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Abstract
The properties of cancer stem cells (CSCs), such as self-renewal, drug resistance, 
and metastasis, have been indicated to be responsible for the poor prognosis of 
patients with colon cancers. The epigenetic regulatory network plays a crucial role 
in CSC properties. Regulatory non-coding RNA (ncRNA), including microRNAs, 
long noncoding RNAs, and circular RNAs, have an important influence on cell 
physiopathology. They modulate cells by regulating gene expression in different 
ways. This review discusses the basic characteristics and the physiological 
functions of colorectal cancer (CRC) stem cells. Elucidation of these ncRNAs will 
help us understand the pathological mechanism of CRC progression, and they 
could become a new target for cancer treatment.

Key Words: Regulatory RNAs; MicroRNA; Long-non coding RNA; Circular RNA; 
Colorectal cancer; Cancer stem cell; Stemness
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Core Tip: Cancer stemness is one of the key reasons to contribute to the tumor aggressiveness, disease 
progression and cancer recurrence. Some reports have suggested the essential roles of regulatory RNAs in 
the modulation of the colorectal cancer (CRC) stemness. Here, we focus on the findings of microRNAs, 
long noncoding RNAs, and circular RNAs in CRC stem cells. We not only introduce the basic concepts of 
these non-coding RNA but address their pathologic roles in the stemness related signals and molecules to 
realize their functions in CRC stem cells and CRC progression.

Citation: Chao HM, Wang TW, Chern E, Hsu SH. Regulatory RNAs, microRNA, long-non coding RNA and 
circular RNA roles in colorectal cancer stem cells. World J Gastrointest Oncol 2022; 14(4): 748-764
URL: https://www.wjgnet.com/1948-5204/full/v14/i4/748.htm
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INTRODUCTION
Colorectal adenocarcinoma is the most common colorectal cancer (CRC), resulting from the abnormal 
proliferation of colon epithelial cells. According to statistics from the American Cancer Society, the risk 
factors of CRC include obesity, physical inactivity, high consumption of red or processed meat, alcohol 
uptake, and very low intake of fruit and vegetables[1]. Other factors include inflammatory bowel 
diseases such as Crohn’s disease and ulcerative colitis. Based on TNM classification for CRC, which 
includes the invasive depth of primary tumor, the status of lymph nodes, and distant metastasis, CRC 
can be categorized into four stages: I, II, III, and IV. Typical treatments for CRC are surgical resection, 
neoadjuvant/adjuvant radiation therapy, and chemotherapy. Advanced CRC has high potential for 
metastasis and recurrence. Therefore, clarifying the mechanisms of drug-resistance and the metastasis of 
cancer cells is an important issue in cancer treatment. According to previous research, RNA plays 
important roles in physiology and pathology. Non-coding RNA (ncRNA) such as microRNA (miRNA), 
long non-coding RNA (lncRNA), and circular RNA (circRNA) have functional roles in physiopatho-
logical processes. These RNA molecules are involved in the pathobiology of cancer and have become 
targets for the diagnosis, prognosis, and treatment of various cancers. At present, in CRC, ncRNA 
regulates CRC metastasis, drug resistance, and stemness characteristics through various signal 
networks. Therefore, understanding the role of ncRNA in the CRC signaling pathway can help develop 
new strategies for the prognosis and treatment of CRC. In this review, we analyzed the latest findings 
about ncRNA, particularly miRNA and lncRNA, which are involved in the pathological mechanism of 
CRC.

CANCER STEM CELL
The existence of cancer stem cells (CSCs) is considered to account for cancer recurrence and metastasis. 
Tumor heterogeneity exists, which means that there are different cancer cell clones within tumors 
including different cancer cell clones, cancer progenitor cells, and CSCs[2]. Two competing theories 
have been proposed to explain the development of heterogeneous tumors: Clonal evolution theory and 
CSC theory[3,4]. The first postulates that each cell within a tumor is considered to have equal potential 
to promote tumorigenesis. In contrast to the clonal evolution theory, CSC theory claims that CSC is a 
small group of cancer cell population located at the highest level in the hierarchy of solid tumor tissues
[5]. Only CSCs have the potential to form new tumors on serial transplantation. In vivo research studies 
also provide evidence to support this theory by the xenograft model[6,7]. On the other hand, CSCs have 
been reported to exist in many different types of cancer. For instance, many studies show that CSCs 
dominate the tumorigenic potential in CRC[8,9]. Based on CSC theory, eliminating the CSC population 
would be an efficient way to prevent tumor relapse and can be expected to achieve a complete clinical 
therapeutic response[10].

Self-renewal is the process by which a stem cell divides to generate daughter cells that have similar 
developmental potential to the mother cell[11]. In normal stem cells, self-renewal is essential for 
expanding their population pool during development. When tissue injury occurs, stem cells differ-
entiate into somatic cells to restore damage. In hematopoietic stem cells, defects in self-renewal reduce 
the potential of repopulation capacity upon serial transplantation[12,13]. On the other hand, CSCs also 
possess the ability to self-renew and differentiate[14,15]. CSCs are injected into immunodeficient mice 
and only the CSCs with self-renewal and tumor-initiating potential could generate tumors successfully 
in xenograft models compared to non-CSC[16]. Due to self-renewal, stem cells can overcome anoikis (a 
kind of programmed cell death induced when cells detach from the surrounding extracellular matrix). 
Therefore, stem cells can form spheres in suspension culture[17]. As a result, the sphere-forming 
frequency can be used to estimate CSC frequency in cancers[18].

https://www.wjgnet.com/1948-5204/full/v14/i4/748.htm
https://dx.doi.org/10.4251/wjgo.v14.i4.748
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CSCs are believed to have higher drug resistance ability and could escape from chemotherapy, 
leading to tumor relapse. Most cytotoxic drugs used for cancer therapy damage DNA to induce the cell 
death of proliferative tumor cells. However, CSCs have three different pathways to avoid death. First, 
CSCs can repair DNA damage more efficiently than non-stem cancer cells through ataxia telangiectasia 
mutated and the activation of the checkpoint kinases Chk1 and Chk2[19]. This characteristic also helps 
CSCs overcome the effect of radiation therapy[20]. Second, CSCs could remain at a quiescent stage to 
slow the cell cycle[21], which would protect CSCs from most chemotherapeutic drugs that target rapidly 
proliferating cells[22]. The last is that the up-regulated expression of ATP-binding cassette transporters 
(ABC transporters) is observed in CSCs[23]. The ABC transporter is a membrane protein that could 
extrude toxins out of the cell[24].

Most cancer-related deaths are attributed to recurrence and metastasis. However, metastasis initiating 
cells (MICs) have not yet been well-defined to date. Evidence from many previous studies implies that a 
subpopulation of MICs is probably comprised of CSCs[25]. For example, in CRC patients, tumors with 
higher expressions of CSC markers CD133 and CD44 are correlated to metastasis[26]. In the “seed and 
soil” hypothesis[27], metastatic cancer cells have to float in the circulatory system as seeds and find 
appropriate organs as “soil” in which to settle down. Consequently, the self-renewal capacity that 
resists anoikis might explain why CSCs are related to metastasis. On the other hand, the beginning of 
metastasis includes two irreplaceable steps, invasion and migration[28]. As mentioned above, 
repressing self-renewal or migration abilities, or even restricting the CSC population directly may 
reduce cancer metastasis.

Regulatory signals of CRC stem cells
Many molecular networks are related to the stemness of CRC, and several have been found to be 
important and crucial in the growth and functional maintenance of CSCs, such as Wnt, bone morpho-
genetic protein (BMP), Hedgehog (Hh), and Notch signals. The Wnt signaling pathway has been 
recognized as a stemness-related pathway in CSCs[29,30]. Wnt is involved in the maintenance, prolif-
eration, apoptosis, and differentiation of intestinal tract stem cells and CSCs. In the intestine, after Wnt 
signal activation, the downstream β-catenin translocates into the nucleus and turns on the transcrip-
tional activity of important developmental-related genes such as c-Myc, Axin2, and Lgr5. These 
downstream factors are also involved in colorectal CSCs’ characteristics[31-33]. In CRC cells, this is often 
accompanied by abnormal Wnt signals. For example, adenomatous polyposis coli (APC) mutation 
leading to the excessive activation of Wnt signals has been considered the first step in tumor formation 
with CRC. In addition, in the population of colorectal CSCs, it has been found to have a high degree of 
Wnt activity. All these suggest that Wnt signaling is closely related to the origin of CRC.

Notch signaling is also enhanced in colorectal CSCs; its interaction with Wnt signaling is also 
considered to be an important message affecting tumor proliferation[34]. In addition, if the Notch signal 
were inhibited by the deletion or inhibition of γ-secretase inhibitors, this will lead to an increase in the 
level of Math1 that promotes stem cell differentiation and undermines the maintenance of stem cell 
populations[35]. On the other hand, BMP and Hh signals are more present in differentiated intestinal 
cells. Studies have pointed out that the Hh signal also antagonizes the Wnt signal and helps Gli-
dependent tumor cell differentiation[36].

The transforming growth factor (TGF)-β/BMP pathway has multiple roles in colorectal CSCs[30]. It 
inhibits Wnt messages to promote cancer stem cell differentiation and promotes Wnt messages to help 
tumor formation[37]. BMP signaling inhibits the stemness of Lgr5+ stem cells through Smad-mediated 
transcriptional repression[38]. In addition, it was found that knocking out GATA6-α zinc finger 
transcription factor that helps maintain Lgr5+ CSCs in adenomas - can up-regulate BMP signaling, 
thereby inhibiting the development of CRC. Knocking out GATA6 in vivo can up-regulate BMP 
signaling, thereby inhibiting the development of CRC[39]. Therefore, these signaling pathways are 
multiple mechanisms of stem cell regulation during the origin and development of CRC, which 
contributes to the development of therapeutic strategies required to treat CRC.

MIRNA
MiRNA is a small non-coding RNA molecule with 20-22 nucleotides (nt)[40]. After primary miRNA is 
initially transcribed, two splicing processes sequentially occur by Drosha and Dicer to generate 
precursor miRNA and mature miRNA. One of the two major functions of miRNA is translational 
repression, causing mRNA degradation through hybridization between the target mRNA and miRNA. 
In recent decades, numerous studies have reported that the expression of miRNA is dysregulated in 
malignancies as an oncogene or tumor-suppressor gene. For example, miR-21 as oncomir has been 
shown to be associated with poor prognosis and metastasis in patients with breast cancers[41,42]. In 
breast CSCs, diminished miRNA let-7 is required to maintain self-renewal ability and inhibit differen-
tiation[43]. In pancreatic cancer, miR-34a suppresses the expression of BCL2, Notch1, and Notch2, 
which are implicated in anti-apoptosis to maintain the tumor-initiating cell population[44]. 
Furthermore, MRX34, a liposomal miR-34 mimic, has already been evaluated in phase I clinical trials 
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against liver cancer[45]. Most studies about miRNA have focused on the regulation of transcription 
factors or abnormal copy numbers. However, the epigenetic regulation of miRNA in cancers has 
attracted more attention in the last decade[46]. Unraveling the regulatory mechanisms of cancer-
associated miRNA may provide a novel therapeutic strategy for cancers.

In the progression of CRC, regulatory miRNAs are also involved in the CRC stem cell population and 
many studies have also described the regulation of miRNA, which is involved in the network of the 
origin of CRC. Many current studies have found that certain miRNAs related to CRC stem cells mostly 
target certain important signaling pathways and molecules that maintain colorectal CSCs or cell surface 
markers, showing the cancer-inhibition function. Such miRNAs are often found in cancer. The amount 
of expression in the cells decreases. In contrast, some miRNAs that target tumor-suppressor genes will 
play an important role in the cancer process.

In previous studies, under the deficiency of Dicer - an important protein involved in the miRNA 
process - the expression of CD44 and Lgr5 will increase, as will the stem cell transcription factors Sox2 
and Nanog. This shows that some miRNAs are inhibitory molecules for CRC. Meanwhile, it will also 
affect the stem cell population in CRC cells and enhance the ability to initiate tumors and metastasis
[47]. At present, many studies have reported that miRNAs have been targeting stem cell genes or genes 
involved in the regulation of stem cell properties, which have led to the development of different CSC 
populations.

CRC stem cell surface markers
CRC stem cell markers such as CD44, CD133, and Lgr5 also participate in the physiological network 
regulation of many CSCs as the surface antigens of colorectal CSCs. For example, CD44 can participate 
in the Wnt/β-catenin signal to induce stem cell properties whether in breast cancer or CRC[33]. Lgr5 
belongs to the GPCR family and can identify stem cells in colonic epithelial cells. It is considered a 
negative modulator of the Wnt signal. A group found that miR-23b can distinguish malignant CRC from 
normal intestinal epithelium and the miR-23b added in CRC is expected to target the Lgr5 gene. In CRC, 
miR-23b promotes cell proliferation and the cell cycle and improves the self-renewal ability, thus 
affecting metastasis and drug resistance, which are closely related to the characteristics of CSCs. 
Furthermore, this also increased the aldehyde dehydrogenase (ALDH) + CSC population group[48]. 
CD24, a glycosylphosphatidylinositol-anchor protein, is considered a CRC stem cell marker and has 
been shown to increase cancer stem cell properties. Wang et al[49] reported that miR-1185-1 suppresses 
the expression of CD24 by targeting its 3’ untranslated region (3’UTR) and could be inhibited by SIRT1 
via histone deacetylation. Targeting SIRT1 by RNAi could increase the expression of miR-1185-1 and 
further repress CD24 translation and CRC stemness. Transmembrane-4-L-six-family-1 (TM4SF1), a cell 
surface antigen, is increased in various human epithelial carcinomas[50]. In CRC tumor tissues and cell 
lines, miR-30a is downregulated. Overexpression of miR-30a reduces migration and invasion in CRC 
cell lines. miR-30a could target TM4SF1, and it inhibits vascular endothelial-derived growth factor 
expression and enhances E-cadherin expression[51]. LRIG1, leucine-rich repeats and immunoglobulin-
like domains protein 1, is a type I single-transmembrane protein and an intestinal stem cell marker that 
functions as a tumor suppressor[52]. Viswanathan et al[53] found that miR-92a can target LRIG1 and 
promote the proliferation of HT29 CRC cells. miR-92a also promotes the tumorigenesis of CRC.

CRC stemness-related intracellular regulatory and transcription factors
Some miRNAs regulate important stemness transcription factors in CRC progress. SOX2 plays an 
important role in embryonic development and the formation of induced pluripotent stem cells[54]. 
SOX2 is also necessary to maintain CSC. A study found that miR-450a-5p can target the 3’UTR region to 
inhibit SOX2 expression in CRC. Therefore, SOX2-induced CSC properties and angiogenesis are 
inhibited. On the contrary, overexpression of SOX2 can rescue the inhibition brought by miR-450a-5p in 
vivo and in vitro. Kruppel-like factor 5 (KLF5) is a zinc-finger transcription factor of the KLF family. KLF 
family proteins play various roles in homeostasis and stem cell regulation[55]. The transcription factor 
YAP1 affects multiple signaling pathways in CRC cells. Ou’s[56] group has pointed out that miR-590-5p 
directly inhibits YAP1 in CRC cells and inhibits tumorigenesis. The miR-590-5p-YAP1 axis in CRC 
specimens is dysregulated and affects the survival of patients. GATA transcription factors comprise a 
family of zinc-finger proteins and play an essential role in embryo development[57]. In CRC cells, 
GATA6 is the direct target of miR-203. miR-203-overexpressing HCT-116 and HT-29 cells decrease self-
renewal ability and cancer stemness[58]. Spalt-like (SALL) transcription factor is an important 
transcription factor for self-renewal and pluripotency. A study showed that miR-3622a-3p is downreg-
ulated in CRC tissues and cells. miR-3362a-3p inhibits the malignant biological characteristics of CRC. 
miR-3622a-3p also inhibits the stemness and epithelial to mesenchymal transition (EMT) of CRC cells 
through SALL4 targeting. In tumor xenograft models and in vivo metastasis models, miR-3622a-3p can 
also inhibit the tumorigenesis and metastasis of CRC cells in vivo[59].

EMT is related to tumor metastasis and is considered one of the properties of CSCs. The EMT-related 
ZEB2 gene was verified as the binding target of miR-377. The expression of miR-377 was downregulated 
in colon cancer tissues and cell lines. Knockdown of miR-377 increases the number of ALDH+ cells and 
promotes the ability to form cancer spheres. Overexpression of ZEB2 could prevent the inhibition of 
miR-377 in cancer stem cell phenotypes, EMT, migration, and invasion[60]. Regulation of cytoskeleton 
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remodeling is a crucial process in cellular migration. Recently, miR-210-3p has been shown to target 
stathmin1, a microtubule destabilization regulator, to reduce cell elasticity without affecting EMT and 
upregulate the invasion ability of CRC stem cells[61]. Quaking (QKI) is a member of the signal 
transduction and activation of RNA protein family. QKI is highly conserved over different species and 
is important for normal development[62]. Studies have pointed out that miR-221 has high expression in 
EpCAM+/(CD44 + CRC stem cells). When miR-221 is overexpressed, it can promote the tumorigenesis 
of CRC by targeting the most abundant splicing isoform of the human QKI gene, QKI-5, in the CRC 
patient-derived xenograft model. In addition, overexpression of QKI-5 in CRC could inhibit the 
formation of cancer[63].

Hypoxia
Rapid cell division and abnormal blood vessel formation can be observed in tumor hypoxic areas. 
Hypoxia-inducible factors are also activated due to hypoxia, and they stimulate many transcription 
factors that control stem cell self-renewal and pluripotency, such as CSCs, which are also considered to 
play an important role[64]. Under hypoxic conditions, miR-34a targets and reduces the expression of 
PPP1R11, E3 ubiquitin-protein ligase, which activates signal transducer and activator of transcription 3 
(STAT3) by phosphorylation and inhibits metastasis to the liver[65]. Hypoxia can also upregulate miR-
215. miR-215 can target Lgr5 and affect the stemness of CRC stem cells[66].

Notch signaling
Transfer RNA-derived RNA fragments (tRFs) belong to a family of short noncoding RNAs and can be 
produced by multiple RNA enzymes and ribonuclease to regulate translation, similar to miRNAs[67]. A 
study found that a fragment derived from tRF/miR-1280, a 17-bp fragment derived from tRNALeu and 
pre-miRNA, affects Notch signaling. tRF/miR-1280 targets Notch ligand JAG2, which reduces the stem 
cell properties of CRC and inhibits the transcription of Gata1/3 and miR-200b genes[68]. Moreover, 
some tumor suppressor miRNAs are inhibited and promote the tumorigenesis of CRC. Cullin 4B 
(CUL4B) is considered an oncogene that promotes the development of many solid tumors. CUL4B 
drives the development and metastasis of colon cancer by maintaining cancer stem-like characteristics. 
The CUL4B and PRC2 complex synergistically inhibits the expression of miR-34a, a tumor suppressor 
miR that targets oncogenic MYCN and NOTCH1, to promote stem cell properties[69].

Wnt/β-catenin signaling
Wnt/β-catenin signaling is involved in the regulation of stem cells and tumorigenesis in several kinds of 
cancers[29,70]. Some positive regulatory miRs of Wnt/β-catenin signaling have also been addressed. 
The current study reported that miR-501-3p is overexpressed in colorectal tumor tissues. miR-501-3p 
targeted APC, a negative regulator of Wnt/β-catenin signaling. The downregulation of miR-501-3p in 
CRC cells inhibited tumor proliferation and sphere formation and induced cell cycle arrest at the G1 
phase. miR-501-3p promotes cancer stem cell properties through Wnt/β-catenin[71]. Many studies have 
also found that inflammation is related to tumor formation. Interleukin (IL)-6/STAT3 signaling is one of 
the important pathways induced by inflammation. Zhang et al[72] found that the activation of IL-
6/STAT3 can induce miR-92a expression in chemical-resistant CRC and tissues. miR-92a targets the 
negative factors KLF4, glycogen synthase kinase-3β, and Dickkopf 3 to upregulate Wnt/β-catenin 
signaling activity in CRC. Decreased levels of the miR-30-5p family have been reported in CRC patients 
and human CD133 + CRC cells. Overexpression of miR-30-5p inhibits the expression of stem cell 
markers CD133 and SOX2, spheroid formation, and cell proliferation by suppressing USP22/Wnt/β-
catenin signals[73]. CD133+ and Lgr5+ stem cells in the colon cancer cell lines HCT-116 and SW-480 
show high levels of miR-3120-5p. Overexpression of miR-3120-5p increases the CSC population and 
promotes the stemness and invasiveness of colon cancer cells by directly targeting Axin2[74]. Inhibition 
of the RCN2/Wnt/β-catenin pathway by miR-183-5p also inhibits the proliferation and invasion of CRC
[75]. On the other hand, negative regulator miRs of Wnt/β-catenin signaling play tumor suppressor 
roles in CRC. In SW1116 and SW480 CRC cells, overexpression of miR-302c weakens the proliferation, 
invasion, and migration capabilities of CRC stem cells. miR-302c binds to CARF and inhibits its 
expression. CARF has been shown to maintain the stemness of CSCs of CRC and to be a positive 
regulator of Wnt/β-catenin signaling[76,77].

TGF-β/Smad signaling
TGF-β/Smad signaling is involved in the regulation of many physiological processes in the body, 
including the regulation of CSCs. Through bioinformatics analysis and research, it was also found that 
miR-4666-3p and miR-329 target TGF-βR1 to prevent the activation of the TGF-β1/Smad pathway and 
act as tumor suppressor genes in quiescent CSCs, identified as a subgroup of colon cancer cells that are 
in a dormant state and have strong stem cell-like properties[78]. Recently, decreased levels of miR-147 
were found in colon cancer. Overexpressed miR-147 decreases the CRC stem cell markers such as OCT4, 
SOX2, and NANOG and inhibits EMT and the TGF-β/Smand pathway in HCT116 and SW480 colon 
cancer cells. Moreover, miR-147 downregulates the expression of β-catenin, c-myc, and survivin related 
to Wnt/β-catenin signaling[79].
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Figure 1 The role of regulatory micro RNAs of colorectal cancer stem cells in this article. TGF: Transforming growth factor; QKI: Quaking; EMT: 
Epithelial to mesenchymal transition; KLF: Kruppel-like factor; SALL: Spalt-like; tRF: Transfer RNA-derived RNA fragments.

Cellular response and process
Golgi fragmentation of cancer cells is one of the new chemotherapy strategies. This phenomenon is 
affected by the Golgi phosphoprotein-3 (GOLPH3)/Myo18A/F-actin axis. Núñez-Olvera et al[80] found 
that miR-3135b overexpression attenuates Golgi fragmentation induced by chemotherapy drugs in CRC 
cells and that miR-3135b targets the 3’UTR of the GOLPH3 proto-oncogene. Moreover, they noted that 
overexpression of miR-3135b in HCT-15 cancer cells can significantly inhibit cell proliferation, increase 
sensitivity to 5-fluorouracil lysis, and promote late cell degradation and necrosis. They also indicated 
that miR-3135b reduces the phosphorylation level of p-AKT1 (Ser473) and p-mTOR (Ser2448) and 
activates the autophagy and stemness of CRC. Many studies have indicated that the expression of some 
miRs in CSCs decreases, and the forced expression of these miRs can inhibit the characteristics of CSCs. 
For example, the expression of miR-194 in CRC stem cells decreases. Overexpression of miR-194 can 
cause G1/S transition, induce cell apoptosis, and inhibit the malignant behavior of CRC stem cells[81]. 
Pisano et al[82] found that miR-486-5p was downregulated in CRC stem cells. Overexpression of miR-
486-5p can also inhibit stem cell characteristics. miR-133b was found to be downregulated in the 
colorectal spheroids, a model to enrich CSCs. Overexpression of miR-133b inhibits the stemness and 
chemoresistance of CRC. This study also found that miR-133b affected the DOT1L-mediated 
modification of H3K79me2 and the transcription of stem cell-related genes (Figure 1)[83].

Many miRs are involved in the regulation of the fate of CRC stem cells and affect the prognosis of 
CRC. At present, high-throughput next-generation sequencing is used to screen these miRs. In addition, 
it can also be predicted by miR-targeting sequences of genes that regulate CSC-related genes and 
signaling pathways. The information of the tumor suppressor miR may be used to develop a nucleic 
acid biosimilar drug for the treatment of CRC. These findings are quite helpful for the development of 
new drugs.

LNCRNAS
LncRNAs comprise various RNA species longer than 200 nt, lack protein-coding ability, and are 
involved in regulation of genes expression and regulate diverse functions. There are many different 
structure forms of lncRNA, such as mRNA-like gene transcripts (lincRNA), covalently closed circular 



Chao HM et al. Regulatory RNAs in CRC stem cells

WJGO https://www.wjgnet.com 754 April 15, 2022 Volume 14 Issue 4

Figure 2 The functions of long non-coding RNAs. lncRNAs: Long-non coding RNAs; miRNA: MicroRNA.

Figure 3 The functions of circular RNAs. miRNA: MicroRNA; ciRNA: Circular intronic RNA; EIciRNA: Exon-intron circular RNA; ecircRNA: Exonic circular 
RNA.

structures, antisense transcripts that inhibit gene expression, and A-U triple-helix structure of 
unconventional lincRNA modified by RNase P[84], which participate in global cellular behavior 
through different modifications and complexes with different molecules to control cell death and cell 
growth. LncRNAs control nuclear architecture and transcription in the nucleus. On the other hand, 
cytoplasmic lncRNAs regulate mRNA stability, affect translation, and act as miRNA sponges, 
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Figure 4 The role of regulatory long-non coding RNAs and circular RNAs of colorectal cancer stem cells in this article. lncRNA: Long-non 
coding RNAs; circRNA: Circular RNA; lnc-DILC: LncRNA downregulation in liver cancer stem cells; CSC: Cancer stem cell.

translation, and post-translational modifications[85]. Nowadays, over 170000 human lncRNA 
transcripts have already been identified; however, the mechanisms and the functions of most lncRNA 
are still unclear[86].

In nuclei, lncRNAs can regulate chromosome architecture and regulate genome organization at 
different statuses, such as imprinting. In females, X-chromosome inactivation (XCI) occurs to silence an 
X chromosome during embryonic development. XCI-induced gene silencing is initiated by the Xist 
lncRNA[87]. LncRNAs play an important role in gene regulation. They regulate gene expression in cis 
proximal transcription sites or trans distant transcription sites. LncRNA can form an R loop structure 
with transcription factors to form a complex and regulate transcription at the target gene locus[88]. 
Some lncRNAs serve as scaffold-like structure of RNA-protein interaction in nuclear bodies[89].

In cytoplasm, lncRNAs can control the stability of mRNA by regulating miRNA through competitive 
endogenous RNA that functions like a miRNA sponge. In addition, it has recently been reported that 
lncRNAs related to ribosomes can regulate translation. For example, MALAT1 interacts with ribosomes 
to regulate translation[90]. LncRNA also regulates post-translational modifications, such as regulating 
the phosphorylation of STAT3 and controlling the differentiation of human dendritic cells[91]. At 
present, many lncRNAs have been reported to be involved in tumor formation or to play a role in tumor 
suppression. C9orf139 is highly expressed in pancreatic cancer and serves as a prognostic marker for 
pancreatic cancer[92], HOXD-AS2 and LINC00511 promote gastric cancer[93,94]. In addition, 
LINC02532 promotes gastric cancer progression, migration, and invasion in Figure 2[95].

LncRNAs in CRC
Recent studies have pointed out that in CRC stem cells, lncRNA is also involved in many regulatory 
functions in transcription, translation, and signaling transductions. LncRNAs can play positive or 
negative roles for stem cell properties in CRC. Therefore, the lncRNA in CRC stem cells has the potential 
to become a target for CRC diagnosis and treatment.

Positive regulator of stem cell properties in CRC
Recently, many studies have found many lncRNAs that promote CSCs properties. These lncRNAs also 
relate to CRC prognosis. Guo et al[96] found that lncRNA1106 is highly expressed in colon adenocar-
cinoma and induces the proliferation, migration, and stem cell properties of CRC cells. Cytoplasmic 
lncRNA1106 can be used as miR-449b-5p sponge. The gene lncRNA1106 positively regulates Gli4 in 
CRC cells. In addition, Gli2 also induces lncRNA1106 expression up-regulation. The lncRNA1106-Gli 
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network plays an important role in CRC stem cells. LINC-RoR can induce many stem cell properties in 
many tumors. Li et al[97] found that LINC-RoR was up-regulated in CRC cell lines. Overexpression of 
LINC-RoR promotes cell proliferation, and its inhibition can reverse this effect in vitro. Fuortes et al[98] 
reported that GAS5 was associated with malignant features in HCT116-derived CSCs. Knockdown 
GAS5 significantly suppressed CSC self-renewal capacity, proliferation, drug resistant, stemness, and 
migration. Methyltransferase WBSCR22 is considered as a tumor promoter in CRC. WBSCR22 was 
negatively regulated by miR-509-5p. Zhao et al[99] reported that Linc00346 promotes the expression of 
WBSCR22 by adsorbing miR-509-5p, a WBSCR22 negative regulator. The Linc00346/miR-509-
5p/WBSCR22 signal axis promotes the stemness of colon cancer.

Using bioinformatic analysis, Zhou et al[100] identified a novel lncRNA (lncRNA-cCSC1) that is 
highly expressed in CRC and colorectal CSCs. LncRNA-cCSC1 promotes the self-renewal capacity of the 
CRCSCs. Their study indicates that lncRNA-cCSC1 may regulate CSC-like properties via the Hh 
signaling pathway. Besides, lnc273-31 or lnc273-34 depletion inhibits CRC migration, invasion, cancer 
stem cell self-renewal and chemoresistance in p53-R273H mutation cells[101]. In addition, high 
expressions of LINC00525 are observed in CRC patients with poor prognosis. Wang et al[102] found that 
LINC00525 knockdown decreased stemness properties and tumorigenesis via miR-507, which is the 
direct target of LINC00525. LncRNA portal vein thrombosis (PVT)1-214 is a key regulator of CRC 
development and progression. Overexpression of PVT1-214 can upregulate Lin28 protein in CRC cells 
and serves as a critical role of CRC pathogenesis[103]. LncTCF7 can activate the Wnt/β-catenin 
signaling pathway. Knocking down lncTCF7 in CRC cells decreased cancer cell progression[104]. Chen 
et al[105]’s study shows that lncRNA up-regulated in CRC liver metastasis (UICLM) was significantly 
up-regulated in liver metastasis-CRC. UICLM acted as a ceRNA for miR-215 to regulate ZEB2 
expression and promote metastasis. Yu et al[106] also found an lncRNA: LOCCS was obviously 
upregulated in colon CD133+/CD166+/CD44+ CSCs. Knockdown of LOCCS reduced cell proliferation, 
invasion, migration, and tumorigenesis in vivo. Recently, lncRNA KLK8 has been reported that was 
upregulated and positively correlated with the stemness gene in CRC[107]. Wu et al[108] found that 
lncRNA SLCO4A1-AS1 could bind with miR-150-3p to elevate the expression of SLCO4A1 and the 
stemness of CRC.

Negative regulator of stem cell properties in CRC
Some lncRNAs that inhibit the properties of stem cells tend to have lower expression in CRC than 
normal colorectal cells. Overexpression of these lncRNAs can also inhibit tumor progression. LncRNA 
downregulation in liver CSCs (lnc-DILC) is a tumor suppressor in CRC. Li et al[109] found that lnc-
DILC expression was downregulated in CRC tissues of human patients. Down-regulation of lnc-DILC 
increase aggressive of clinical characteristics. According their clinical study, lnc-DILC could be a 
diagnostic and prognostic marker in CRC. Besides, Liu et al[110] found an lncRNA (AC105461.1) is 
related to cancer stem cell properties. AC105461.1 overexpression reduced the percentage of 
CD133+CD44+ CRC stem cells, whereas its knockdown increased the population of CD133+CD44+ CRC 
stem cells (Figure 2).

CIRCRNAS
CircRNAs are circular noncoding RNAs (ncRNAs). This type of ncRNA was discovered in early 1990. 
Recently, using RNA-sequencing technology, researchers have found a large number of novel circRNAs 
in mammalian cells; however, the function of circRNAs is still unclear. Regarding the biogenesis, 
circRNA can be formed in the following ways: Exon reverse splicing into loops (exonic circRNA, 
ecircRNA), intron-preserving transcript reverse splicing (exon-intron circRNA, eIcircRNA), and intron 
reverse complementary pairing (circular intronic RNA, ciRNA). According to a report, the precursor 
tRNA can be cut into a ring to form tricRNA (tRNA intronic circRNA)[111]. CircRNA can regulate many 
biological functions. CircRNA can act as an antagonist of miRNA sponge to regulate miRNA. Therefore, 
it is possible to control gene expression by competing miRNA. CircRNA has also been found to form 
complexes with proteins to regulate physiological functions together. Although circRNA is considered 
to be ncRNA, a previous study found that ribosome binding to the stop codon of circMBL was identified 
in the brain tissue of Drosophila, and the circRNA translation protein products were obtained by protein 
profiling. This result also confirms that circRNA may be like mRNA, which can translate protein 
functions[112]. (Figure 3)

In a study of PML/RARα in leukemia, two fusion circRNAs (f-circRNA) were found in its 
chromosomal translocation. Further in vivo experiments showed that the f-circRNA can promote tumor 
growth. Several recent studies have shown that abnormal expression of circRNA occurs in almost all 
types of cancer. CircRNA can be an oncogene or a tumor suppressor gene, and it is involved in tumori-
genesis of cancer[113].

CircRNAs in CRC stem cells
Currently, many scientists are interested in circRNAs involved in CRC stem cells. Understanding the 
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Table 1 Non-coding RNAs in colorectal cancer

Gene Molucular mechanism in CRC Molecular targets and interacts in CRC Ref.
MicroRNAs

CRC stemness-related intracellular 
regulatory and transcription factors

MiR-1185-1 Inhibits tumor suppressor CD24 [49]

MiR-30a Reduces migration and invasion Transmembrane-4-L-six-family-1 [51]

MiR-92a Promotes the proliferation Leucine-rich repeats and immunoglobulin-
like domains protein 1

[53]

MiR-450a-5p Inhibits CSC properties and angiogenesis SOX2 [55]

MiR-590-5p Inhibits tumorigenesis YAP1 [56]

MiR-203 Inhibits self-renewal ability and cancer stemness GATA6 [58]

MiR-3622a-3p Inhibits the stemness and epithelial to 
mesenchymal transition

SALL4 [59]

MiR-210-3p Upregulates the invasion ability Stathmin1 [61]

MiR-221 Promotes the tumorigenesis Quaking [63]

Hypoxia signaling

MiR-34a Promotes metastasis PPP1R11 [65]

MiR-215 Inhibit stemness Lgr-5 [66]

Notch signaling

MiR-1280 Reduces stemness JAG2 [68]

Wnt/β-catenin signaling

MiR-501-3p Promotes tumor proliferation and stemness APC [71]

MiR-92a Increases chPPemical-resistant KLF4, GSK3β, and DKK3 [72]

MiR-30-5p Reduces stemness CD133 and SOX2 [73]

MiR-3120-5p Increases the CSC population and promotes the 
stemness and invasiveness

Axin2 [74]

MiR-302c Reduces stemness CARF [77]

TGF-β/Smad pathway

MiR-4666-3p Tumor suppressor genes in quiescent CSCs TGF-βR1 [78]

MiR-329 Tumor suppressor genes in quiescent CSCs TGF-βR1 [78]

Cellular response and process

MiR-3135b Inhibits cell proliferation, increase sensitivity to 5-
fluorouracil lysis, and promote late cell degradation 
and necrosis

GOLPH3 [80]

MiR-194 Induces cell apoptosis NA [81]

MiR-486-5p Inhibits stem cell characteristics NA [82]

MiR-133b Inhibits the stemness and chemoresistance of CRC NA [83]

Long noncoding RNAs

Positive regulator

LncRNA1106 Induces the proliferation, migration, and stem cell 
properties

MiR-449b-5p sponge, Gli4 [96]

LINC-RoR Induces stem cell properties NA [97]

GAS5 Promotes CSC self-renewal capacity, proliferation, 
drug resistant, stemness, and migration

NA [98]

Linc00346 Promotes the stemness MiR-509-5p sponge, WBSCR22 [99]

LncRNA-cCSC1 Promotes the self-renewal capacity Hh signaling pathway [100]
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Lnc273-31 Promotes migration, invasion, cancer stem cell self-
renewal and chemoresistanc

NA [101]

Lnc273-34 Promotes migration, invasion, cancer stem cell self-
renewal and chemoresistanc

NA [101]

LINC00525 Increase stemness properties and tumorigenesis MiR-507 [102]

LncRNA PVT1-214 Promotes CRC progression Lin28 [103]

LncTCF7 Promotes CRC progression Wnt signaling [104]

LncRNA UICLM Promotes metastasis ceRNA for miR-215 [105]

LncRNA: LOCCS Promotes cell proliferation, invasion, migration, 
and tumorigenesis

NA [106]

LncRNA KLK8 Increases stemness NA [107]

LncRNA SLCO4A1-AS1 Promote stemness MiR-150-3p sponge [108]

Negative regulator

Lnc-DILC Reduces aggressive of clinical characteristics NA [109]

LncRNA (AC105461.1) Reduces stemness NA [110]

Circular RNAs

Hsa_circ_0066631 High expression in CRC spheroid cells, associated 
with the stemness-associated signaling pathway 
network

MiRNA sponge: MiR-140-3p, miR-224, miR-
382, miR-548c-3p, and miR-579

[114]

Hsa_circ_0082096 High expression in CRC spheroid cells, associated 
with the stemness-associated signaling pathway 
network

MiRNA sponge: MiR-140-3p, miR-224, miR-
382, miR-548c-3p, and miR-579

[114]

Circ_001680 Enhances the proliferation and migration capacity MiR-340 [115]

Circular RNA (circCTIC1) Promotes stemness and triggers the transcriptional 
initiation of c-Myc

Nuclear remodeling factor complex [116]

TGF: Transforming growth factor; KLF: Kruppel-like factor; SALL: Spalt-like; Lnc-DILC: LncRNA downregulation in liver cancer stem cells; CRC: 
Colorectal cancer; miRNA: MicroRNA; LncRNA: Long-non coding RNA; CSC: Cancer stem cell; UICLM: Up-regulated in colorectal cancer liver metastasis; 
PVT: Portal vein thrombosis; Hh: Hedgehog; GSK: Glycogen synthase kinase; TGF: Transforming growth factor; APC: Adenomatous polyposis coli; KLF: 
Krüppel-like factor; DKK: Dickkopf.

roles of these circRNAs can help to elucidate CRC tumorigenesis. High-throughput next-generation 
sequencing and bioinformatics methods can be good tools to find novel circRNAs. Recently, 
Rengganaten et al[114] used genome-wide sequencing to identify 1503 and 636 circRNAs specific to the 
CRC parental and spheroid cells (enriched CSCs), respectively. They found that the expression levels of 
circRNAs, has_circ_0066631 and hsa_circ_0082096, in a circRNA-miRNA-mRNA axis associated with 
the stemness-associated signaling pathway network, were significantly upregulated in the spheroid 
cells. The two circRNAs, as miRNA sponge, were found to target and downregulate CRC stemness 
miRs, miR-140-3p, miR-224, miR-382, miR-548c-3p, and miR-579. Moreover, circ_001680 was observed 
to enhance the proliferation and migration capacity of CRC cells. Bioinformatics analysis data from Jian 
et al[115] also reveals that circ_001680 affects the expression of stemness gene BMI1 by targeting miR-
340. From the results of in vivo and in vitro experiments, circ_001680 could promote the CSC population 
in CRC.

CircRNA also affects CRC stemness via circRNA-mediated genome modeling to regulate gene 
transcription. Zhan et al[116] found that circular RNA (circCTIC1) was highly expressed in colon tumor 
and CRC stem cells and promoted the self-renewal of CRC stem cells. CircCTIC1 interacted with the 
nuclear remodeling factor complex on the c-Myc promoter and triggered the transcriptional initiation of 
c-Myc (Figure 4).

CLINICAL CHALLENGES AND PROSPECTION
CSCs are considered to be the origin of cancer and are also related to cancer progression. Recently, CSCs 
have become the therapeutic target cells for cancer. According to the clinicaltrials.gov database, CRC 
stem cells were also clinically evaluated (NCT01577511) to identify their invasive capacity in CRC. 
Reducing the stemness of cancer to increase the sensitivity of chemotherapy could be a useful strategy 
for cancer treatment. For example, inducing CSCs to differentiate and then combining treatment with 
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traditional chemotherapeutics will also help eliminate cancer tissues. Therefore, elucidating the 
molecular mechanisms that regulate cell stemness in CSCs is an important issue. In recent years, many 
reports have shown that ncRNA plays various roles in CRC stem cells and affects the fate of CSCs. 
These ncRNAs affect the functions of CRC stem cells and further affect the progress of CRC. Thus, 
characterizing the regulatory mechanism of ncRNA will provide new strategies for cancer treatment. 
Among ncRNAs, miRNA is the most widely used clinically. MiRNA profiles of different cancer types 
may be used as diagnostic biomarkers. Tumor suppressor miRNAs have the potential to become RNA 
biosimilar drugs. So far, in the clinicaltrials.gov database, clinical research has begun on a number of 
miRNA biomarkers. Some of this research focuses on assessing the progress of diseases, including 
diabetes, breast cancer, etc. In the case of NCT03362684, the performance of miRNA’s miR-31-3p and 
miR-31-5p was used for the diagnosis and prognosis evaluation of anti-EGFR therapy in stage III Colon 
Cancer.

For treatment using RNA, the first small interfering RNA (siRNA), patisiran, was approved by the 
Food and Drug Administration (FDA) in 2018. This drug is used for rare polyneuropathy mediated by 
hereditary transthyretin (hATTR) caused by amyloidosis. Later, givosiran and lumasiran were approved 
by the FDA as siRNA drugs to treat hATTR-mediated amyloidosis and primary hyperoxaluria type 1, 
respectively. However, there are no approved drugs for miRNA.

Nevertheless, in different cancers, there are still many pharmaceutical companies that are developing 
miRNA mimics or anti-miRNA drugs and starting clinical testing. For example, miRagen Therapeutics 
Inc. developed MRG-106 (an inhibitor of miRNA-155), MRG-201 (a synthetic miRNA mimic to miRNA-
29b), and MRG-110 (a synthetic miRNA inhibitor of miRNA-92). The MRX34 developed by Mirna 
Therapeutics Inc. for liver cancer has entered a phase 1 clinical trial. SantarisPharma’s inhibitor, 
miravirsen (SPC3649), which was developed for miR-122, has also entered clinical testing. These tests all 
show that miRNA has the opportunity to become a potential drug for cancer treatment. In addition, in 
the current clinical trials’ cases, lncRNA and circRNA still only serve as biomarkers of diseases. For 
example, in the report of clinical test NCT042697462, lncRNA CCAT1 was also used as a biomarker for 
the diagnosis and stage determination of CRC.

At present, ncRNAs are used as a biomarker for diagnosing diseases in most clinical trials. ncRNAs 
have multi-target genes and widely regulate cellular function, which are their advantages as a 
therapeutic drug. However, these complex and unclear functions also become challenges in the drug 
development. For carcinogenic ncRNA, the delivery of anti-ncRNA or siRNA may be a good strategy 
for cancer treatment, but the side effect issues of off-targeting and the effects on the expression of other 
genes must also be considered. In addition, a safe, high efficiency and highly specific gene delivery 
system of tumor suppressor ncRNA to target cancer cells is also a challenge for ncRNA drug applic-
ations. Despite these challenges, the understanding of the function of ncRNA in the cancer could 
provide new treatment targets and strategies for cancer treatment.

CONCLUSION
CRC is a common disease with high morbidity and fatality rates worldwide. Cancer targeted therapies 
have become an emerging and urgent topic in cancer research. CSCs are considered the new targets of 
cancer therapies. CRC stem cells are involved in the malignancy of CRC, such as proliferation, drug 
resistance, and metastasis; ncRNA research on CRC stem cells is also a current focus. With the 
advancement of bioinformatics and high-throughput RNA-sequencing technology, the role of ncRNAs 
in CRC stem cells has been revealed. These ncRNAs are involved in the fate of CSCs and affect tumor 
development (Table 1). Understanding the role of ncRNAs in oncogenes or tumor suppressors in CRC 
stem cells will improve CRC diagnosis, treatment, and new drug development.
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