.
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Figure 2 Propofol reduces invasion and migration of gastric cancer cells. A-D: SGC7901 and BGC823 cells were treated with propofol (10 µmol/L). A 
and B: Transwell assays analyzed cell migration and invasion; C and D: Wound healing assays examined migration and invasion. The wound healing proportion is 
shown. E: Protein levels of E-cadherin and vimentin were measured by western blotting. n = 3, mean ± SD, bP < 0.01.

125b-5p inhibitor promoted propofol-inhibited viability in SGC7901 and BGC823 cells 
(Figure 6A and B). Consistently, apoptosis of SGC7901 and BGC823 cells was induced 
by propofol, and overexpression of STAT3 or miR-125b-5p inhibitor reversed this 
effect in SGC7901 and BGC823 cells (Figure 6C), implying that propofol has an 
inhibitor effect on gastric cancer malignant phenotypes via the miR-125b-5p/STAT3 
axis. We confirmed that propofol-induced levels of Fe2+, iron and ROS were reversed 
by inhibition of miR-125b-5p in SGC7901 and BGC823 cells (Supplementary Figure 2).

Propofol attenuates growth of gastric cancer cells in vivo
We evaluated the effect of propofol on gastric cancer cell growth in a tumorigenicity 
analysis in nude mice. Tumor growth of SGC7901 or BGC823 cells was attenuated by 
propofol in nude mice (Figure 7A-C and Supplementary Figure 3A-C), as demon-
strated by the reduced tumor size, weight and volume. As expected, expression of 
miR-125b-5p was enhanced and STAT3 expression was reduced in the tumor tissues of 
propofol-treated mice compared with the control group (Figure 7D and E and 
Supplementary Figure 3D and E). Expression of GPX4 and SLC7A11 was also down-
regulated by propofol in the tumor tissues of mice (Figure 7F and Supplementary 
Figure 3F).

DISCUSSION
Gastric cancer is a prevalent malignancy with high mortality[1], in which ferroptosis 
plays a critical role in its development[6-8]. Propofol is a widely used anesthetic and 
has inhibitory effects on cancer progression. Nevertheless, the effect of propofol on 
ferroptosis during the development of gastric cancer is still unreported. In this study, 
we showed that propofol induced ferroptosis and inhibited malignant phenotypes of 
gastric cancer cells by regulating the miR-125b-5p/STAT3 axis.

Propofol has presented significant anticancer functions in several models. It has 
been reported that propofol inhibits the development of nonsmall cell lung cancer by 
downregulating the miR215p/MAPK10 axis[24]. Propofol represses malignant 
progression of pancreatic cancer cells by reducing NMDA receptor[25]. Propofol 
induces apoptosis of cervical cancer cells through inhibition of the HOTAIR/mTOR 
pathway[26]. Moreover, it has been found that propofol represses proliferation, 
migration and invasion by enhancing miR-195 in gastric cancer cells[14]. Propofol 
improves cisplatin sensitivity in gastric cancer by MALAT1/miR-30e/ATG5 signaling 
via inhibiting autophagy[27]. Propofol suppresses the survival and growth of gastric 
cancer by inducing expression of ING3[28]. We found that propofol decreased prolif-
eration, migration and invasion and induced apoptosis of gastric cancer cells. 
Importantly, propofol enhanced ferroptosis in gastric cancer cells. Our data indicate an 
unreported function of propofol in the modulation of ferroptosis during gastric cancer 
progression, elucidating the novel role of the anesthetic in the ferroptosis of cancer 
development. Ferroptosis is one of the critical malignant phenotypes mediated by 
propofol in gastric cancer progression. The importance of ferroptosis and apoptosis 
should be compared by more complex investigations. Meanwhile, it has been reported 
that the regulation of ferroptosis may benefit the inhibition of gastric cancer 
development, and targeting ferroptosis may be a promising strategy for gastric cancer 
therapy.

https://f6publishing.blob.core.windows.net/cedb71ba-e17a-477f-8f1b-c6a70826d281/WJGO-13-2114-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/cedb71ba-e17a-477f-8f1b-c6a70826d281/WJGO-13-2114-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/cedb71ba-e17a-477f-8f1b-c6a70826d281/WJGO-13-2114-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/cedb71ba-e17a-477f-8f1b-c6a70826d281/WJGO-13-2114-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/cedb71ba-e17a-477f-8f1b-c6a70826d281/WJGO-13-2114-supplementary-material.pdf
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Figure 3 Propofol enhances ferroptosis in gastric cancer cells. A and B: SGC7901 and BGC823 were cotreated with 5 mmol/L erastin or ferrostatin (1 
mmol/L) and propofol (10 µmol/L). Cell growth was analyzed by MTT assays. C–F: SGC7901 and BGC823 cells were treated with propofol (10 µmol/L). C: Flow 
cytometry measured the levels of ROS. D and E: Iron Assay Kit analyzed the levels of iron and Fe2+. F: Western blotting analysis tested the expression of GPX4, 
SLC7A11 and β-actin. G and H: Levels of GSH and MDA were analyzed by the detection kit. n = 3, mean ± SD, aP < 0.05, bP < 0.01, cP < 0.001.

miRNAs function as crucial regulators and are involved in gastric cancer 
progression. It has been reported that miR-96-5p enhances gastric cancer cell prolif-
eration via inhibiting FOXO3[29]. miR-27b inhibits gastric cancer metastasis by 
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Figure 4 Propofol represses signal transducer and activator of transcription (STAT)3 expression by upregulating miR-125b-5p in gastric 
cancer cells. A: SGC7901 and BGC823 cells were treated with propofol (10 µmol/L). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) 
measured expression of miR-125b-5p. B: The binding site of miR-125b-5p and STAT3 3’ UTR was identified by bioinformatic analysis using Targetscan (
http://www.targetscan.org/vert_72/). C–E: SGC7901 and BGC823 cells were treated with the miR-125b-5p mimic or control mimic. C and D: Luciferase reporter gene 
assays determined the luciferase activities. E: qRT-PCR analyzed mRNA expression of STAT3. F: SGC7901 and BGC823 cells were treated with propofol, or 
cotreated with propofol and miR-125b-5p inhibitor. Western blotting assessed protein expression of STAT3 and β-actin. n = 3, mean ± SD, bP < 0.01.

downregulating NR2F2 (nuclear receptor subfamily 2 group F member 2)[30]. miR-558 
contributes to the progression of gastric cancer by repressing Smad4-regulated 
heparanase expression[31]. Moreover, it has been reported that miR-125b-5p represses 
invasion, migration and proliferation of breast cancer cells by inhibiting KIAA1522
[32]. miR-125b-5p suppresses invasion, migration and proliferation of hepatocellular 
carcinoma cell by downregulating thioredoxin reductase 1[33]. miR-125b-5p inhibits 
the progression of bladder cancer by attenuating PI3K/AKT signaling and targeting 
hexokinase 2[34]. In the present study, we found that propofol inhibited STAT3 
expression by upregulating miR-125b-5p in gastric cancer cells. Propofol induced 

http://www.targetscan.org/vert_72/
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Figure 5 Propofol enhances ferroptosis by targeting signal transducer and activator of transcription (STAT)3 in gastric cancer cells. A: 
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SGC7901 and BGC823 cells were treated with 5 mmol/L erastin, cotreated with 5 mmol/L erastin and propofol, or cotreated with 5 mmol/L erastin, propofol, and 
pcDNA.1-STAT3. MTT assays measured cell growth. B–D: SGC7901 and BGC823 cells were treated with propofol, or cotreated with propofol and pcDNA.1-STAT3. 
B: Iron Assay Kit analyzed the levels of iron; C: Flow cytometry analysis tested the levels of ROS; and D: Iron Assay Kit analyzed the levels of Fe2+. n = 3, mean ± 
SD, bP < 0.01, cP < 0.001.

Figure 6 Propofol attenuates gastric cancer progression by miR-125b-5p/STAT3 axis. A–C: SGC7901 and BGC823 cells were treated propofol, or 
cotreated with propofol and miR-125b-5p inhibitor or pcDNA.1-STAT3. A and B: MTT assays analyzed the cell viability; C: Flow cytometry measured apoptosis. n = 3, 
mean ± SD, bP < 0.01.

ferroptosis by targeting STAT3 in gastric cancer cells. The overexpression of STAT3 
and miR-125b-5p inhibitor could reverse propofol-attenuated malignant phenotypes of 
gastric cancer cells. It uncovers a novel mechanism involving propofol, miR-125b-5p 
and STAT3 in the regulation of gastric cancer, enriching the understanding of the 
anticancer effect of propofol.

CONCLUSION
We discovered that propofol induced ferroptosis and inhibited malignant phenotypes 
of gastric cancer cells by regulating the miR-125b-5p/STAT3 axis. Propofol may serve 
as a potential therapeutic candidate for gastric cancer therapy.
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Figure 7 Propofol attenuates growth of gastric cancer cells in vivo. The nude mice were injected with SGC7901 cells and intraperitoneally treated with 
propofol (50 mg/kg). A: Tumor tissues; B: Tumor volume; and C: Tumor weight; D: Expression of miR-125b-5p was analyzed by quantitative reverse transcription 
polymerase chain reaction. E: Protein expression of STAT3 was detected by western blotting. F: Protein expression of GPX4 and SLC7A11 was measured by 
western blotting. n = 5, mean ± SD, bP < 0.01.

ARTICLE HIGHLIGHTS
Research background
Gastric cancer is a common malignancy with poor prognosis, in which ferroptosis 
plays a crucial role in its development. Propofol is a widely used anesthetic and has 
shown antitumor potential in gastric cancer. However, the effect of propofol on 
ferroptosis during gastric cancer progression remains unreported.

Research motivation
This study aims to identify the function of propofol in the regulation of ferroptosis and 
malignant phenotypes of gastric cancer cells.

Research objectives
To explore the role of propofol in the regulation of ferroptosis and malignant 
phenotypes of gastric cancer cells.
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Research methods
MTT assays, colony formation assays, Transwell assays, wound healing assay, analysis 
of cell apoptosis, ferroptosis measurement, luciferase reporter gene assay and 
quantitative reverse transcription-PCR were used in this study.

Research results
Propofol was able to inhibit proliferation and induce apoptosis of gastric cancer cells. 
Propofol markedly repressed the invasion and migration of gastric cancer cells. 
Importantly, propofol enhanced the erastin-induced inhibitory effect on the growth of 
gastric cancer cells. Consistently, propofol increased the levels of ROS, iron and Fe2+ in 
gastric cancer cells. Propofol suppressed STAT3 expression by upregulating miR-125b-
5p and propofol induced ferroptosis by targeting STAT3 in gastric cancer cells. The 
miR-125b-5p inhibitor or STAT3 overexpression could reverse propofol-attenuated 
malignant phenotypes of gastric cancer cells.

Research conclusions
Propofol induced ferroptosis and inhibited malignant phenotypes of gastric cancer 
cells by regulating the miR-125b-5p/STAT3 axis.

Research perspectives
Propofol may serve as a potential therapeutic candidate for gastric cancer therapy.
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