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Abstract
Hepatocellular carcinoma (HCC) constitutes the fifth most frequent malignancy 
worldwide and the third most frequent cause of cancer-related deaths. Currently, 
treatment selection is based on the stage of the disease. Emerging fields such as 
three-dimensional (3D) printing, 3D bioprinting, artificial intelligence (AI), and 
machine learning (ML) could lead to evidence-based, individualized management 
of HCC. In this review, we comprehensively report the current applications of 3D 
printing, 3D bioprinting, and AI/ML-based models in HCC management; we 
outline the significant challenges to the broad use of these novel technologies in 
the clinical setting with the goal of identifying means to overcome them, and 
finally, we discuss the opportunities that arise from these applications. Notably, 
regarding 3D printing and bioprinting-related challenges, we elaborate on cost 
and cost-effectiveness, cell sourcing, cell viability, safety, accessibility, regulation, 
and legal and ethical concerns. Similarly, regarding AI/ML-related challenges, we 
elaborate on intellectual property, liability, intrinsic biases, data protection, 
cybersecurity, ethical challenges, and transparency. Our findings show that AI 
and 3D printing applications in HCC management and healthcare, in general, are 
steadily expanding; thus, these technologies will be integrated into the clinical 
setting sooner or later. Therefore, we believe that physicians need to become 
familiar with these technologies and prepare to engage with them constructively.

Key Words: Artificial intelligence; Machine learning; Three-dimensional printing; 
Bioprinting; Hepatocellular carcinoma; Liver cancer
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Core Tip: The opportunities that arise from the application of three-dimensional (3D) printing and 3D 
bioprinting in the management of hepatocellular carcinoma (HCC) include resident education, patient 
education, preoperative planning, fabrication of custom-made medical tools, liver models for antitumor 
drug development, and patient-derived HCC models for targeted treatment selection. Similarly, the 
opportunities that arise from the application of artificial intelligence/machine learning in the management 
of HCC include targeted screening for patients with chronic hepatitis B and C infections, non-invasive 
early detection of HCC, increased diagnostic accuracy, frameworks for evidence-based, individualized 
treatment allocation, and prognostic models for the prediction of patient outcomes including overall 
survival, disease-free survival, and recurrence that could be used for patient and family counseling.

Citation: Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management 
of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14(4): 765-793
URL: https://www.wjgnet.com/1948-5204/full/v14/i4/765.htm
DOI: https://dx.doi.org/10.4251/wjgo.v14.i4.765

INTRODUCTION
Hepatocellular carcinoma (HCC) constitutes the fifth most frequent malignancy worldwide and the 
third most frequent cause of cancer-related deaths[1]. The factors that predispose to HCC development 
include chronic infection with hepatitis B virus (HBV) and hepatitis C virus (HCV), alcohol, metabolic 
liver disease, and exposure to different toxins[2]. Currently, the diagnosis of HCC is mainly based on 
multiphasic computed tomography (CT) and magnetic resonance imaging (MRI), whose findings are 
standardized based on the Liver Reporting and Data System (LI-RADS) developed by the American 
College of Radiology[3,4]. The cornerstone of treatment selection for HCC patients is the stage of the 
disease. The most prominent staging system acknowledged in United States and EU guidelines is the 
Barcelona Clinic Liver Cancer (BCLC) classification system[3,5]. Liver transplantation, hepatic resection, 
and ablative techniques are recommended for the very early and early stages of the disease, while 
transarterial chemoembolization (TACE) and oral sorafenib are recommended for the intermediate and 
advanced stages of the disease, respectively[5,6]. While the BCLC classification is generally accepted, 
teams report the need for an individualized approach in HCC management[7,8]. Emerging fields such 
as three-dimensional (3D) printing, artificial intelligence (AI), machine learning (ML), and novel 
biomarkers that allow the classification of HCC at a molecular level could facilitate our efforts to reach 
individualized treatment in HCC management.

3D printing is defined as the “translation” of a computer-generated image into a 3D solid object. It 
involves the use of materials, which are printed into consecutive thin layers[9]. Despite originally 
emerging from non-medical disciplines to serve the demand of rapid engineering of design prototypes, 
3D printing has, since then, found extensive applications in medicine, including education and training, 
simulation, anatomical comprehension, surgical planning, surgical tools, and patient counseling[9,10]. 
From the combination of 3D printing and tissue engineering the field of bioprinting has emerged[11]. 
Bioprinting uses 3D printing-based methods to utilize biomaterials, growth factors, and cells for 
fabricating biomedical parts with a complex and precise internal and external structure that ultimately 
imitates natural tissue characteristics[12,13]. Notably, the concept of bioprinting functional organs and 
tissues could ameliorate the consequences of the current imbalance between the supply and demand of 
organs for transplantation.

AI is an umbrella term that describes any application where tasks typically associated with human 
intelligence are conducted by computer systems instead[14,15]. AI is a cluster of interrelated fields with 
a core aspect in common; they are all driven by computing power and Big Data advancements. In 
healthcare, the field of AI and ML, has profound applications. ML models could be described as models 
educated from past data to predict future data[16]. In the past decade, the healthcare industry has been 
established as a data-rich science, with a profound increase in the amount of generated data each year, 
with data becoming an omnipresent concept[17]. These extensive repositories of data could not be 
managed by traditional software. AI promises to analyze them and turn them into meaningful insights. 
The management of HCC is a fruitful field for AI application since it generates enormous amounts of 
data, including clinical data, histopathologic images, gene sequencing, long-non coding RNA and 
microRNA expression profiling, ultrasound (US) imaging, CT imaging, and MRI.

In this study, we aim to comprehensively review the applications of 3D printing and AI in HCC 
management, present the opportunities that arise from these applications, and finally identify the 
current challenges of integrating these technologies into the healthcare system to identify means to 
overcome them.

https://www.wjgnet.com/1948-5204/full/v14/i4/765.htm
https://dx.doi.org/10.4251/wjgo.v14.i4.765
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SEARCH STRATEGY
We conducted a literature review of the Scopus, Cochrane, and Medline databases using the following 
algorithms or queries: (1) [(3D printing OR 3D printing OR three-dimensional printing OR rapid 
prototyping OR additive manufacturing) AND (hepatocellular carcinoma OR liver cancer OR hepatic 
cancer OR HCC)]; and (2) [(machine learning OR artificial intelligence OR support vector machine OR 
neural networks OR deep learning OR computer-aided OR computer-assisted) AND (hepatocellular 
carcinoma OR liver cancer OR hepatic cancer OR HCC)]. The two authors (Christou CD, Tsoulfas G) 
reviewed the articles for eligibility independently, and any disagreements were resolved through 
discussion between them. Finally, the authors similarly reviewed the reference lists of eligible articles to 
identify further eligible articles, books, and other forms of publication. Publications written in any other 
language other than English were excluded. Publications of abstracts were also excluded. In addition, 
animal studies and studies conducted with animal cells were also excluded. The literature review was 
completed on March 30, 2021.

APPLICATIONS OF 3D PRINTING AND BIOPRINTING IN HCC MANAGEMENT
3D printing
In liver surgery, 3D printing could be used for educational purposes and preoperative planning. 
Regarding education, 3D printed models enhance physicians’ knowledge base at all levels of expertise. 
New residents can become familiar with the complex liver anatomy, build confidence, and thus be more 
efficient surgical team members[18-20]. Specifically, in a study where forty-five residents were trained 
by: (1) Images from multi-detector CT; (2) A virtual 3D reconstruction model; and (3) A 3D printed 
model, residents in the latter group assessed and assigned tumor location faster and more precisely[21]. 
3D printed models have been employed for educational purposes in choledochal and hepatobiliary 
laparoscopic operations[22,23]. Also, 3D printed models could be used in patient education to help the 
patients reach a higher understanding of their disease and the proposed procedure, thus enhancing 
communication and trust, increasing cooperation, and facilitating obtaining informed consent[20]. In 
liver transplantation, 3D printed models could be used from living donors to facilitate the donors’ 
understanding of the procedure and its risks. Focusing on educational use for HCC, Streba et al[24] 
developed ten personalized 3D liver models of patients with HCC, which were given to a group of 
medical students and residents to interact with. The vast majority of the participants agreed that the 
models were easy to interact with and valuable in gaining further knowledge about specific aspects of 
tumor morphology[24]. However, a significant number of the participants did not find the models’ 
weight as expected, and the majority agreed that the models’ texture was different to their expectation
[24].

Regarding preoperative planning, in 2013, Zein et al[25] in a study investigating the role of 3D 
printing in liver transplantation, produced six 3D printed liver models, three of living donors and three 
of their respective recipients. The study aimed to produce models of volumetric accuracy and 
anatomical precision that could unveil any unsuitable anatomy between the donors and the recipients, 
particularly regarding the vascular and biliary tract of the liver[25]. The authors reported a mean 
dimensional error for the entire model of less than 4 mm and less than 1.3 cm for the vascular diameters
[25]. Similarly, other studies have used 3D printed liver models as part of the preoperative planning of 
major or complex hepatic resections[26-30].

Focusing on HCC preoperative planning, Xiang et al[31] reported the case of a patient with HCC and 
rare variations of the abdominal blood vessels, particularly the portal vein, for whom 3D printed models 
were constructed to aid the preoperative planning. Notably, the model helped the physicians decide 
between two different surgical plans, performing, consequently, a hepatectomy with the highest 
residual volume[31]. In a different study, Perica et al[32] developed a four-stage production process (CT 
data acquisition, image segmentation, image data editing, and 3D printing) to construct a scaled-down 
3D printed liver model of a patient with HCC. In a questionnaire given to radiologists, the 3D models 
were perceived as having a minimal value in diagnostic radiology, while for surgeons, the 3D models 
were found to be valuable in preoperative surgical planning[32]. Kuroda et al[33] reported two patients 
with HCC for whom 3D printed models were used to delineate intrahepatic vessels to facilitate 
preoperative planning. In the first case, the 3D printed model was used to identify the regional 
Glissonian pedicle, while in the second, to reveal the diverging pattern of the dorsal and ventral 
branches of the intrahepatic vessels of the anterior section[33]. Regarding laparoscopic liver resections, 
Witowski et al[34] proposed in a recent study a 3D printing-based decision-making system for 
preoperative planning of laparoscopic hepatic resection performed with intraoperative US guidance. 
The protocol was implemented in nineteen patients, including four patients with HCC[34]. Information 
from the 3D printed models changed the initially planned surgical approach in 26% of cases[34].

Besides educational purposes and preoperative planning, 3D printed models have applications in the 
diagnosis and treatment of HCC. Regarding diagnosis, Damiati et al[35] developed a hybrid 3D printed 
electrochemical biosensor that could detect liver cancer using immunochemistry. 3D printed capillary 
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Table 1 Artificial intelligence applications in the prevention of hepatocellular carcinoma

First 
author Parameters employed AI 

classifier
Sizes of the 
training/validation sets Outcomes Performance Ref.

1 Wang J Genetic and epigenetic 
biomarkers

Several 137 HCC and 431 non-HCC 
patients

HCC screening 0.910-0.9501,2, 0.897-0.9381,3, 
75.0-91.52,4, 66.4-90.63,4, 1.0-88.8
2,5, 0.5-87.93,5

[47]

2 Nam JY Laboratory results, 
clinicopathological 
parameters

DNN 424/3163 patients HCC 
development in 
HBV cirrhosis

0.7191,2, 0.7821,3 [48]

3 Xia Q Long non-coding RNAs Several 38 healthy samples, 45 chronic 
HBV patients, 46 liver cirrhosis, 
and 46 HCC patients

HCC 
development in 
HBV cirrhosis

71.1-89.53,6 [49]

4 Chen S HBV reverse transcriptase 
gene sequencing

RF, SVM, 
KNN

307 chronic HBV patients 
(202/105), 237 HCC patients 
(159/78)

HCC 
development in 
HBV cirrhosis

RF: 0.902-0.9031,2, 0.903-0.9431,3, 
SVM: 0.879-0.9241,2, 0.727-
0.8581,3, KNN: 0.680-0.7371,2, 
0.734-0.7471,3

[50]

5 Hashem S Laboratory results, 
clinicopathological 
parameters

Several 3099 chronic HCV patients1324 
HCC patients

HCC 
development in 
HCV cirrhosis

93.2-95.63,6, 0.955-0.9901,3, 86.3-
91.83,4, 93.9-97.33,5

[51]

6 Audureau 
E

Laboratory results, 
clinicopathological 
parameters

Several 836/6687 HCC 
development in 
HCV cirrhosis

0.633-0.8071,2, 0.623-0.7151,7 [52]

7 Ioannou 
GN

Clinical/laboratory data 
extracted directly from 
electronic health records

DNN 48151 patients with HCV-related 
cirrhosis (training:test = 9:1)

HCC 
development in 
HCV cirrhosis

0.759-0.8061,3 [53]

8 Singal AG Laboratory results, 
clinicopathological 
parameters

RF 442/10507 HCC 
development in 
cirrhosis

0.711,2, 0.641,7 [54]

1Area under the receiver operating curve or c-index.
2Training.
3Internal validation.
4Sensitivity (%).
5Specificity (%).
6Accuracy (%).
7External validation/testing.
CCA: Cholangiocarcinoma; CNN: Convolutional neural network; CT: Computed tomography; DNN: Deep neural network; HBV: Hepatitis B virus; HCC: 
Hepatocellular carcinoma; HCV: Hepatitis C virus; KNN: K-nearest neighbor; RF: Random forest; SVM: Support vector machine; WSI: Whole-slide image.

channels were used to efficiently guide and constrain the sample containing cells of a human HCC cell 
line (HepG2)[35]. This study demonstrates how the combination of traditionally fabricated parts and 3D 
printed parts could enable the use of optimal materials for the model’s various components. In a 
different study, Joo et al[36] used enhanced MRI scans of twenty patients with multiple focal liver 
lesions, including patients with HCC. Twenty transparent 3D printed liver models were constructed 
with color-coded anatomical structures that included 98 focal liver lesions[36]. The authors evaluated 
these models’ role in increasing the detection rate of focal liver lesions by pathologists and radiologists
[36]. Notably, during the gross pathologic examination, the per focal lesion detection rate significantly 
improved when utilizing the 3D model[36]. A sub-analysis revealed that these models’ positive impact 
was more remarkable for smaller focal liver lesions[36]. Following hepatic resection, Trout et al[37] have 
proposed a 3D printing-based protocol for anatomically oriented, uniform sectioning of resected hepatic 
specimens to facilitate accurate tumor mapping and a precise radiological-pathological correlation. The 
protocol was applied in thirteen patients (including HCC patients), achieving a close correlation 
between imaging and gross pathology[37]. Regarding non-operative treatment, Han et al[38] invest-
igated the therapeutic value of 3D printing template-assisted radioactive 125I seed implantation for the 
treatment of malignant liver tumors. In their study, fifteen patients (six with HCC) received the 3D-
assisted treatment, and twenty-five (ten with HCC) did not[38]. Notably, the 3D printed template-
assisted treatment significantly shortened the operation time and optimized the radiation-dose distri-
bution[38]. TACE is the prominent treatment choice for intermediate HCC. 3D visualization and 3D 
printed models could be used to clearly display the tumor’s blood supply and facilitate the super-
selective embolization of all the feeding arteries[39,40].

Bioprinting
3D bioprinted scaffolds have several advantages compared with other tissue engineering methods, such 
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as greater accuracy, fast reconstruction, and good integration[41]. Unlike traditional scaffold fabrication 
methods, 3D bioprinting skips the cell-seeding process since, during the fabrication process, the cells are 
dispersed at the desired locations[42]. Xie et al[43] expanding their department’s work on mice, recently 
published a study where they constructed patient-specific 3D bioprinted HCC models. Primary HCC 
cells were isolated from six operated patients’ liver specimens and were mixed with gelatin and sodium 
alginate to form the bio-ink[43]. The models were printed in a layer-by-layer manner and demonstrated 
cell viability at days 7 and 28 after the printing of 95% and 80%, respectively[43]. In addition, the 
resulting models retained compared to their patient-derived HCC: (1) The expression pattern of the 
biomarker a-fetoprotein; (2) A high level of concordance of the single nucleotide variants; and (3) The 
mutational pattern of key HCC gene mutations[43]. Finally, the models were used to assess the efficacy 
of four commonly used targeted drugs for HCC to reveal correlations between drug sensitivity and key 
HCC mutations[43]. Therefore, 3D bioprinted liver models could be used to develop patient-specific 
drugs for HCC patients. 3D bioprinted organoids could revolutionize the current drug development 
process by substituting early phases of clinical trials.

Other studies have used human HCC cell lines to construct 3D bioprinted liver models. Zhang et al
[44] combined alginate with cellulose nanofibril hydrogels and colloidal lignin particles to fabricate 
precise nano-composite scaffolds. Consequently, HepG2 cells were used to conduct cell viability tests 
that demonstrated the proliferation of the cells at the scaffold’s surface and within the scaffolding 
structure and a steady increase in density of HepG2 cells from day one up to day five in all the scaffolds. 
In a recent study, Sun et al[45] using HepG2 cells, formed a bio-ink to develop 3D bioprinted models to 
evaluate the effect of antitumor drugs. During the in vitro culture, the models preserved cell viability 
above 90%[45]. Compared to 2D-HepG2 cultures, the 3D bioprinted models retained higher expression 
levels of HCC-related biomarkers and mRNAs over the culture time[45]. Finally, the 2D and 3D models 
were compared based on their response to antitumor drugs[45]. The 3D models demonstrated higher 
drug resistance due to their higher expression of drug-resistance-related genes[45]. In another study, Ma 
et al[46] constructed a 3D bioprinted liver decellularized extracellular matrix model that was 
consequently used to compare the in vitro cultures of the HepG2 cell line in 3D-based scaffolds with 
conventional tissue-engineered liver constructs. The 3D bioprinted model demonstrated improved cell 
viability and gene expression. In addition, the authors investigated how the stiffness of the scaffolds 
impacted the growth of the cultures[46]. Their results support that stiff scaffolds, which better represent 
a cirrhotic liver, demonstrate a slower growth rate of HepG2 cells and lower cell viability[46]. In a 
different study, a different human HCC cell line (SMMC-7721) was used to develop 3D bioprinted 
models with and without microfluidic chips to pharmacodynamically test the effect of a chimeric IgG1 
anti-CD147 monoclonal antibody[44]. During cell culture, the models maintained a cell survival rate of 
96.21%[44]. The 3D models with microfluidic chips were found to be less vulnerable to the increase in 
drug dosage[44]. The authors concluded that these results are more consistent with animal studies due 
to the model’s microenvironment and biomimetic drug transport efficiency[44].

APPLICATIONS OF AI IN HCC MANAGEMENT
AI/ML-based tools have been developed to prevent, diagnose, and treat HCC and for HCC prognosis. 
Tables 1-4 summarize the studies we identified that developed AI/ML-based models for the 
management of HCC.

Prevention
Regarding HCC screening, genetic and epigenetic biomarkers have been utilized to develop several 
AI/ML-based models aiming for a urine test to screen for HCC[47]. AI/ML tools based on data 
automatically mined from patients’ hospital records could be used to stratify the risk of HCC 
development and for HCC early detection in patients with chronic HBV and HCV infection. These 
models could be used to reliably identify patients who are more susceptible to developing HCC and 
who would greatly benefit from a sustained virological response (SVR). Specifically for HBV cirrhosis, a 
recent study developed a deep neural network (DNN) employing only non-invasive parameters to 
predict the development of HCC[48]. Other studies have employed data from gene sequencing and 
expression patterns. Specifically, in a study, data from circulating long non-coding RNAs were 
employed to develop an AI/ML model that isolated distinctive signatures of expression of 171 different 
long non-coding RNAs that distinguish the healthy control group from patients with chronic HBV, liver 
cirrhosis, and HCC[49]. Another study developed four different models that used data from reverse 
transcriptase gene sequencing to predict the patients with HBV who would develop HCC[50]. A 
random forest (RF)-based model outperformed the rest with an area under the receiver operating curve 
(AUROC) in the independent validation of 0.96[50].

Regarding the development of HCC in HCV cirrhosis, several AI/ML-based tools were developed in 
a new study using routinely collected data to predict HCC development in patients with HCV infection
[51]. In the same spirit, in a recent study, several AI/ML-based models were developed that employ 
laboratory results and clinicopathological parameters that predict HCC development in patients with 



Christou CD et al. 3D printing and AI in HCC management

WJGO https://www.wjgnet.com 770 April 15, 2022 Volume 14 Issue 4

HCV before and after achieving SVR[52]. A recent study investigated whether a DNN could surpass the 
performance of conventional logistic regression (LR) models in predicting HCC development in patients 
with chronic HCV infection[53]. Notably, the DNN had outperformed the LR model with longitudinal 
inputs[53]. Finally, a study utilizing laboratory results and clinicopathological parameters developed a 
RF model to predict HCC development in a cohort of patients with Child-Pugh A and B cirrhosis, which 
was externally validated in a cohort of patients with HCV cirrhosis[54].

Diagnostics
Following prevention, several studies have focused on developing AI/ML-based models for the early 
detection of HCC. In a study, clinicopathological and laboratory data were employed to develop several 
AI/ML-based models for the early detection of HCC[55]. Notably, a gradient boosting-based model 
achieved the highest predictive value[55]. In another study, data from the expression profiles of 
microRNAs of patients with HCC were analyzed, and the five microRNAs with the optimal predictive 
value were used to develop several AI/ML models for the non-invasive, early diagnosis of HCC[56]. In 
a different study focusing on early detection, data from gene expression profiles were used to develop a 
support vector machine (SVM) model that outstandingly identifies patients with HCC[57]. In a recent 
study, data from somatic copy number abbreviations acquired from circulating tumor DNA was 
employed to develop an RF-based model for the early detection of HCC in a cohort of patients with 
chronic HBV infection[58]. Finally, several AI/ML-based models were developed in a different study 
using data from biomarkers (long non-coding RNA and microRNA expression) to identify patients with 
HCC[59].

Several studies have developed AI/ML-based models to distinguish between the various focal liver 
lesions (having a non-binary output). US imaging has been used to develop a convolutional neural 
network (CNN) that initially distinguishes focal lesions between benign and malignant and then 
classifies them into five different types of focal liver lesions (angioma, HCC, metastasis, cyst, focal 
nodular hyperplasia)[60]. In a recent, multi-center study, US imaging along with clinical parameters 
were used to develop a CNN model that classifies 16 different focal liver lesions[61]. Interestingly, the 
model’s accuracy was comparable with that of contrast-enhanced CT but inferior to MRI[61]. B-mode 
has been used in a study to develop a neural network ensemble-based computer-aided diagnosis (CAD) 
model that classifies normal liver and four different focal liver lesions, including HCC[62]. Similarly, a 
different artificial neural network (ANN)-based CAD model was developed using contrast-enhanced 
US microflow imaging that differentiates HCC from metastasis and hemangioma, and classifies the 
HCC lesions into well, moderately, and poorly differentiated[63].

In a recent study, a CNN was developed, employing images from multi-phasing CT scans, to classify 
focal liver lesions as benign or malignant automatically and then distinguish between HCC, intrahepatic 
cholangiocarcinoma (CCA), metastasis, cyst, hemangioma, and focal nodular hyperplasia[64]. A 
different CNN was developed using dynamic contrast-enhanced CT scans to classify focal liver lesions 
into five different lesion types[65]. In another study, different multiphasic CT scan models (four-phase, 
three-phase without portal-venous phase, and three-phase without pre-contrast phase) were used to 
develop multiphase convolutional dense networks to distinguish between HCCs and other focal liver 
lesions[66]. Similarly, multiphasic CT imaging was used to develop a CNN to classify five different focal 
liver lesions[67]. An ANN was developed in a different study employing 33 features (24 radiological 
and nine clinical) to differentiate among several lesions (hemangioma, metastasis, intrahepatic 
peripheral CCA, and HCC)[68]. Regarding the radiologists’ performance, when the ANN’s output was 
taken into account, their performance improved significantly (AUROC = 0.888-0.934)[68]. In a different 
study, data from CT and MRI radiomics were used to develop an RF model to differentiate between 
HCC, hepatic epithelioid angiomyolipoma, and focal nodular hyperplasia[69]. Multi-phasic MRI 
imaging was used in another study to develop a CNN that classifies six different focal liver lesions and 
distinguishes between the LI-RADS classes 1 and 5[70,71]. MRI was employed in a different study to 
develop an extremely randomized trees classifier-based model that differentiates five different focal 
liver lesion types[72]. Finally, in a recent study, MRI images were employed to develop a CNN that 
could distinguish seven different focal liver lesions (cyst, hemangioma, focal nodular hyperplasia, 
benign nodules, HCC, metastasis, and other than HCC primary malignancy)[73].

Histopathologic data could also be employed to develop AI/ML models for HCC diagnosis. A recent 
study developed a CNN employing hematoxylin and eosin-stained whole slide imaging (WSI) to 
distinguish patients with HCC and CCA[74]. The model was used prospectively to evaluate the impact 
of AI-assisted diagnosis on diagnostic accuracy[74]. Interestingly, the model did not benefit the mean 
diagnostic accuracy of all 11 pathologists in a statistically significant manner[74]. However, it managed 
to significantly increase diagnostic accuracy in a sub-cohort of 9 pathologists with well-defined expertise
[74]. In a similar study, the CNN employing hematoxylin and eosin-stained WSI was used to distinguish 
between healthy liver from HCC, classify HCC based on the grade of differentiation, and predict the 
presence of HCC-related gene mutations[75]. Another study used multiphoton microscopy images to 
develop a CNN that classifies images as well, moderately and poorly differentiated HCC[76]. A 
different study developed two CNNs, a model to detect HCC lesions in hematoxylin and eosin-stained 
WSI, and another model to predict recurrence following surgical resection[77]. In a different study, 
supervised and unsupervised ML methods were combined to develop a convolutional autoencoder 
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Table 2 Artificial intelligence application in hepatocellular carcinoma diagnosis

First author Diagnostic modality AI classifier
Sizes of the 
training/validation 
sets

Outcomes Performance Ref.

1 Sato M Laboratory results, 
clinicopathological 
parameters

Several 1582 patients HCC early detection 81.65-87.361,2, 0.870-
0.9403,2

[55]

2 Zhao X MicroRNA expression 
profiles

Several 392 patients HCC early detection RF: 0.9823, SVM: 0.9703, 
DT: 0.8313

[56]

3 Zhang ZM Gene expression 
profiles

SVM 1333/336 HCC samples HCC early detection 1001,2, 1002,4, 1002,5, 
0.95973,6, 91.934,6, 1005,6

[57]

4 Tao K Circulating tumor DNA RF-based 209/766/996 HCC early detection 0.874-0.9331,2, 0.812-
0.9203,6

[58]

5 Li G MicroRNA and long 
non-coding RNA 
expression profiles

SVM, RF, DT 361 patients HCC early detection RF: 0.9921,2, 95.62,4,  
1002,5; SVM: 0.9922,3, 
97.22,4, 98.02,5; DT: 0.927
2,3, 98.32,4, 92.02,5

[59]

6 Schmauch B US imaging CNN 109 images with focal 
liver lesions

Classification of benign 
from malignant focal 
liver lesions; classi-
fication among five focal 
liver lesions

0.916-0.9422,3; 0.886-
0.9542,3

[60]

7 Yang Q US imaging, clinical 
parameters

CNN 16500/41252/37186 US 
images

Classification among 16 
different focal liver 
lesions

0.859-0.9663,7, 0.765-
0.9252,3, 0.750-0.9243,6

[61]

8 Virmani J B-mode US imaging NNE 108 images Classification among 
normal liver and four 
focal liver lesions

95.01,2 [62]

9 Shiraishi J Microflow imaging of 
contrast-enhanced US

ANN 103 focal liver lesions Classification among 
HCC, metastasis, and 
hemangioma; histopatho-
logical grade

86.9-93.81,2; 50.0-79.21,2 [63]

10 Zhou J Multiphasic CT scans CNN 616 liver lesions Classification of benign 
and malignant lesions. 
Classification of 6 types 
of focal liver lesions

76.6-88.42,4,5, 82.51,2, 
0.9212,3, 46.4-93.12,4, 
91.9-98.62,5, 73.41,2, 
0.766-0.9832,3

[64]

11 Yasaka K Contrast-enhancedCT 
imaging

CNN 460/1006 patients Classification among five 
types of focal liver 
lesions

951,7, 841,6, 33-1004,6 [65]

12 Shi W Multiphasic CT scans MP-CDN 449 focal lesions. 
Training:validation ratio 
= 8:2

Classification between 
HCC and non-HCC focal 
lesions

0.811-0.8561,2, 0.862-
0.9252,3, 0.744-0.9232,4, 
0.725-0.9412,5

[66]

13 Todoroki Y Multiphasic CT imaging CNN 89 patients Classification among five 
focal liver lesions

79-1002,4 [67]

14 Matake K Clinicopathological 
parameters, CT imaging

ANN 120 patients Classification among 
four types of focal liver 
lesions

0.9612,3 [68]

15 Liang W CT and MRI radiomics RF 170 CT scans; 137 MRI 
scans

Classification of three 
types of focal liver 
lesions

CT model: 0.9963,7, 
0.8792,3. MRI model: 
0.9993,7, 0.9252,3

[69]

16 Hamm CA Multiphasic MRI 
imaging

CNN 434/60 lesions Classification among six 
types of focal liver 
lesions; identify HCC; 
classification of LI-RADS 

922,4, 982,5; 0.9922,3; 944,

6, 972,5
[70,71]

17 Jansen MJA MRI imaging Extremely 
randomized 
trees classifier

95 patients Classification among five 
different focal liver 
lesions

85-921,2, 62-932,4, 56-932,
5

[72]

18 Zhen SH MRI scans CNN 1210/2016 Classification among 
seven different focal liver 
lesions

0.841-0.9873,6, 40.5-1004,

6, 86.4-99.55,6
[73]

19 Kiani A Hematoxylin and eosin-
stained WSI

CNN 207/262/806 WSIs Classification of HCC 
and CCA

88.51,2, 84.21,6 [74]
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20 Chen M Hematoxylin and eosin-
stained WSI

CNN 491 WSIs (402 HCC, 89 
normal liver tissue)

Classification of HCC 
and normal liver tissue; 
histopathological grade

0.9601,2, 0.9612,3; 89.61,2 [75]

21 Lin H Multiphoton 
microscopy

CNN 217 images Histopathological grade 0.812-0.9411,2, 0.891-
0.9172,3

[76]

22 Yamashita R Hematoxylin and eosin-
stained WSI

CNN 28/42/306 WSIs HCC lesion detection 0.9522,3, 0.9563,6 [77]

23 Roy M Hematoxylin and eosin-
stained WSI

CAE 50 WSIs Segmentation of viable 
tumors

91-951,2 [78]

24 Giordano S PESI-MS SVM, RF 117 HCCs, 50 CCA, 151 
non-tumor group

Classification of HCC, 
CCA, and non-tumor 
groups

SVM: 95.1-98.51,6; RF: 
94-94.91,6

[79]

25 Guo LH Contrast-enhanced 
ultrasound imaging

MKL 93 lesions Classification of benign 
from malignant focal 
liver lesions

90.411,2, 93.562,4, 86.892,
5

[80]

26 Bharti P US imaging Several 189 images Classify among normal 
liver, chronic liver 
disease, cirrhosis, and 
HCC

96.61,2, 95.5-96.92,4, 
98.0-99.82,5

[81]

27 Brehar R US imaging CNN 268 patients Classification between 
HCC and cirrhotic 
parenchyma

84.84-911,2, 0.91-0.952,3, 
86.79-94.372,4, 82.95%-
88.38%2,5

[82]

28 Mao B Ultrasound radiomics Several 114 patients Classify primary from 
metastatic liver cancer

0.729-0.8081,2, 0.737-
0.7932,3, 0.775-0.8682,4, 
0.667-0.8802,5

[83]

29 Almotairi S CT imaging CNN 20 CT scans Tumor segmentation 98.81,7 [84]

30 Budak Ü CT imaging CNN 20 CT scans Tumor segmentation Volumetric overlap 
error: 9.05%2

[85]

31 Nayak A Multiphasic CT imaging SVM 40 patients Classification between 
HCC and cirrhotic 
parenchyma

80-86.91,2, 0.932,3 [86]

32 Krishan A CT scans Several 1638 CT scans Identification of liver 
lesions; classification 
between HCC and 
metastasis

98.39-1001,2, 0.99- 
1.002,3; 76.38-87.011,2, 
0.77-0.992,3

[87]

33 Chen WF CT scans SED 300 CT scans Tumor segmentation 0.9921, 0.952,3 [88]

34 Khan AA CT scans Several 179 patients Classification between 
HCC and hemangioma

96.6-98.31,6, 0.94-0.973,6, 
94.23-97.035,6

[88]

35 Mokrane FZ Multiphasic CT 
radiomics

Several 106/362/366 Classification between 
HCC and non-HCC 
lesions

0.813,7, 0.814,7, 0.725,7, 
0.722,3, 0.663,6

[90]

36 Mao B CT radiomics, clinical 
parameters

Gradient 
boosting

237/606 patients Histopathological grade 61.18-97.051,6, 0.7071-
0.99643,7, 60.67-95.514,7, 
51.35-80.415,7, 48.33-
70.001,6, 0.6128-0.80143,

6, 43.48-65.224,6, 37.84-
81.085,6

[91]

37 Preis O PET/CT imaging ANN 98 patients Classification between 
benign and malignant 
liver lesions

0.896-0.9052,3 [92]

38 Trivizakis E Diffusion-weighted 
MRI

CNN, SVM 134 patients Classification between 
primary liver cancer and 
metastasis

85.51,7, 831,2, 0.802,3, 932,

4, 672,5
[93]

39 Oestmann PM Multiphasic MRI scans CNN 150/102 Classification of HCC 
and non-HCC lesions

94.11,7, 87.31,2, 0.9122,3. 
For HCC: 92.72,4, 82.02,

5. For non-HCC: 82.02,4, 
92.72,5

[94]

40 Bousabarah K MRI scans CNN, RF 174 patients/ 231 lesions HCC detection 0.66-0.752,4, 0.55-0.734,6 [95]

41 Kim J MRI scans CNN 4552,7/546 HCC detection 0.972,3, 942,4, 992,5, 0.903,

6, 874,6, 935,6
[96]

Non-enhanced MRI 65.00-77.001,6, 0.70-0.82342 Jian W CNN 75/406 HCCs HCC detection [97]
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scans ,6, 64.55-78.184,6, 65.56-
75.565,6

43 Wu Y Multiphasic MRI 
imaging

CNN 89 HCCs Classification between 
LI-RADS 3 and LI-RADS 
4/5

0.767-0.9001,6, 0.90-0.953

,6, 0.76-1.004,6, 0.633-
0.8075,6

[98]

1Accuracy (%).
2Internal validation.
3Area under the receiver operating curve or c-index.
4Sensitivity (%).
5Specificity (%).
6External validation/testing.
7Training.
ANN: Artificial neural network; CAE: Convolutional  autoencoder; CCA: Cholangiocarcinoma; CNN: Convolutional neural network; CT: Computed 
tomography; DNN: Deep neural network; DT: Decision tree; HCC: Hepatocellular carcinoma; LI-RADS: Liver imaging reporting and data system; MKL: 
Multiple kernel learning; MP-CDN: Multiphase convolutional dense networks; MRI: Magnetic resonance imaging; NGS: Next-generation sequencing; 
NNE: Neural network ensemble; PESI-MS: Probe electrospray ionization mass spectrometry; PET: Positron emission tomography; RF: Random forest; SED: 
Successive Encoder-Decoder; SVM: Support vector machine; US: Ultrasound; WSI: Whole-slide image.

(CAE) that employs WSI images for the automated segmentation of viable tumors[78]. Finally, in a 
recent study, probe electrospray ionization mass spectrometry was used on specimens from patients 
with HCC and mass-forming CCA to develop two AI/ML-based models to distinguish these primary 
liver malignancies[79].

US imaging has also been used to develop models that aid in HCC diagnosis. A multiple-kernel 
learning-based model was developed using contrast-enhanced US imaging to distinguish between 
benign and malignant liver tumors[80]. Several AI/ML-based models were developed using US images 
to classify normal liver, chronic liver disease, cirrhosis, and HCC[81]. A recently developed CNN model 
managed to outperform other conventional ML methods in distinguishing between HCC and 
surrounding cirrhotic parenchyma in US images[82]. Data from US radiomics were employed in a 
recent study to develop multiple AI/ML-based models to distinguish between primary liver cancer and 
metastasis[83]. Interestingly a conventional LR model outperformed all the AI models[83].

CT imaging could be used to develop AI/ML-based models that aid HCC diagnosis. In a study, 
segmentation of the liver tumors was achieved using a CNN developed using CT scans[84]. Similarly, 
two encoder-decoder CNNs were developed in another study to cascade segments of both the liver and 
lesions in CT images[85]. An SVM-based CAD model was developed in another study from multiphasic 
CT scans to distinguish between cirrhosis and HCC[86]. CT scans were employed in a different study to 
develop several AI/ML-based models to distinguish between HCC and secondary liver lesions[87]. In a 
different study, a Successive Encoder-Decoder model was developed to automatically interpret liver 
tumor segmentation through CT images for patients with HCC[88]. Another study developed several 
AI/ML-based models employing CT images to distinguish between HCC and hemangioma[89]. 
Multiphasic CT radiomics were used in a different study to develop several AI/ML-based models to 
distinguish between HCC and non-HCC liver lesions[90]. CT radiomics and clinical data were 
combined in another study to develop gradient boosting-based models to classify the histopathological 
grade of HCC[91]. Finally, positron emission tomographic (PET)/CT imaging was employed in a 
different study to distinguish between benign and malignant liver lesions[92].

Regarding MRI imaging, diffusion-weighted MRI was used to develop a CNN-based model to 
distinguish between primary liver cancer and metastasis[93]. A recent retrospective study developed a 
CNN that employed multiphasic MRI scans of patients with HCC. The model was trained with a 
combination of images that met the LI-RADS criteria (typical) and with images that did not (atypical) 
and aimed to distinguish between HCC and non-HCC lesions[94]. In a recent study, MRI scans were 
employed to develop a CNN-based model for the automatic detection and delineation of HCC[95]. In a 
multicenter, retrospective study, a CNN was developed that employed MRI scans to identify HCC 
lesions[96]. Notably, the model surpassed less experienced radiologists’ performance in the diagnosis of 
small HCC lesions[96]. In just 3.4 s, the model was able to assess 100 photos[96]. Non-enhanced MRI 
scans have been used to develop a CNN that identifies HCC lesions[97]. Finally, in a recent study, 
multiphasic MRI scans were used to develop a CNN that distinguishes between LI-RADS 3 and LI-
RADS 4/5 HCC[98].

Treatment
Data generated from clinicopathological parameters, serum biomarkers, gene and RNA profiles, and 
imaging could be combined to train AI/ML-based models to develop frameworks for the evidence-
based, individualized treatment of patients with HCC, including targeted radiotherapy, chemotherapy, 
and immunotherapy. In an international, multi-institutional study, a CART model was developed that 
aimed to create a framework for treatment allocation beyond the BCLC staging system[99]. Based on 
predicting parameters of overall survival, the model generated six distinct prognostic groups of patients 
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Table 3 Artificial intelligence application in hepatocellular carcinoma treatment

First author Parameters employed AI classifier
Sizes of the 
training/validation 
sets

Outcomes Performance Ref.

1 Tsilimigras 
DI

Laboratory results, 
clinicopathological 
parameters, tumor 
characteristics

CART 976 Determining factors of 
prognostic weight preoper-
atively within the BCLC 
staging system

- [99]

2 Liu F Contrast-enhanced US 
radiomics, laboratory 
tests, and clinicopatho-
logical parameters

CNN 293/126 patients 2-yr progression-free survival 
of patients following RFA or 
surgical resection

0.754-0.7841,2, 0.726-
0.7411,3

[100]

3 Choi GH Demographics, 
laboratory results, tumor 
characteristics, 
clinicopathological 
parameters

RF 813/208 patients Treatment recommendation. 
Survival prediction

76.6-88.43,4, 53.0-82.33,

5, 69.3-95.83,6. 0.676-
0.9591,3

[101]

4 Chen M Hematoxylin and eosin-
stained WSI

CNN 377 (training:validation 
=  3:1)/ 677 patients

Mutation prediction 89.6-94.03,4, 0.720-
0.8051,7

[75]

5 Liao H Hematoxylin and eosin-
stained WSI

CNN 309/653/787 Mutation prediction 0.519-0.9031,3, 0.605-
0.7971,7

[103]

6 Gu J Multiphasic CT scans CNN 14 patients Mutation prediction 67.7-77.33,4 [104]

7 Chen G Laboratory results LIME 1007/10857 patients MVI 0.9181,2, 0.8321,3, 
0.9051,7

[105]

8 Zhang Y MRI scans CNN 158/79 patients MVI 0.811,2, 692,5, 792,6, 
0.721,3, 553,5, 813,6

[106]

9 Wang G DWI CNN 60/402 HCCs MVI 66.81-77.502,3,4, 68.65-
79.691,2,3, 56.56-76.472,

3,5, 64.35-79.132,3,6

[107]

10 Liu QP CT radiomics RF, SVM 494 patients MVI 0.841,2, 0.791,3 [108]

11 Jiang YQ CT radiomics, 
clinical/laboratory 
parameters

Gradient 
boosting, 
CNN

405 patients [220 MVI 
(+)/185 MVI (-)]

MVI Gradient boosting: 
0.900-0.9521,2, 0.873-
0.8871,3. CNN: 80.2- 
85.23,4, 0.900-0.9801,2, 
0.875-0.9061,3, 0.659-
0.9323,5, 0.757-0.9733,6

[109]

12 Cucchetti A Laboratory results, 
clinicopathological 
parameters, radiological 
data, histological data

ANN 175/753 MVI. Histopathological grade 0.921,2, 91.03,4. 0.941,2, 
93.33,4

[110]

13 Mai RY Laboratory results, 
clinicopathological 
parameters, liver 
volumetry

ANN 265/88 patients Posthemihepatectomy liver 
failure

0.8801,2, 0.8761,3 [111]

14 Shi HY Laboratory results, 
clinicopathological 
parameters, surgery 
parameters

ANN 22926 hepatectomies In-hospital mortality 
following surgical resection

97.283,4, 0.841,3, 95.934,

7, 0.821,7, 78.405,7, 
94.576,7

[112]

15 Liu D US radiomics CNN 89/41 patients Classify full/partial response 
from stable disease/ 
progression in patients treated 
with TACE

78-982,4, 0.82-0.981,2, 
78.6-98.22,5, 74.2-96.72,

6, 0.80-0.903,4, 0.80-
0.931,3, 82.1-89.33,5, 
73.3-92.33,6

[113]

16 Morshid A Multiphasic CT scans, 
BCLC stage

CNN, RF 105 patients Classify TACE-susceptible 
from TACE-refractory HCC

62.9-74.23,4, 0.7331,3 [114]

17 Peng J CT imaging CNN 562/897/1387 Classification of complete 
response, partial response, 
stable disease, and progressive 
disease following TACE

84.02,4, 0.95-0.971,2, 
82.8-85.14,7, 0.94-0.981,
7

[115]

18 Abajian A MRI imaging, clinical 
data

RF 36 patients Classification of responders 
and non-responders following 
TACE

663,4, 62.53,5, 67.93,6 [116]
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19 Zhu Y FF-OCT SVM 285 en face images Cancerous hepatic cell identi-
fication

0.93781,7 [117]

20 Liang Z X-ray imaging CNN 2943/15423/14427 
images

Localization of fiducial 
markers

98.64,7 [118]

21 Liu Y CT/MRI imaging Dense-cycle 
GAN

21 patients Identify differences between 
synthetic CT and CT, and 
compare their dose distri-
bution 

- [119]

22 Taebi A Computational fluid 
dynamics

CNN 3804 samples Yttrium-90 distribution in 
radioembolization

Mean square error: 
0.54 ± 0.14

[120]

23 Tong Z DNA profiling SVM 43 patients Drug target prediction 0.8827-0.88491,3, 53-
65.443,5, 88.76-93.633,6

[121]

1Area under the receiver operating curve or c-index.
2Training.
3Internal validation.
4Accuracy (%).
5Sensitivity (%).
6Specificity (%).
7External validation/ testing.
ANN: Artificial neural network; BCLC: Barcelona clinic liver cancer; CART: Classification and regression tree; CNN: Convolutional neural network; CT: 
Computed tomography; DWI: Diffusion-weighted imaging; FF-OCT: Full-field optical coherence tomography; GAN: Generative adversarial network; 
HCC: Hepatocellular carcinoma; LIME: Local Interpretable Model-agnostic Explanations; MRI: Magnetic resonance imaging; MVI: Microvascular invasion; 
RF: Random forest; RFA: Radiofrequency ablation; TACE: Transarterial chemoembolization; US: Ultrasound; WSI: Whole-slide image.

that could be utilized as a framework for treatment allocation[99]. Interestingly, the radiologic tumor 
burden score that is not part of the BCLC staging system was identified as the optimal predictor of 
outcomes for staged B patients[99]. In a different study, data from contrast-enhanced US radiomics, 
laboratory tests, clinicopathological parameters, and course of treatment were employed to develop a 
CNN that could be used to select between radiofrequency ablation (RFA) and surgical resection[100]. 
Specifically, in their cohort of patients, the authors concluded that if 17.3% of the RFA group and 27.3% 
of the operated patients swapped treatment, they would benefit from a 12% and 15% increase in the 
probability of 2-year progression-free survival, respectively[100]. Finally, an AI/ML-based clinical 
decision support system for patients with HCC was developed using several RF-based classifiers in a 
large cohort of patients[101]. The model was designed to offer treatment recommendations and predict 
the overall survival of patients with HCC. The conclusions of these studies could aid the re-evaluation 
of our current HCC management practices to an individualized, multimodal strategy[102].

Models that reliably predict the presence of particular mutations in HCC patients could be used as a 
tool for the early administration of appropriate treatment such as immunotherapy or multi-targeted 
tyrosine kinase inhibitors. In a recent study, a CNN was developed that employs images from 
hematoxylin and eosin-stained WSIs to predict the presence of specific mutations in patients with HCC
[75]. A similar study developed a CNN that classifies HCC and then predicts the presence of specific 
mutations[103]. Finally, a CNN model was developed in a recent study based on multiphasic CT scans 
as a non-invasive prediction tool of particular mutations[104].

Several studies designed AI/ML-based models that preoperatively predict microvascular invasion 
(MVI) as reliable treatment allocation tools. In a recent study, an AI/ML-based model was developed as 
a non-invasive tool, employing only presurgical blood parameters to predict MVI in patients with HCC
[105]. In a different study, a CNN was developed employing presurgical MRI scans in an effort to 
predict MVI[106]. Finally, another study developed a CNN, employing diffusion-weighted imaging 
from patients with HCC to predict MVI preoperatively[107]. Another study used CT radiomics data to 
develop an RF/SVM-based model that predicts MVI in patients with HCC[108]. Similarly, in a recent 
study, CT radiomics were combined with laboratory and clinical data to develop two models, a gradient 
boosting-based and a CNN-based, to predict MVI preoperatively[109]. Finally, an ANN was developed 
in a different study to predict MVI that notably outperformed a conventional LR model[110].

Several studies have investigated how AI/ML-based models could determine the response to 
treatment in patients with HCC. Focusing on hepatic resection, an ANN model was developed that 
predicts liver failure following hemihepatectomy, which could be used as the basis of a triage tool for 
intensive care[111]. Similarly, in a different study, an ANN model was developed to predict in-hospital 
mortality risk following hepatic resection[112]. The model outperformed conventional LR models. 
Interestingly, the study reported that the best single predictor of in-hospital mortality was the surgeon 
volume[112].

Besides hepatic resection, several studies have developed models to predict the response to TACE 
treatment. Particularly for response prediction in patients treated with TACE, US radiomics were used 
in a study to develop a CNN to classify patients with HCC who fully/partially respond to TACE from 
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patients who either remain stable or progress[113]. In a different study, multiphasic CT scans and the 
BCLC staging system were used to develop an AI/ML-based model to classify TACE-susceptible from 
TACE-refractory HCC[114]. CT imaging was also used in a different study to develop a CNN as a multi-
class tool for complete response, partial response, stable disease, and progressive disease following 
TACE[115]. Another study used MRI to classify patients with HCC as responders and non-responders 
to TACE treatment[116].

In a recent study, images from full-field optical coherence tomography were used to develop an SVM 
model that recognizes hepatic cancerous cells as a tool to detect tumor boundaries for resection intraop-
eratively[117]. A different study used X-ray imaging to develop a CNN model as the basis of a 
framework that automatically detects fiducial markers, performs 3D position reconstruction, and 
evaluates intrafraction motion during stereotactic body radiation therapy for liver malignancies[118]. In 
another study, MRI and CT imaging were employed to develop a novel dense-cycle-generative 
adversarial network for the generation of synthetic CT scans that could be used to optimize treatment 
planning for liver stereotactic body therapy[119]. Data from computational fluid dynamics were used in 
another study to develop a CNN to estimate Yttrium-90 distribution during radioembolization[120]. 
Finally, in a study conducted in silico, an SVM model was used to identify potential drug targets for 
HCC treatment[121].

Prognosis
Several studies have focused on constructing AI/ML-based tools able to consistently predict patient 
outcomes (progression and disease-free survival, overall survival, and recurrence) in the context of HCC 
prognosis. Several ML algorithms were combined in a study to develop an AI model that employs data 
from DNA methylation and RNA and microRNA profiling to predict overall survival for patients with 
HCC[122]. Several AI/ML-based models were developed in a recent study, employing non-invasive 
parameters to predict survival in operated patients with HCC[123]. Another study developed a 20-
features gradient-boosting survival classifier to stratify an HCC-related death risk into three distinct 
categories[124]. In a different nationwide study, an ANN model was developed to predict the 5-year 
survival of patients with HCC following hepatic resection[125]. Interestingly, the independent predictor 
with the strongest correlation to survival was the surgical volume of the surgeon[125]. The performance 
of the ANN was found to be superior to the LR’s performance[125]. Likewise, in another study, the 
ANN model surpassed the performance of the LR model in predicting overall survival following 
surgical resection[126]. The ANN model was also able to identify more independent predictors of 
survival than the LR model[126]. In a prospective study, the ANN model’s ability to predict the survival 
of operated patients with early staged HCC was compared with the performance of traditionally used 
staging systems; the ANN model outperformed all staging systems in all training and validation cohorts
[127]. Data from RNA sequencing were employed, in a recent study, to develop an RF-based model that 
uses five biomarkers to predict patients’ overall survival[128]. Finally, hematoxylin and eosin-stained 
WSIs were used in a different study to develop a CNN that predicts survival following resection[129].

Focusing on the survival of non-operated patients, in a recent study, an ANN was developed that 
employed albumin/bilirubin grade and Child-Turcotte-Pugh (CTP) grade to predict survival in patients 
with HCC who received as initial treatment a monotherapy with TACE[130]. In a similar study, 
albumin/bilirubin grade and CTP grade were used to develop an ANN to predict survival in patients 
who received as initial treatment the combination of TACE and sorafenib[131]. A different study, also 
considering patients treated with TACE and sorafenib, used CT scans instead to develop a CNN to 
predict survival[132]. Another study focusing on patients treated with TACE developed a DNN model 
to predict overall survival in patients with HCC[108]. Finally, an ANN-based model was developed 
employing routinely collected data to predict 1-year survival in HCC patients treated with TACE[133].

Different models have focused on predicting progression-free or disease-free survival. Such models 
could be used to design personalized follow-up schedules. A recent study employed routine laboratory 
results and clinicopathological data to develop an ANN that predicts progression-free survival and 
overall survival[134]. Notably, the model outperformed traditionally used classification systems. 
Similarly, in a retrospective study, data from operated patients were employed to develop an ANN, a 
decision tree, and an LR model for predicting the 1-, 3-, and 5-year disease-free survival[135]. The ANN 
model managed to outperform the other two models[135]. A recent study developed an RF model based 
on 34 epigenetic features of DNA methylation profiles to predict the 6-mo progression-free survival
[136]. In another recent study, an RF model was developed employing routinely collected data to 
predict the disease-free survival of patients with HCC following surgical resection[137]. Finally, an 
ANN was developed in a different study to predict disease-free survival for patients with HCC treated 
with CT-guided RFA[138].

Besides survival, AI/ML-based tools have been used for predicting HCC recurrence following 
curative treatment. Specifically, several AI/ML-based tools were developed in a study, including an RF 
model, an SVM model, and an Artificial Plant Optimization model for predicting HCC recurrence 
following RFA[139]. In a recent study, a gradient boosting algorithm-based model was developed 
employing clinical parameters to predict patients’ recurrence following surgical resection, as well as 
survival[140]. In a different study, gene sequencing data were used to develop AI/ML models to predict 
recurrence in patients with HCC following surgery[141]. Early recurrence has been the focus of a study 
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that combined different AI/ML classifiers to develop a model that predicts recurrence in operated 
patients with HCC[142]. In a different, multi-center study, several ML algorithms were used to develop 
AI/ML-based models to predict HCC recurrence following hepatic resection[143]. Notably, the models 
that employed CT radiomics outperformed the models that used clinical data[143]. A Bayesian network-
based model was developed in another study aiming to classify patients according to the recurrence 
time (early, late) following hepatic resection[144]. Finally, a study focusing on patients with cancer 
recurrence following surgical resection developed an SVM model employing several clinical indicators 
to predict the time and location of HCC recurrence[145].

Hematoxylin and eosin-stained WSIs have been used to develop AI/ML-based models to predict 
recurrence in operated patients with HCC. A CNN was constructed in a recent study utilizing 
histopathologic images for predicting recurrence in HCC operated patients[77]. The model outper-
formed the conventional TNM classification system[77]. A different study developed an RF-based 
model to predict overall survival that notably performed comparably with the TNM classification 
system[146]. Finally, a study focusing on recurrence timing used hematoxylin and eosin-stained WSIs to 
develop an SVM model that predicts the early recurrence of HCC patients following resection[147].

Other studies have focused on predicting the recurrence of patients treated with ablative techniques. 
An SVM model was developed in a study using clinical data to predict recurrence in a group of patients 
with HCC who were treated with RFA[148]. In another study, an unsupervised landmark-constrained 
CNN-based deformable image registration technique was used to predict local tumor progression in 
patients with HCC treated with microwave ablation based on the ablative margin[149].

Focusing on liver transplantation, a team developed a DNN model that employs routinely collected 
data to predict HCC recurrence in patients receiving a living donor graft[150]. Notably, the model 
significantly outperformed all the conventionally used staging systems. An ANN model was developed 
employing data from genotyping for microsatellite mutations/deletion to predict post-transplant HCC 
recurrence[151]. Clinical data and CT radiomics were employed in a different study to develop a least 
absolute shrinkage and selection operator model to predict recurrence-free survival in transplanted 
HCC patients[152]. Several other studies have developed AI/ML-based tools for predicting liver graft 
survival following liver transplantation[153,154]. Specifically, in a multi-center study, an ANN model 
was developed for predicting the 3-mo graft loss and survival[154]. Notably, the model surpassed all the 
currently used scores, including the Donor Risk Index, the Model for End-stage Liver Disease, the 
Balance of Risk, and the Survival Outcome Following Liver Transplantation; their performance was 
found to be significantly lower with an AUROC range of 0.42-0.67[154]. An ANN and an RF model were 
developed in another study for predicting 30-d and 3-mo graft failure following transplantation[153]. 
Notably, these models outperformed the Model for End-stage Liver Disease and the Donor Risk Index
[153]. Finally, in a study using data from the United Network for Organ Sharing, a DNN was developed 
to predict 90-d post-liver transplant survival[155]. Similarly, this model outperformed traditionally used 
classification systems[155].

CURRENT CHALLENGES
Challenges of 3D printing application in HCC management
Even though the cost related to 3D printing is steadily decreasing, it still remains the main challenge for 
the widespread application of 3D printing in healthcare facilities. The 3D printing-related cost consists 
of hardware, software, printing materials, and labor. Among the seven families of additive manufac-
turing as per the American Society for Testing And Materials International, those more frequently 
applied in the medical field are selective laser sintering, stereo lithography, laminated object manufac-
turing, fused deposition modeling, and inkjet printing[156]. Each of these 3D printing types has its 
characteristics regarding accuracy/precision, availability, printing speed, required materials, color 
capabilities, transparency, sterilization capability, biocompatibility, and cost[9]. The characteristics of 
each printing type define its cost. For example, while selective laser sintering printers are highly 
productive, with the ability to print complex structures with quick printing times, their cost is 
significantly higher, and their availability is limited compared with fused deposition modeling printers, 
which, although cheap, have low processing times and low accuracy[41,157].

The cost is also dependent on the size and complexity of the targeted structure. The liver is a large 
organ with complex anatomy; thus, the cost and time required to construct a 3D liver model are higher 
than other organs. A valid solution is scaling down the 3D models[26]. Studies usually overlook the 
costs associated with labor; however, they should be considered, particularly when evaluating cost-
effectiveness ratios. Focusing on cost-effectiveness, it is essential to highlight that the additional 
cost/resources related to 3D printing should be evaluated in conjunction with the magnitude of the 
improvement in medical outcome. Unfortunately, based on a systematic review, only 7% of published 
studies related to 3D printing mention cost-effectiveness, and no study has evaluated cost-effectiveness 
in a quantitative manner[158].
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In addition to cost, other challenges/limitations include the reliance of the 3D printed models’ 
accuracy on the underlying 2D imaging data that makes them prone to imaging errors[41]. Therefore, 
high-accuracy imaging is a precondition of highly accurate 3D models. In addition, due to long printing 
times, 3D printing currently has no application in the emergency clinical setting, such as the rupture of 
an HCC tumor[18]. However, printing times are becoming shorter, with reports of 3D models printed 
within a single day. Another challenge is the limited availability of software for 3D printing in medicine 
and the absence of many visual aids and manipulation tools for postprocessing[9]. The shortcoming of 
limited software further deteriorates by the notable absence of specialists in 3D printing software and 
technologies in most healthcare facilities[34].

Bioprinting of 3D models faces its own challenges and limitations. High-resolution is particularly 
important in 3D bioprinting to facilitate proper interactions of the biomaterials, which are crucial for 
tissue development[42]. Particularly for the liver, a metabolically active tissue, the appropriate microen-
vironment should be created inside the 3D bioprinted model to retain its hepatocyte-like phenotype. 
The development of large-scale liver tissues with hepatocytes retaining viability and longer-term 
functionality following sequential differentiation is clearly a challenge[42]. Even though 3D bioprinted 
liver models are reported as superior to other tissue engineering methods in that regard, scaling up 
these models to a substantial volume to provide a significant in vivo liver function could prove to be a 
herculean task. The evolution and increased complexity of 3D bioprinting could reach a saturation point 
where the functional outcomes do not improve further[159]. Current 3D bioprinted tissues lack any 
vascular network and rely on diffusion for nutrient supply. The integration of a vascular network, 
particularly for the liver, which has a complex vascular network, could prove particularly challenging. 
Potential solutions include embedding angiogenic growth factors into the bio-ink, direct bioprinting of 
the vasculature, and sacrificial templates for fabricating perfusable microchannel networks[160-163]. 
Another challenge of 3D bioprinting is cell availability. Expanding the current applications of 3D 
bioprinted models would require reliable sources of human cell lines[164]. Current sources include 
specimens from hepatic resections and transplantations and fetal liver cells from abortion; these cell 
sources are all in limited supply, which could restrain research progress[164]. A potential solution could 
be the use of liver stem cells, immortalized hepatic cell lines, and minimally invasive cell harvesting[42,
165,166]. Compared to stem cells, adult hepatocytes propagate poorly and lose functionality more 
rapidly in vitro[167]. In summary, further research is required to investigate how these 3D bioprinted 
models behave in vivo in terms of viability, stability, retaining functionality, compatibility, and 
degradation rate of the polymer hydrogels before they could be implanted in a clinical setting. Finally, 
the logistics of healthcare facilities maintaining production chains for patient-specific tissues, given the 
biomaterials’ environmental and time sensitivity, could prove impractical, creating the need for a 
centralized logistical model[159].

3D printing and mainly 3D bioprinting face regulatory, legal, and ethical challenges. 3D printable 
products should comply with existing control and manufacturing standards for medical devices and 
products. The Food and Drug Administration (FDA) published in 2017 the Technical Considerations for 
Additive Manufactured Medical Devices, which provides a framework for manufacturers and guidance 
regarding the main aspects of 3D printing, including hardware, software, validation procedures, and 
quality control[168]. As acknowledged by the guidelines, there is significant variability among the 
different types of additive manufacturing to the extent that each printing methodology requires 
different regulatory standards[168]. A genuine concern for 3D bioprintable organoids is safety. Even 
though “absolute” safety could not be guaranteed in any biomedical novelty, a comprehensive 
evaluation of benefits and risks is required to decide if it reaches a safety threshold[169]. However, 
bioprintable organoids significantly differ from novel drugs and could not be assessed by our current 
drug development evaluation processes. Due to the interindividual differences among patients, 
extrapolating on the safety of patient-tailored organoids is challenging. However, accumulated results 
and experience over a series of cases could serve as a basis to gain regulatory approval. The precau-
tionary principle dictates that in applying novel technologies where our knowledge is limited and the 
uncertainty is high, a higher and stricter standard should be adopted compared with known biomedical 
products[170]. Another concern is obtaining genuine informed consent. For the patients donating, 
before consenting, the patients’ autonomy and control over their biological condition should be 
established, and concerns regarding anonymity, data protection, future claims on their donated tissues, 
as well as these tissues intended short-term and long-term use should be addressed[169,171]. Similarly, 
before giving informed consent, transplanted patients’ concerns regarding safety, short-term and long-
term risks, the uncertainty involved, and potential unknown consequences should be addressed. Unlike 
with clinical trials where a drug is tested, the patient’s withdrawal is impeded due to the irreversible 
nature of transplantation[172].

3D bioprinting faces several ethical challenges. An ethical advantage of 3D bioprinted organoids 
could be used in pre-clinical drug testing and significantly minimize the need for animals in the 
laboratory. An ethical concern is the potential use of donated biomaterials in the development of 
embryonic cell lines. Donors should be informed of this perspective before providing informed consent
[169]. Generally, there are ethical concerns about whether all possible cell sources, including embryonic 
cell lines, pluripotent stem cells, or even animal cells, could be used for bioink fabrication[173]. Another 
ethically challenging point is the accessibility of 3D bioprinted materials. Since healthcare facilities may 
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be unable to be reimbursed for 3D bioprinted-related treatments, there is a justifiable concern that these 
treatments will be accessible only to those who can afford them[169]. To add to this concern, when 3D 
bioprinting is advanced enough to produce organs that are superior in certain aspects compared to 
human organs, 3D bioprinting technologies could be used for eugenic purposes[172]. With steadily 
decreasing prices and steadily increasing availability, there is an actual concern about unregulated 3D 
bioprinting research that could be used for malignant purposes, including bioterrorism[171]. Evidently, 
there is a need for a robust regulatory framework to address all these emerging concerns, which could 
be obtained by elaborating on our existing ethical and regulatory standards as encompassed in the 
Helsinki Declaration, the Oviedo Convention system, and UN’s Declaration on Human Rights. 
However, the real challenge will not be to develop these regulatory frameworks but to ensure that they 
evolve in conjunction with the evolution of these technologies and are not outpaced by them.

Challenges of AI application in HCC management
The application of AI in HCC management, and healthcare in general, faces a plethora of challenges that 
include intellectual property concerns, liability, intrinsic bias, data protection and cybersecurity threats, 
ethical concerns, and lack of transparency. Regarding intellectual property, the first step for regulation 
is determining whether an AI/ML-based model should be classified as a medical device, a service, or a 
product. Assessing the intended usage of the developed model is critical. Tools designed to assist in 
diagnosing and treating diseases could be considered as medical devices and therefore should adhere to 
the respective regulations[174]. FDA receives an increasingly high number of submissions with regard 
to the marketing of AI/ML-based software and has recently published the Artificial Intelligence/ 
Machine Learning (AI/ML) – Based Software as a Medical Device (SaMD) Action Plan[175-177]. The 
action plan regards AI/ML-based software classified as medical devices and sets five pillars to facilitate 
the innovation and advancement of AI/ML-based software[175]. A different point of concern is the 
significant divergence of the original licensed product years after the approval[178]. These concerns 
regard both intellectual property and the safety of the tool. What are the rights of developers over their 
evolving products? Are the original product and the deviated model two entirely different products? 
While the original product is clearly protected under copyright law, it is unclear if the healthcare facility 
could have intellectual property demands over the final product that now encompasses data generated 
in the clinical setting[179]. In addition, there are concerns over the product’s safety as it evolves and 
significantly deviates from its initial form. A regulatory framework should be established for AI/ML-
based software that monitors these models throughout their lifecycle[180]. When it comes to regulation, 
rigid regulation suppresses and strangles innovation and creativity, while little regulation could have 
devastating and unintended ramifications. Therefore, the real challenge is finding the optimal balance 
between the two.

A different concern regarding AI/ML-based software applications relates to liability issues. As 
AI/ML-based models advance, they will eventually perform specific tasks better than physicians. How 
could physicians then legally justify their decision to ignore the recommendations presented by AI 
models? Could the AI models’ recommendations become legally binding in the foreseeable future? And 
most importantly, who is liable, when during the AI-assisted management of a patient, an injury occurs? 
Currently, no legal precedent exists concerning the liability of AI-assisted case management, where a 
patient injury occurred[181]. In a recent legal analysis, the authors insightfully analyzed the various 
scenarios regarding liability when an AI model is involved in medical care. Based on the analysis, 
current law protects from liability when physicians follow the standard treatment care[181]. Unfortu-
nately, that could lead to AI/ML-based tools having an affirmative role in patient management and not 
actually contributing to a higher level of care.

Lack of accuracy due to intrinsic biases is another primary concern when AI/ML-based models are 
applied. A primary reason for the lack of accuracy is the unavailability of volume, high-quality, high-
variety, standardized datasets for the model’s training. A secondary reason is that weaknesses in the 
datasets, such as incorrectly labeled cases and discrepancies in the data collection process, are 
inadvertently integrated into the model, limiting its accuracy[182]. Two significant types of bias 
encountered in AI/ML-based models are overfitting and spectrum bias. During the training of the 
models’ algorithms, overfitting occurs when a model is customized for the training data (with 
outstanding evaluation metrics in the training data) but performs significantly poorer in the validation 
set[183]. CNNs, which, as demonstrated, are extensively used in the models for the management of 
HCC, are particularly vulnerable to overfitting[184]. On the other hand, spectrum bias occurs when the 
training dataset consists of samples not representative of the target population; thus, the model’s 
performance is significantly reduced when applied in the intended clinical setting[183]. Another 
limitation of actual accuracy is the in silico nature of most studies, which should lower the expectations 
of similar performances when these models are applied in actual clinical settings.

Several measures could be taken to alleviate the impact of biases on AI/ML models’ accuracy. First, a 
consistent way of reporting performance should be used to allow benchmarking and the drawing of 
meaningful comparisons among the plethora of studies[185]. Second, standardized data collection 
methods and evaluation systems for bias detection should be established to avoid the impact of low-
quality data on the models’ accuracy[186,187]. Finally, when these models are implemented in actual 
clinical settings, an approach similar to the clinical trial phases should be adopted[188].
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Integrating AI into the clinical setting requires an entirely digital tracking of healthcare records. That 
could pose a significant concern and a justified reason to resist AI integration into healthcare since it will 
expand the amount of sensitive data to massive disclosures[189]. An example of such disclosure was the 
transfer of healthcare data from 1.6 million patients in the United Kingdom, which was ruled illegal
[190]. Due to the nature of the data that it generates, the healthcare industry is particularly attractive as a 
potential target for cyberattacks. Steps have been taken under the Health Insurance Portability and 
Accountability Act to shield healthcare facilities from potential breaches of sensitive data[191]. 
However, AI introduces new dangers and vulnerabilities beyond traditional cybersecurity concerns. 
Cyberattacks could target AI models and introduce malignant data into the algorithms to manipulate 
the AI models’ output. These vulnerabilities could significantly undermine the trust in AI software. 
Further steps are required to strengthen the information technology infrastructure in order to ensure the 
integrity of AI systems before they could be integrated into the healthcare system.

Several ethical challenges emerge from the inclusion of AI models into the patient’s management. 
First, data sharing concerns could undermine the physician and the patient’s trust and lead patients to 
conceal information[192]. Second, AI software is incapable of understanding non-quantifiable aspects of 
physicians’ lives, such as understanding the patients’ needs, sympathizing with their beliefs, and 
respecting their wishes. Finally, there are fears that prejudices relating to racism, sexism, and 
socioeconomic inequality included in the training datasets would be mistakenly included in the AI 
model. An infamous example is the COMPAS algorithm, which erroneously flagged black people as 
usual re-offenders[193]. To make things worse, the developers argued that their algorithm was not open 
to scrutiny since it was protected by intellectual property law[193]. It is, therefore, no surprise that 
around two-thirds of the population oppose AI/ML-based models to perform tasks, which physicians 
typically perform[194].

Finally, a last but also significant concern of integrating AI/ML-based software in the healthcare 
system is the lack of transparency. AI models are often described as black-boxes since there are non-
interpretable, and their inner logic is hidden, which creates an intriguing ethical dilemma[195]. On the 
one hand, we could argue that applying technologies that we barely comprehend violates a fun-
damental tenet of medical ethics[196]. However, on the other hand, we could argue that withholding the 
application of AI models that could significantly benefit the patient’s well-being is unethical[194]. To 
overcome this conundrum, regulators, developers, and physicians should cooperate to create a robust 
regulatory framework that increases transparency and addresses biases. A trustworthy AI/ML-based 
model should be built around the principles of credibility, transparency, reliability, auditability, and 
recoverability[197].

LIMITATIONS
This review has several limitations. First, despite our efforts to follow a tight search strategy, as a 
narrative review, this study is prone to selection bias. Second, we did not systematically evaluate each 
study’s risk of bias using a risk assessment tool. Therefore, we advise the readers to keep in mind that 
each study has its own biases and limitations that are not elaborated in this review. Another point is that 
the majority of studies included were conducted in silico, and their models’ reported performance could 
substantially deviate when applied in an actual clinical setting. Finally, our review is prone to 
publication bias, similar to every narrative review, since studies that developed AI models with poor 
performance are less likely to be published.

CONCLUSION
In this review, we have comprehensively presented the applications of 3D printing and AI in the 
management of HCC and summarized the current obstacles that hinder the general use of these techno-
logies in the healthcare industry, and identified several means to overcome them. Several opportunities 
arise from the application of these technologies in the management of HCC. Particularly for 3D printing, 
these opportunities include educational purposes, both regarding the medical staff and the patients, 
preoperative planning, and the development of custom-made medical tools. Specifically, cheap patient-
specific 3D printed hepatic models developed from radiology images could be used to aid surgical 
residents in becoming familiar with the complex liver anatomy[19]. In addition, 3D models have been 
developed to familiarize surgical residents with laparoscopic operations[22,23]. The work of Yang et al
[20] demonstrated how 3D printed liver models could be used for patient education to reach a higher 
understanding of their disease, understand the potential risk of an operation, and facilitate obtaining 
informed consent.

3D printed models also facilitate the preoperative planning of patients operated for HCC. Several 
teams have demonstrated how 3D printed models could significantly improve the surgical outcome 
specifically for patients with rare variations of the abdominal blood vessels[31-33]. Optimizing 
preoperative planning could substantially reduce the operation time and improve surgical outcomes. In 
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Table 4 Artificial intelligence application in hepatocellular carcinoma prognosis

First author Parameters employed AI 
classifier

Sizes of the 
training/validation sets Outcomes Performance Ref.

1 Chaudhary 
K

DNA methylation, RNA, 
and microRNA profiling

Several 360 patients 
(training:validation = 6:4)

Overall survival 0.701,2, 0.66-0.701,3, 
0.67-0.821,4

[122]

2 Chicco D 50 laboratory and clinical 
parameters

Several 165 patients with HCC Overall survival RF: 77.21, 0.7665; Linear 
SVM: 77.15, 0.7631; 
MLP: 72.75, 0.6951; 
Radial SVM: 68.05, 
0.6631; DT: 65.95, 0.6501

[123]

3 Liu X Laboratory results, data 
from immunochemistry of 
peripheral blood 
mononuclear cells, tumor 
characteristics

GBA 
classifier

136/563/1054 Risk of HCC-related 
death

0.8441,2, 0.8271,3, 0.8061,
4

[124]

4 Shi HY Laboratory results, 
clinicopathological 
parameters, tumor charac-
teristics

ANN 22926 patients 5-yr survival following 
surgical resection

96.573,5, 0.8851,3, 97.434,

5, 0.8711,4, 74.234,6
[125]

5 Chiu HC Laboratory results, 
clinicopathological 
parameters, tumor charac-
teristics

ANN 434, 341, and 264 patients for 1-, 
3-, and 5-year 
survival(training:validation = 
8:2)

1-, 3-, and 5-yr overall 
survivalfollowing 
surgical resection

98.5-99.52,5, 0.980-
0.9931,2, 99.7-1002,6, 
96.2-99.22,7, 72.1-85.13,5, 
0.798-0.8751,3, 71.4-88.6
3,6, 50.0-82.13,7

[126]

6 Qiao G Laboratory results, 
clinicopathological 
parameters, tumor charac-
teristics

ANN 362/1813/1044 patients Survival following 
surgical resection

0.8551,2, 80.002,6, 73.402,

7, 0.8321,3, 78.673,6, 
75.703,7, 0.8291,4, 77.424,

6, 78.084,7

[127]

7 Guo L RNA sequencing RF 239/130 patients Overall survival 893,5 [128]

8 Saillard C Hematoxylin and eosin-
stained WSI

CNN 309/3424 WSIs Survival following 
surgical resection

0.75-0.781,2, 0.68-0.701,4 [129]

9 Zhong BY ALBI/CTP stage ANN 548/1154/1754 Survival of patients 
treated with chemoem-
bolization as 
monotherapy

ALBI-based: 0.7991,4, 
0.7001,4; CTP-based: 
0.7291,4, 0.8021,4

[130]

10 Zhong BY ALBI/CTP stage ANN 319/614/1244 Survival of patients 
treated with chemoem-
bolization and 
sorafenib

ALBI-based: 0.7161,4, 
0.8231,4; CTP-based: 
0.7791,4, 0.6931,4

[131]

11 Zhang L CT scans, clinical features CNN 120/813 patients Survival of patients 
treated with chemoem-
bolization and 
sorafenib

0.7171,2, 0.7141,3 [132]

12 Liu QP CT radiomics, clinical 
parameters

DNN-DAE 243 patients Overall survival 
following TACE

0.87-0.931,3 [108]

13 Mähringer-
Kunz A

Routine laboratory tests 
and clinicopathological 
parameters

ANN 125/57 patients 1-yr overall survival 
following TACE

0.771,2, 0.831,3, 77.83,6, 
81.03,7

[133]

14 Liu X Routine laboratory tests 
and clinicopathological 
parameters

ANN 1480/637 patients Progression-free 
survival. Overall 
survival

0.8661,2, 0.7301,3. 0.8771,

2, 0.8041,3
[134]

15 Ho WH Laboratory results, 
clinicopathological 
parameters, surgery 
parameters

ANN, DT 427, 354, and 297 patients for 1-, 
3-, and 5-yr survival 
(training:validation = 8:2)

1-, 3-, and 5-yr disease-
free survival following 
surgical resection

ANN: 0.963-0.9891,2, 
93.5-96.32,6, 91.6-97.92,7, 
0.774-0.8641,3, 70.0-78.7
3,6, 54.2-92.73,7. DT: 
0.675-0.8251,2, 19.6-94.8
2,6, 45.8-97.92,7, 0.561-
0.7181,3, 0-88.53,6, 37.5-
96.43,7

[135]

16 Bedon L DNA methylation 
profiling

RF-based 300/74 specimens 6-mo progression-free 
survival

67.1-80.62,5, 64.8-80.24,5 [136]

17 Schoenberg 
MB

Routine laboratory tests 
and clinicopathological 
parameters

RFS 127/53 patients Disease-free survival 
following resection

0.766-0.7881,3 [137]
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18 Wu CF Laboratory tests and 
clinicopathological 
parameters, treatment 
data

ANN 252 patients(training:validation 
= 8:2)

1-yr and 2-yr disease-
free survival following 
RFA

0.72-0.771,3, 56.3-63.63,6, 
70.0-71.83,7

[138]

19 Divya R Laboratory results, 
clinicopathological 
parameters, tumor charac-
teristics

APO, SVM, 
RF

152 patients Recurrence following 
RFA

95.53,5, 95.13,6, 95.83,7 [139]

20 Huang Y Demographics, laboratory 
tests, tumor characteristics

GBS 
classifier

5928/1483 patients Recurrence following 
surgical resection. 
Overall survival

0.7041,2, 0.697-0.7131,3. 
0.565-0.7361,2, 0.551-
0.7511,3

[140]

21 Shen J Disease-free related genes 
sequencing

DT, SVM 315 HCC patients Recurrence following 
surgical resection

DT: 74.195, 0.751, 70.414

,5. SVM: 80.655, 0.5951
[141]

22 Wang W CT radiomics, clinical data CNN, SVM, 
RF

167 patients Early recurrence 
following surgical 
resection

0.723-0.8251,3 [142]

23 Ji GW CT radiomics, laboratory 
results, clinicopatho-
logical parameters

Several 210/1073/1534 patients Recurrence time 
following surgical 
resection

Radiomics model: 
0.748-0.7521,2, 0.781-
0.8011,3, 0.733-0.7411,4. 
Clinical model: 0.716-
0.7271,2, 0.707-0.7391,3, 
0.696-0.7161,4

[143]

24 Xu D Routine laboratory tests 
and clinicopathological 
parameters, intra-
operative parameters

BN-based 995 patients Recurrence time 
following surgical 
resection

0.573,5, 0.573,6 [144]

25 Jianzhu B Several including 
immune, tumor, nutrition, 
and indicators

CS-SVM 776 liver cancer recurrences Recurrence time. 
Recurrence location

Mean square error = 
9.2101, 95.75, 0.951

[145]

26 Yamashita R Hematoxylin and eosin-
stained WSI

CNN 299/533/1984 WSIs Recurrence following 
surgical resection

0.7241,3, 0.6831,4 [77]

27 Liao H Hematoxylin and eosin-
stained WSI

RF 491 WSIs Overall survival 0.563-0.7061,3, 0.565-
0.6211,4

[146]

28 Saito A Hematoxylin and eosin-
stained WSI

SVM 69/894 Recurrence time 
following surgical 
resection

99.82,5, 68.1-80.64,5 [147]

29 Liang JD Laboratory results, 
clinicopathological 
parameters

SVM 83 patients Recurrence following 
RFA

73-823,5, 0.60-0.691,3, 77-
863,6, 73-823,7

[148]

30 An C MRI scans CNN 141 HCC lesions Local tumor 
progression following 
MWA

0.7281 [149]

31 Nam JY Routine laboratory tests 
and clinicopathological 
parameters

DNN 349/214 patients Post-transplant HCC 
recurrence

0.62-0.751,3, 0.63-0.763,6, 
0.46-0.623,7

[150]

32 Nam JY Laboratory results, 
clinicopathological 
parameters, tumor charac-
teristics

DNN 349/214 transplanted patients Post-transplant HCC 
recurrence

0.751,3, 763,6, 463,7 [150]

33 Rodriguez-
Luna H

Genotyping data from 
microsatellite 
mutations/deletions

ANN 19 transplanted patients Post-transplant HCC 
recurrence

89.53,5 [151]

34 Guo D Laboratory results, 
clinicopathological 
parameters CT radiomics

LASSO 93/40 transplanted patients Recurrence free-
survival following liver 
transplantation 

0.675-0.7851,2, 0.705-
0.7891,3

[152]

35 Lau L Laboratory results, 
clinicopathological 
parameters, donor charac-
teristics

ANN, RF 90/90 transplants Graft failure/primary 
nonfunction. 3-mo 
graft failure

ANN: 0.734-0.8351,3; 
RF: 0.787-0.8181,3. 
ANN: 0.5591,3, RF: 
0.7151,3

[153]

36 Briceño J Laboratory results, 
clinicopathological 
parameters, surgical 
parameters, donor charac-
teristics

ANN 1003 liver transplants 3-mo graft failure 0.806-0.8211,3 [154]
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37 Ershoff BD Laboratory results, 
clinicopathological 
parameters, donor charac-
teristics

DNN 46035/11509 90-d post-transplant 
survival

0.695-0.7081,3, 30.9-35.8
3,6, 88.1-90.83,7

[155]

1Area under the receiver operating curve or c-index.
2Training.
3Internal validation.
4External validation/testing.
5Accuracy (%).
6Sensitivity (%).
7Specificity (%).
ALBI: Albumin-bilirubin; ANN: Artificial neural network; APO: Artificial plant optimization; BN: Bayesian network; CNN: Convolutional neural network; 
CS: Cuckoo-search; CT: Computed tomography; CTP: Child-Turcotte-Pugh; DNN: Deep neural network; DAE: Deep auto-encoder; DT: Decision tree; GBS: 
Gradient boosting survival; HCC: Hepatocellular carcinoma; LASSO: Least absolute shrinkage and selection operator; MLP: Multi-layer perceptron neural 
network; MRI: Magnetic resonance imaging; MWA: Microwave ablation; RF: Random forest; RFA: Radiofrequency ablation; SVM: Support vector machine; 
TACE: Transarterial chemoembolization; US: Ultrasound; WSI: Whole-slide image.

liver transplantation, the work of Zein et al[25] demonstrated how 3D printed models of high anatomical 
precision could be used to optimize the recipient-donor matching in graft allocation by unveiling any 
unsuitable anatomy between the donor and the recipient. In recently published consensus recommend-
ations, it is strongly recommended that for complicated cases of HCC, 3D visualization is carried out to 
comprehend the course/variation of the portal vein and understand how it is related to the tumor[198]. 
In addition, 3D visualization is recommended as part of preoperative planning for centrally located 
HCC and/or complex vascular anatomy[198]. Finally, the works of Damiati et al[35] and Han et al[38] 
highlight the opportunity that arises from 3D printing in the fabrication of custom-made medical tools 
for the diagnosis and treatment of HCC.

3D printing is an evolving field in the medical disciplines, evident by the increasing number of 
publications each year[10]. It is pretty impressive that even though the majority of the studies regarding 
3D printing report a significant improvement of the investigated medical outcome, only 14% of those 
studies support their findings in a quantitative manner, rendering their conclusions rather subjective
[158]. This lack of consistency on how to report results precludes any meaningful comparison between 
studies. With the costs related to 3D printed models steadily decreasing, it is expected that 3D printing 
applications will significantly expand[199].

Bioprinting could potentially have a profound impact on liver surgery. Currently, the opportunities 
that arise from its application in HCC management include the development of 3D bioprinted hepatic 
scaffolds that could be used to develop antitumor drugs since 3D bioprinted models more precisely 
represent the microenvironment of HCC compared to other tissue engineering methods. Specifically, 
the work of Sun et al[45], who used HepG2, and the work of Xie et al[45], who used patient-derived 
HCC cells, demonstrate how 3D bioprinting could aid the individualized treatment of patients with 
HCC.

Liver transplantation is the only definitive treatment of liver failure. However, it is currently being 
restricted by the limited number of liver grafts. Promising results from animal studies demonstrate how 
3D bioprinted liver organoids could be transplanted to prolong the survival of mice with liver failure
[200]. These results raise the expectations that bioprintable liver grafts could be used in the future in 
regenerative medicine to ameliorate the burden of the liver graft shortage. However, despite a 
promising field, we should highlight that bioprinting is currently in its infancy.

The application of AI/ML-based models offers a plethora of opportunities in the management of 
HCC. First, in prevention, AI/ML models could be integrated into the healthcare system and analyze 
data directly from patients’ healthcare records in real-time to flag patients at high risk of developing 
HCC. Current efforts include predicting HCC development in patients with chronic HBV infection[48] 
and chronic HCV infection[51-54]. Other studies focusing on prevention have developed AI/ML models 
employing genetic and epigenetic markers such as long-coding RNAs to screen for HCC[47,49,50]. 
These models demonstrate how AI could facilitate tailoring individualized follow-up schedules and 
identifying patients at a greater need to achieve a SVR. Following prevention, early detection is 
equivalently crucial in the management of HCC. Current efforts for early detection include studies that 
employ biomarkers to develop AI/ML models to detect HCC development[55-59].

In diagnostics, AI/ML models could enhance diagnostic accuracy in different diagnostic modalities. 
Specifically, current efforts include CAD models for detecting HCC either among a plethora of focal 
hepatic lesions or between HCC and non-HCC lesions. These models employ different diagnostic 
modalities, including US imaging[60-62,80,81], CT imaging[64-66,90,91], MRI[69-73], and PET/CT 
imaging[92]. Other studies employed hematoxylin and eosin-stained WSI to detect HCC lesions and 
classify the level of differentiation[74-79].

Regarding treatment, AI/ML models provide several opportunities to reduce the morbidity and 
mortality associated with HCC. These opportunities include the development of frameworks for 
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individualized, evidence-based treatment allocation[99,101], the prediction of the presence of certain 
mutations as a base for appropriate drug selection[75,103,104], the prediction of MVI presence to 
facilitate the appropriate treatment selection[105-110], and finally the prediction of the response to 
treatment, and particularly TACE, as a tool to identify patients who would benefit more from treatment
[113-116].

Finally, regarding prognosis, AI/ML models could be used to predict patient outcomes. Such models 
could be used as the basis to counsel the patient and the patient’s family. Recent initiatives include the 
prediction of overall survival[123-127], the prediction of progression-free survival[134-138], the 
prediction of survival of non-operated patients treated with TACE[130-133], and HCC recurrence 
following therapeutic treatment[77,139-142]. In liver transplantation, current efforts include models to 
predict post-transplant HCC recurrence and individual liver graft survival as tools to optimize the graft 
allocation procedure[150-155].

As demonstrated by our findings, there is a lack of consistency regarding the validation strategies 
employed by each study and the different metrics used to assess the models’ performance. This lack of 
consistency significantly limits our ability to draw any meaningful comparisons among the models. A 
challenge for the future would be to develop a robust tool for presenting the performance of these 
models that would allow benchmarking.

Even though AI has been on the frontline for several decades, AI has not yet been integrated into the 
healthcare system. AI in medicine could be seen as a field that overpromises but invariably 
underdelivers. This is evident during AI winters, where the funding for AI research is halted due to the 
investors’ dissatisfaction that AI does not progress at a rate at which they are comfortable investing[14]. 
Overcoming the current challenges of AI applications is a vital part of integrating AI in the healthcare 
industry.

Physicians should keep in mind that AI/ML-based models are simply medical tools that, similar to all 
medical tools, have weaknesses, biases, and limitations. Overelining on AI could exclude non-quanti-
fiable information from decision-making, with unknown ramifications[194]. AI should not subsume out 
critical thinking and reasoning. The aim should therefore be an AI-assisted rather than an AI-driven 
clinical practice[201]. Furthermore, the integration of AI in healthcare must occur in conjunction with 
integrating sophisticated and robust evaluation tools that monitor the consequences of AI application in 
the clinical setting, and more importantly, the impact of these tools on patient outcomes[202]. A notable 
example is the Digital Health Innovation Action Plan supported by the FDA to facilitate the evaluation 
of developing medical software. It is based on the following five excellence criteria: Patient safety, 
product quality, proactive culture, cybersecurity responsibility, and clinical responsibility[203].

Finally, an intriguing challenge for the future is to combine emerging technologies, including 3D 
printing and 3D bioprinting, AI and ML, augmented reality, novel biomarkers, and robotics, into a 
unified, interrelated framework[204-208]. In this new, complex, and sophisticated clinical setting, 
physicians would reject oversimplifying an inherently complex field but rather embrace the complexity. 
Finally, are shown by our findings, AI and 3D printing applications in healthcare are steadily 
expanding; thus, these technologies will be integrated into the clinical setting sooner or later. Therefore, 
we believe that physicians need to become familiar with these technologies and prepare to engage with 
them constructively.
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