World Journal of *Gastrointestinal Oncology*

World J Gastrointest Oncol 2022 April 15; 14(4): 748-946

Published by Baishideng Publishing Group Inc

World Journal of Gastrointestinal Oncology

Contents

Monthly Volume 14 Number 4 April 15, 2022

REVIEW

	Regulatory RNAs, microRNA, long-non coding RNA and circular RNA roles in colorectal cancer stem cells
	Chao HM, Wang TW, Chern E, Hsu SH
765	Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities
	Christou CD, Tsoulfas G
-04	
794	Role of sirtuins in esophageal cancer: Current status and future prospects
	Otsuka R, Hayano K, Matsubara H
	MINIDEVIEWS
808	Vasoactive intestinal peptide secreting tumour: An overview
	Una Cidon E
820	Management of single pulmonary metastases from colorectal cancer: State of the art
	Chiappetta M, Salvatore L, Congedo MT, Bensi M, De Luca V, Petracca Ciavarella L, Camarda F, Evangelista J, Valentini V, Tortora G, Margaritora S, Lococo F
833	Current guidelines in the surgical management of hereditary colorectal cancers
000	Kudchadkar S. Ahmed S. Mukheriee T. Sagar I
	ORIGINAL ARTICLE
	Basic Study
842	Basic Study Berberine retarded the growth of gastric cancer xenograft tumors by targeting hepatocyte nuclear factor 4α
842	Basic Study Berberine retarded the growth of gastric cancer xenograft tumors by targeting hepatocyte nuclear factor 4α <i>Li LL, Peng Z, Hu Q, Xu LJ, Zou X, Huang DM, Yi P</i>
842 858	Basic Study Berberine retarded the growth of gastric cancer xenograft tumors by targeting hepatocyte nuclear factor 4a Li LL, Peng Z, Hu Q, Xu LJ, Zou X, Huang DM, Yi P Bi-specific T1 positive-contrast-enhanced magnetic resonance imaging molecular probe for hepatocellular carcinoma in an orthotopic mouse model
842 858	Basic Study Berberine retarded the growth of gastric cancer xenograft tumors by targeting hepatocyte nuclear factor 4a Li LL, Peng Z, Hu Q, Xu LJ, Zou X, Huang DM, Yi P Bi-specific T1 positive-contrast-enhanced magnetic resonance imaging molecular probe for hepatocellular carcinoma in an orthotopic mouse model Ma XH, Chen K, Wang S, Liu SY, Li DF, Mi YT, Wu ZY, Qu CF, Zhao XM
842 858 872	 Basic Study Berberine retarded the growth of gastric cancer xenograft tumors by targeting hepatocyte nuclear factor 4a <i>Li LL, Peng Z, Hu Q, Xu LJ, Zou X, Huang DM, Yi P</i> Bi-specific T1 positive-contrast-enhanced magnetic resonance imaging molecular probe for hepatocellular carcinoma in an orthotopic mouse model <i>Ma XH, Chen K, Wang S, Liu SY, Li DF, Mi YT, Wu ZY, Qu CF, Zhao XM</i> Xihuang pills induce apoptosis in hepatocellular carcinoma by suppressing phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin pathway
842 858 872	 Basic Study Berberine retarded the growth of gastric cancer xenograft tumors by targeting hepatocyte nuclear factor 4a <i>Li LL, Peng Z, Hu Q, Xu LJ, Zou X, Huang DM, Yi P</i> Bi-specific T1 positive-contrast-enhanced magnetic resonance imaging molecular probe for hepatocellular carcinoma in an orthotopic mouse model <i>Ma XH, Chen K, Wang S, Liu SY, Li DF, Mi YT, Wu ZY, Qu CF, Zhao XM</i> Xihuang pills induce apoptosis in hepatocellular carcinoma by suppressing phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin pathway <i>Teng YJ, Deng Z, Ouyang ZG, Zhou Q, Mei S, Fan XX, Wu YR, Long HP, Fang LY, Yin DL, Zhang BY, Guo YM, Zhu WH, Huang Z, Zheng P, Ning DM, Tian XF</i>

887 Effect of hepatic artery resection and reconstruction on the prognosis of patients with advanced hilar cholangiocarcinoma

Li YM, Bie ZX, Guo RQ, Li B, Wang CE, Yan F

Conton	World Journal of Gastrointestinal Oncology
Conten	Monthly Volume 14 Number 4 April 15, 2022
897	Prognostic significance of serum inflammation indices for different tumor infiltrative pattern types of gastric cancer
	Wang YF, Yin X, Fang TY, Wang YM, Zhang L, Zhang XH, Zhang DX, Zhang Y, Wang XB, Wang H, Xue YW
920	Regorafenib combined with programmed cell death-1 inhibitor against refractory colorectal cancer and the platelet-to-lymphocyte ratio's prediction on effectiveness
	Xu YJ, Zhang P, Hu JL, Liang H, Zhu YY, Cui Y, Niu P, Xu M, Liu MY
	Clinical Trials Study
935	Genome-wide methylation profiling of early colorectal cancer using an Illumina Infinium Methylation EPIC BeadChip
	Wu YL, Jiang T, Huang W, Wu XY, Zhang PJ, Tian YP

Contents

World Journal of Gastrointestinal Oncology

Monthly Volume 14 Number 4 April 15, 2022

ABOUT COVER

Editorial Board Member of World Journal of Gastrointestinal Oncology, Hanlin L Wang, MD, PhD, Professor, Department of Pathology and Laboratory Medicine, University of California Los Angeles, David Geffen School of Medicine and Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095, United States. hanlinwang@mednet.ucla.edu

AIMS AND SCOPE

The primary aim of World Journal of Gastrointestinal Oncology (WJGO, World J Gastrointest Oncol) is to provide scholars and readers from various fields of gastrointestinal oncology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGO mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal oncology and covering a wide range of topics including liver cell adenoma, gastric neoplasms, appendiceal neoplasms, biliary tract neoplasms, hepatocellular carcinoma, pancreatic carcinoma, cecal neoplasms, colonic neoplasms, colorectal neoplasms, duodenal neoplasms, esophageal neoplasms, gallbladder neoplasms, etc.

INDEXING/ABSTRACTING

The WJGO is now indexed in Science Citation Index Expanded (also known as SciSearch®), PubMed, PubMed Central, and Scopus. The 2021 edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJGO as 3.393; IF without journal self cites: 3.333; 5-year IF: 3.519; Journal Citation Indicator: 0.5; Ranking: 163 among 242 journals in oncology; Quartile category: Q3; Ranking: 60 among 92 journals in gastroenterology and hepatology; and Quartile category: Q3. The WJGO's CiteScore for 2020 is 3.3 and Scopus CiteScore rank 2020: Gastroenterology is 70/136.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ying-Yi Yuan, Production Department Director: Xiang Li, Editorial Office Director: Ya-Juan Ma.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Gastrointestinal Oncology	https://www.wjgnet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 1948-5204 (online)	https://www.wjgnet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
February 15, 2009	https://www.wjgnet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Monthly	https://www.wjgnet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
Monjur Ahmed, Florin Burada	https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/1948-5204/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS
April 15, 2022	https://www.wjgnet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2022 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

0 WŨ

World Journal of **Gastrointestinal** Oncology

Submit a Manuscript: https://www.f6publishing.com

World J Gastrointest Oncol 2022 April 15; 14(4): 794-807

DOI: 10.4251/wjgo.v14.i4.794

ISSN 1948-5204 (online)

REVIEW

Role of sirtuins in esophageal cancer: Current status and future prospects

Ryota Otsuka, Koichi Hayano, Hisahiro Matsubara

Specialty type: Oncology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B Grade C (Good): C Grade D (Fair): D Grade E (Poor): 0

P-Reviewer: Kalayarasan R, India; Yang X, China; Zhuge YZ, China

Received: December 17, 2021 Peer-review started: December 17, 2021 First decision: January 27, 2022 Revised: February 2, 2022 Accepted: March 17, 2022 Article in press: March 17, 2022 Published online: April 15, 2022

Ryota Otsuka, Koichi Hayano, Hisahiro Matsubara, Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan

Corresponding author: Koichi Hayano, FACS, MD, PhD, Associate Professor, Department of Frontier Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan. hayatin1973@gmail.com

Abstract

Esophageal cancer (EC) is a malignant cancer that still has a poor prognosis, although its prognosis has been improving with the development of multidisciplinary treatment modalities such as surgery, chemotherapy and radiotherapy. Therefore, identifying specific molecular markers that can be served as biomarkers for the prognosis and treatment response of EC is highly desirable to aid in the personalization and improvement of the precision of medical treatment. Sirtuins are a family of nicotinamide adenine dinucleotide (NAD+)-dependent proteins consisting of seven members (SIRT1-7). These proteins have been reported to be involved in the regulation of a variety of biological functions including apoptosis, metabolism, stress response, senescence, differentiation and cell cycle progression. Given the variety of functions of sirtuins, they are speculated to be associated in some manner with cancer progression. However, while the role of sirtuins in cancer progression has been investigated over the past few years, their precise role remains difficult to characterize, as they have both cancer-promoting and cancer-suppressing properties, depending on the type of cancer. These conflicting characteristics make research into the nature of sirtuins all the more fascinating. However, the role of sirtuins in EC remains unclear due to the limited number of reports concerning sirtuins in EC. We herein review the current findings and future prospects of sirtuins in EC.

Key Words: Esophageal cancer; Sirtuin; Esophageal squamous cell carcinoma; Esophageal adenocarcinoma; Biomarker; Treatment

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Although there have been several reports on the function of sirtuins in cancer progression, the biological roles and clinical implications of sirtuins in esophageal cancer (EC) remain controversial. This is the first review to focus on sirtuins in the field of EC. In this review, we will briefly summarize the role of sirtuins in cancer and discuss the current findings and future prospects of sirtuins in EC.

Citation: Otsuka R, Hayano K, Matsubara H. Role of sirtuins in esophageal cancer: Current status and future prospects. World J Gastrointest Oncol 2022; 14(4): 794-807 URL: https://www.wjgnet.com/1948-5204/full/v14/i4/794.htm

DOI: https://dx.doi.org/10.4251/wjgo.v14.i4.794

INTRODUCTION

Esophageal cancer (EC) is the seventh leading cause of morbidity and the sixth leading cause of mortality worldwide[1], and the prognosis of advanced EC patients is extremely poor[2]. Therefore, identifying specific molecular markers that can be used as prognostic markers or therapeutic targets for EC is highly desirable to aid in the personalization and improvement of the precision of medical treatment, which can prevent side effects and extra expenses, thereby leading to a more effective multidisciplinary treatment.

Sirtuins are a highly conserved family of proteins that exist in a wide range of prokaryotic and eukaryotic organisms, and their functional activity is dependent on the cofactor nicotinamide adenine dinucleotide (NAD+)[3]. The mammalian sirtuin family is a homolog of the yeast silent information regulator 2 (Sir2) protein and consists of seven members: SIRT1-7. Sirtuins are distinguished by their subcellular localization: SIRT1, SIRT6 and SIRT7 are mainly found in the nucleus; SIRT3, SIRT4 and SIRT5 are mainly located in the mitochondria; and SIRT2 is mainly found in the cytoplasm. Furthermore, the SIRT family proteins have conserved domains in their core catalytic activities, with SIRT1, SIRT2 and SIRT3 designated as class I; SIRT4 designated as class II; SIRT5 designated as class III; and SIRT6 and SIRT7 designated as class IV (Figure 1)[4]. Sirtuins are involved in the regulation of various biological functions, such as apoptosis, metabolism, stress response, aging, differentiation and cell cycle progression[5]. However, while the role of sirtuins in cancer progression has been investigated over the past few years, their precise role remains difficult to characterize, as they have both cancerpromoting and cancer-suppressing properties, depending on the type of cancer[6]. These conflicting characteristics make research into the nature of sirtuins all the more fascinating.

In EC, the clinical impact of sirtuins remains unclear due to the limited number of reports concerning sirtuins in EC. Therefore, this is the first review to focus on sirtuins in the field of EC. In this review, we will briefly summarize the role of sirtuins in cancer and discuss the current findings and future prospects of sirtuins in EC.

LITERATURE SEARCH

PubMed was searched to identify studies on sirtuins and cancer from inception until January 2022. The following search terms were applied: "Sirtuin" or "Silent mating type information regulation 2 homolog" or "SIRT" and "carcinoma" or "cancer". The reference lists of all related articles were screened for other potentially relevant studies.

SIRT1

The role of SIRT1 in cancer progression is contradictory. This is because SIRT1 can both promote and inhibit tumorigenesis (Table 1 and Figure 2)[7].

Several mechanisms that are responsible for the tumor-promoting nature of SIRT1 have been uncovered as follows: (1) SIRT1 contributes to cell proliferation by epigenetically suppressing the expression and activity of many tumor suppressor genes and proteins with DNA damage repair functions such as protein 53 (p53)[8], forkhead class O transcription factor (FOXO) family members[9], E2F transcription factor 1 (E2F1)[10], protein 73 (p73)[11], retinoblastoma protein (RB)[12], Ku70[13], secreted Frizzled-related protein 1(SFRP1), SFRP2, GATA4, GATA5 and mutL homolog 1 (MLH1)[14]; (2) SIRT1 acts as a regulator of apoptosis by deacetylating key apoptosis-related proteins and cell signaling molecules such as p53, nuclear factor kappa B subunit 1 (NF-KB), FOXO3, Ku70, protein kinase B (AKT), mitogen-activated protein kinase (MAPK), and nuclear factor erythroid 2-related factor 2 (NRF2), in response to DNA damage and oxidative stress[6]; and (3) SIRT1 induces epithelial-

Table 1 Roles of sirtuins in cancer control			
	Role	Effect	Involved pathway or mechanism
SIRT1	Promotor	Promote proliferation	p53, FOXO family member, E2F1, p73, RB, Ku70, SFRP1, SFRP2, GATA4, GATA5, MLH1
		Inhibit apoptosis	p53, NF-κβ, FOXO3, Ku70, AKT, MAPK, NRF2
		Induce EMT, promote migration and metastasis	ZEB1
	Suppressor	Inhibit tumor formation and prolif- eration	β-catenin
		Induce apoptosis	survivin
		Inhibit EMT	SMAD4, TGF-β signaling on MMP7
SIRT2	Promotor	Promote proliferation	Mediating immune evasion, altering the alkaline environment
		Inhibit apoptosis	cMYC
		Promote invasion and migration	Stimulating mitochondrial metabolism, mediating EMT
	Suppressor	Inhibit proliferation	Inhibiting fibroblast activity and tumor angiogenesis
		Inhibit invasion and migration	MMP9, E-cadherin
SIRT3	Promotor	Inhibit apoptosis and promote proliferation	p53, SHMT2, IDH2
		Promote invasion and metastasis	Reprogramming fatty acid metabolism
	Suppressor	Induce cell arrest and apoptosis	Bcl-2, p53, HIF1α, PDC, SOD2, GOT2
		Inhibit EMT and migration	FOXO3A, Wnt / β-catenin pathway
		Inhibit tumorigenesis	PDH
SIRT4	Promotor	Promote proliferation	PTEN
	Suppressor	Inhibit glutamine metabolism and proliferation	mTORC1 pathway
		Inhibit EMT, invasion and migration	E-cadherin
		Induce G1 cell cycle arrest	Cyclin D, cyclin E
SIRT5	Promotor	Promote proliferation	GLUD1, SHMT2, NRF2, PKM2, SUN2
		Inhibit mitochondrial apoptosis	Cyt c
		Promote autophagy	AMPK-mTOR pathway
		Promote invasion and migration	E2F1
		Promote resistance to chemotherapy	SDHA
	Suppressor	Inhibit carcinoma development	ACOX1
		Inhibit proliferation	SOD1
		Represent protective mechanism for tumor cells	Inhibiting ammonia-induced autophagy
SIRT6	Promotor	Promote proliferation and inhibit apoptosis	ERK1/2 pathway, AKT
		Promote invasion and migration	ERK1/2/MMP9 signaling
		Contribute to cancer development and progression	Regulating autophagy
	Suppressor	Inhibit proliferation	PCBP2, ERK1/2
		Inhibit Warburg effect	HIF-1α
		Induce apoptosis	NF-κβ, Bax, survivin

Baishideng® WJGO | https://www.wjgnet.com

		Inhibit proliferation, invasion and migration	РКМ2
SIRT7	Promotor	Promote proliferation	ERK1/2, H3K18ac
		Inhibit apoptosis	miR34a, NF-κβ family subunits, mTOR/IGF2 pathway
		Promote invasion	Vimentin, fibronectin, E-cadherin, β -catenin
	Suppressor	Inhibit proliferation and invasion	SMAD4
		Inhibit EMT	TGF-β signaling

ACOX1: Acyl-CoA oxidase 1; AKT: Protein kinase B; Bax: BCL2 associated X; β-catenin: Catenin beta; Cyt c: Cytochrome C; E2F1: E2F transcription factor 1; E-cadherin 1; ERK1/2: Extracellular signal-regulated kinases 1/2; FOXO: Forkhead class O transcription factor; GLUD1: Glutamate dehydrogenase 1; GOT2: Glutamic-oxaloacetic transaminase 2; H3K18ac: Histone H3 lysine 18 acetylation; HIF1α: Hypoxia inducible factor 1 subunit alpha; IDH2: Isocitrate dehydrogenase 2; IGF2: Insulin like growth factor 2; MAPK: Mitogen-activated protein kinase; MLH1: MutL homolog 1; MMP7: Matrix metallopeptidase 7; MMP9: Matrix metallopeptidase 9; mTOR: Mammalian target of rapamycin; mTORC1: Mammalian target of rapamycin complex 1; NF-κB: Nuclear factor kappa B; NRF2: Nuclear factor erythroid 2-related factor 2; p53: Protein 53; p73: Protein 73; PCBP2: Poly(rC) binding protein 2; PDH: Pyruvate dehydrogenase; PKM2: Pyruvate kinase M2; PTEN: Phosphatase and tensin homolog; RB: Retinoblastoma protein; SDHA: Succinate dehydrogenase complex flavoprotein subunit A; SFRP: Secreted Frizzled-related protein; SHMT2: Serine hydroxymethyl transferase 2; SIRT: Sirtuin; SMAD4: SMAD family member 4; SOD1: Superoxide dismutase 1; SOD2: Superoxide dismutase 2; SUN2: Sad1 and UNC84 domain containing 2; TGF-β: Transforming growth factor beta; ZEB1: Zinc finger E-box binding homeobox 1.

DOI: 10.4251/wjgo.v14.i4.794 Copyright ©The Author(s) 2022.

mesenchymal transition (EMT) and promotes cell migration and metastasis by cooperating with EMT transcription factors such as zinc finger E-box binding homeobox 1 (ZEB1) in prostate cancer[15]. It has also been reported that the high expression of SIRT1 is associated with an advanced stage and poor prognosis in certain types of cancer such as gastric cancer[16], lung adenocarcinoma[17] and colorectal cancer[18].

However, SIRT1 has also been reported to function as a tumor suppressor through the following mechanisms: (1) SIRT1 inhibits tumor formation and proliferation by deacetylating catenin beta (β-catenin) in colon cancer[19]; (2) SIRT1 induces apoptosis in breast cancer 1 (BRCA1)-related breast cancer by suppressing survivin, an inhibitor of apoptosis[20]; and (3) SIRT1 suppresses EMT in cancer by deacetylating SMAD family member 4 (SMAD4) and inhibiting the effect of transforming growth factor beta (TGF-β) signaling on matrix metallopeptidase 7 (MMP7), a target gene of SMAD4[21].

DOI: 10.4251/wjgo.v14.i4.794 Copyright ©The Author(s) 2022.

Figure 2 Roles of sirtuins in cell proliferation, apoptosis, invasion and migration. E2F1: E2F transcription factor 1; E-cadherin: Cadherin 1; ERK1/2: Extracellular signal-regulated kinases 1/2; FOXO: Forkhead class O transcription factor; NF-kB: Nuclear factor kappa B; NRF2: Nuclear factor erythroid 2-related factor 2; IRT: Sirtuin; SMAD4: SMAD family member 4.

> In EC, SIRT1 has been reported as a tumor-promoting factor (Table 2). Suppression of SIRT1 inhibits cell proliferation, cell migration and EMT in esophageal squamous cell carcinoma (ESCC) cell line[22, 23]. SIRT1 has been suggested to be useful as a biomarker in EC as follows: (1) It has been reported that SIRT1 expression is associated with a poor prognosis in both ESCC and esophageal adenocarcinoma (EAC)[23-28]; (2) SIRT1 has also been demonstrated to be related to chemotherapy and chemoradiotherapy resistance in several ESCC studies[29-32]; and (3) SIRT1 has been described to be a useful biomarker for high-grade dysplasia and cancer of Barrett's esophagus[33]. Furthermore, we conducted a meta-analysis of these articles and demonstrated that a high expression of SIRT1 was correlated with a poor overall survival (OS), deeper tumors and a more advanced TNM stage in patients with ESCC[34]. In addition, recent studies have reported the potential utility of SIRT1 as a therapeutic target in EC. Liu et al[35] reported that rapamycin suppressed cell viability, migration, invasion and the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathways in EC by negatively regulating SIRT1. Jiang et al[36] reported that sirtinol inhibited cell viability in EAC in a dose-dependent manner, affected proliferation in the long term and potentially suppressed resistant and recurrent tumors under hypoxic conditions. Taken together, these reports suggest that SIRT1 inhibition may play an important role in the therapeutic field of EC.

SIRT2

Similar to SIRT1, SIRT2 has been reported to have both tumor-promoting and tumor-suppressing effects depending on the cancer type (Table 1 and Figure 2).

SIRT2 has been reported to promote cell proliferation in hepatocellular carcinoma (HCC), pancreatic cancer and neuroblastoma[37,38]. SIRT2 also promotes cell growth by interacting with the tumor microenvironment, such as mediating immune evasion and altering the alkaline environment[39]. In cholangiocarcinoma, SIRT2 inhibits apoptosis via the peroxidation reaction through metabolic reprogramming by activating cMYC[40]. In addition, SIRT2 promotes invasion and migration in HCC by stimulating mitochondrial metabolism and mediating EMT[41,42].

Table 2 Roles of sirtuins in esophageal cancer					
	Туре	Role	Effect	Ref.	
SIRT1	ESCC	Promotor	Suppression of SIRT1 inhibits cell proliferation, cell migration, and EMT in ESCC cell line	[<mark>22,2</mark> 3]	
			SIRT1 expression is associated with poor prognosis	[23-27, 34]	
			SIRT1 enhances chemotherapy and chemoradiotherapy resistance	[29-32]	
			Rapamycin suppresses cell viability, migration, invasion by negatively regulating SIRT1	[35]	
	EAC		SIRT1 is associated with poor overall survival	[<mark>28</mark>]	
			SIRT1 is a useful biomarker for high-grade dysplasia and cancer of Barrett's esophagus	[33]	
			Sirtinol, SIRT1 inhibitor, inhibits cell viability, affects proliferation in the long term, and potentially suppresses resistant and recurrent tumors under hypoxic conditions	[<mark>36</mark>]	
SIRT2	ESCC	Promotor	SIRT2 expression was associated with tumor invasion, lymph node metastasis, advanced clinical stage, poor progression-free survival, and overall survival	[47]	
	EAC	Suppressor	Dysregulation of SIRT2 is associated with poor prognosis	[48,49]	
SIRT3	ESCC	Promotor	Serum SIRT3 levels are higher in ESCC patients compared to those in the control subjects	[63]	
			SIRT3 induces the proliferation inhibition and apoptosis	[<mark>64</mark>]	
			High SIRT3 expression is associated with poor survival outcome	[65,66]	
	EAC		No report		
SIRT4	ESCC	Suppressor	SIRT4 rescues the promoting effect of miR-424-5p on ESCC cell proliferation and migration	[76]	
			Low SIRT4 expression is associated with a high distant recurrence rate and poor prognosis, and in vitro, knockdown of SIRT4 promotes cell proliferation and migration	[77]	
	EAC		No report		
SIRT5	ESCC		No report		
	EAC				
SIRT6	ESCC	Promotor	SIRT 6 is overexpressed in ESCC tissues and that it also promotes cell proliferation and induces the expression of Bcl2, an important anti-apoptotic factor, and autophagy in ESCC cells	[102]	
	EAC		No report		
SIRT7	ESCC		No report		
	EAC				

EAC: Esophageal adenocarcinoma; EMT: Epithelial-mesenchymal transition; ESCC: Esophageal squamous cell carcinoma; SIRT: Sirtuin.

Conversely, SIRT2 has been reported as a tumor suppressor that inhibits the growth of tumor cells through interaction with the tumor microenvironment, such as by inhibiting fibroblast activity and tumor angiogenesis[39]. In addition, the increased expression of matrix metalloproteinase 9 (MMP9) and decreased expression of cadherin 1 (E-cadherin) were shown to promote cell migration and invasion in SIRT2-deficient mouse embryonic fibroblasts[43]. In addition, a low expression of SIRT2 is reportedly associated with a poor prognosis in prostate cancer[44], cervical cancer[45] and colorectal cancer^[46].

In EC, Yan et al [47] reported that SIRT2 expression was associated with tumor invasion, lymph node metastasis, advanced clinical stage, a poor progression-free survival and the OS in ESCC patients (Table 2). In contrast, SIRT2 has been reported to be a tumor suppressor in EAC. Ong et al[48] revealed that dysregulation of SIRT2 significantly increased the hazard ratio of death. Peters et al[49] also demonstrated that the dysregulation of SIRT2 was significantly associated with a poor prognosis in esophageal and junctional adenocarcinoma.

SIRT3

Whether SIRT3, a major mitochondrial deacetylase, functions as a tumor promoter or suppressor remains controversial (Table 1 and Figure 2).

SIRT3 regulates deacetylation to a variety of substrates, including p53, serine hydroxymethyltransferase 2 (SHMT2) and isocitrate dehydrogenase 2 (IDH2), preventing apoptosis and promoting cell proliferation[50-52]. In addition, Li et al[53] showed that SIRT3 promotes infiltration and metastasis of cervical cancer cells by reprogramming fatty acid metabolism.

In contrast, many studies have suggested the role of SIRT3 as a tumor suppressor. It has been reported that SIRT3 induces tumor-suppressing effects such as cell arrest and apoptosis by controlling Bcl-2, p53, hypoxia inducible factor 1 subunit alpha (HIF1α), pyruvate dehydrogenase complex (PDC), superoxide dismutase 2 (SOD2) and glutamic-oxaloacetic transaminase 2 (GOT2)[54-59]. Regarding metastasis, Li *et al*^[60] revealed that SIRT3 promoted FOXO3A expression by weakening the Wnt/ β catenin pathway thereby inhibiting EMT and prostate cancer cell migration. Furthermore, Ozden et al [61] reported that activation of pyruvate dehydrogenase (PDH) by SIRT3 increased oxidative phosphorylation and reactive oxygen species production and reduced glycolysis which contributed to reduced tumorigenesis in cancer cells.

The relationship between SIRT3 expression and the clinical prognosis reportedly differs depending on the type of cancer and no clear consensus has yet been reached[62].

Regarding EC, several reports showed SIRT3 was a tumor promotor in ESCC (Table 2). Cobanoğlu et $al_{[63]}$ reported that serum SIRT3 Levels were significantly higher in ESCC patients than in the control subjects. Yang et al[64] showed that downregulation of SIRT3 induced the proliferation inhibition and apoptosis in ESCC cells. In addition, two articles demonstrated that a high SIRT3 expression was significantly associated with a poor survival outcome [65,66]. There have been no reports yet on the relationship between EAC and SIRT3.

SIRT4

SIRT4 has been reported primarily as a tumor suppressor (Table 1 and Figure 2). Wang et al[67] revealed that SIRT4 was downregulated in 30 cancers according to an analysis using data from The Cancer Genome Atlas (TCGA) database. SIRT4 is an important component of the DNA damage response pathway that inhibits glutamine metabolism, arrests the cell cycle and suppresses tumors. When SIRT4 is deficient, glutamine-dependent proliferation and stress-induced genomic instability increase resulting in a tumorigenic phenotype [68]. Csibi *et al* [69] also reported that the mammalian target of rapamycin complex 1 (mTORC1) pathway inhibited SIRT4 and stimulated glutamine metabolism and cell proliferation. In addition, SIRT4 has been reported to enhance E-cadherin and inhibit EMT, thereby decreasing migration and the invasion ability in gastric and colorectal cancer cells[70,71]. Furthermore, Hu et al^[72] showed that overexpression of SIRT4 induced G1 cell cycle arrest through the inhibition of the phosphorylated extracellular signal-regulated kinases cyclin D and cyclin E. In addition, several studies have revealed that a low SIRT4 expression was significantly correlated with a poor prognosis in patients with various cancers[73].

In contrast, a small number of studies have reported the function of SIRT4 as a tumor-promoting factor (Table 1). Jeong et al[74] demonstrated that the overexpression of SIRT4 protected cancer cells from DNA damage or endoplasmic reticulum stress, and conversely, the loss of SIRT4 sensitized cells after drug treatment. Furthermore, when cells are starved of nutrients, SIRT4 cooperates with insulindegrading enzymes to degrade phosphatase and tensin homolog (PTEN), a tumor-suppressing factor, and promote the survival of cancer cells[75].

In EC, SIRT4 has been reported as a tumor suppressor (Table 2). Cui et al[76] revealed that SRT4 was negatively regulated by miR-424-5p, and overexpression of SIRT4 strongly rescued the promoting effect of miR-424-5p on ESCC cell proliferation and migration capacity. In addition, Nakahara et al[77] reported that a low SIRT4 expression was significantly associated with a high distant recurrence rate and poor prognosis, and in vitro, knockdown of SIRT4 promoted glutamine dehydrogenase activity and stimulated cell proliferation and migration.

SIRT5

As with other sirtuins, the role of SIRT5 in cancer is highly controversial with some reports emphasizing the cancer-promoting function of SIRT5. (Table 1 and Figure 2). SIRT5 functionally activates glutamate dehydrogenase 1 (GLUD1), an important regulator of intracellular glutaminolysis, and is involved in cell proliferation [78]. In addition, Yang reported that SIRT5 mediated the desuccinvlation of SHMT2 and enhanced its activity, which in turn promotes serine metabolism in tumor cells thereby promoting cancer cell growth [79]. Furthermore, studies have shown that SIRT3 promotes cell proliferation by targeting NRF2, pyruvate kinase M2 (PKM2), and Sad1 and UNC84 domain containing 2 (SUN2)[80-82]. Regarding apoptosis, SIRT5 has been reported to deacetylate cytochrome C (Cyt c) and induce mitochondrial apoptosis[83]. Gu et al[84] demonstrated that SIRT5 enhances autophagy and exerts tumor-promoting functions in gastric cancer cells. Moreover, SIRT5 promotes cancer cell invasion and migration by targeting E2F1[85]. Du et al[86] revealed that SIRT5 demalonylated and inactivated

succinate dehydrogenase complex flavoprotein subunit A (SDHA) and accumulated its metabolite succinate resulting in resistance to chemotherapy.

In contrast, SIRT5 has also been reported to have tumor-suppressive effects (Table 1). Chen *et al*[87] revealed that SIRT5-mediated desuccinylation inhibited the activity of acyl-CoA oxidase 1 (ACOX1) and played an important role in the suppression of oxidative stress, protection of the liver and inhibition of HCC development. SIRT5 has been suggested to have a tumor-suppressor function via desuccinvlation of superoxide dismutase 1 (SOD1)[88]. Furthermore, Polletta et al[89] demonstrated that SIRT5 inhibited ammonia-induced autophagy which is regarded as a protective mechanism for tumor cells. Therefore, activation of SIRT5 is thought to reduce the survival of tumor cells in response to stresses, such as chemotherapy, hypoxia and nutrient starvation.

The relationship between the SIRT5 expression and clinical prognosis has also been reported to vary by cancer type [78,90].

In EC, there have been no reports on the role of SIRT5, and there is much room for further investigation of the association between SIRT5 and EC.

SIRT6

SIRT6, like other sirtuins, functions as a double-edged sword in cancer (Table 1 and Figure 2). SIRT6 inhibits tumor growth by targeting poly(rC) binding protein 2 (PCBP2) and extracellular signalregulated kinases 1/2 (ERK1/2)[91,92]. SIRT6 represses HIF-1α and regulates the expression of multiple glycolytic genes[93]. This indicates that SIRT6 plays a role in tumor suppression by inhibiting the Warburg effect. In addition, SIRT6 induces apoptosis in cancer cells by acting on NF-ĸB, BCL2 associated X (Bax) and survivin[94,95]. Bhardwaj et al[96] found that SIRT6 inhibited the oncogenic activity of PKM2, which has a non-metabolic nuclear carcinogenic function, resulting in a reduced cell proliferation, migration ability and invasiveness. One meta-analysis revealed that a high SIRT6 expression was associated with a longer OS in gastrointestinal cancers and a favorable TNM stage[97].

However, the role of SIRT6 as a tumor-promoting factor has also been reported. SIRT6 enhances HCC cell proliferation and inhibits apoptosis through the regulation of the ERK1/2 pathway[98]. In addition, Zhou et al[99] revealed that SIRT6 inhibited the acetylation of AKT and promoted its activation thereby preventing apoptosis and inducing cell proliferation. Bai *et al* [100] reported that the overexpression of SIRT6 in non-small-cell lung cancer cell lines promoted migration and invasion via ERK1/2/MMP9 signaling. SIRT6 has also been reported to positively regulate autophagy in melanoma cells and to exhibit tumor-promoting effects[101].

In EC, SIRT6 has been reported as a tumor-promoting factor (Table 2). Huang et al[102] demonstrated that SIRT6 was markedly overexpressed in ESCC tissues and that it also promoted cell proliferation and induced the expression of Bcl2, an important anti-apoptotic factor and autophagy in ESCC cells.

SIRT7

Like other sirtuins, SIRT7 has also been reported to have both tumor-promoting and tumor-suppressing roles (Table 1 and Figure 2). SIRT7 promotes cell proliferation by regulating ERK1/2 and histone H3 Lysine 18 acetylation (H3K18ac)[103,104]. In addition, SIRT7 induces apoptosis via miR34a, NF-KB family subunits and the mTOR/insulin like growth factor 2 (IGF2) pathway[105-107]. SIRT7 also influences the metastasis of cancer cells. Yu et al[103] showed that cells overexpressing SIRT7 had elevated levels of vimentin and fibronectin, which are markers of mesenchymal lineage, and decreased levels of E-cadherin and β -catenin, which are markers of epithelial lineage indicating enhanced invasion of colon cancer cells.

The role of SIRT7 as a tumor suppressor has been reported to include inhibition of growth and metastasis. Li et al[108] demonstrated that SIRT7 inhibited cell proliferation and invasion by deacetylating SMAD4 in oral squamous cell carcinoma. In addition, Tang et al[109] also revealed that loss of SIRT7 activated TGF- β signaling and promoted EMT.

Reports concerning the relationship between the SIRT7 expression and the prognosis are conflicting, with some citing a good prognosis while the others describe a poor prognosis [110].

In EC, there are no reports investigating the role of SIRT7, and whether it acts as a tumor-promoting factor or a tumor-suppressing factor remains unclear.

FUTURE PERSPECTIVES

As mentioned above, sirtuins have been investigated in a variety of cancer types and play a dichotomous role depending on the situation. This trend is also true in the field of EC. SIRT1, SIRT2, SIRT3 and SIRT6 have been reported as tumor-promoting factors in ESCC, along with SIRT1 in EAC,

while SIRT4 and SIRT2 have been reported as tumor suppressors in ESCC and EAC, respectively. SIRT5 and SIRT7 are interesting targets of study since their roles in both ESCC and EAC have not yet been reported.

One of the future points to be explored concerning sirtuins in EC is expected to be their utility as biomarkers. In most previous studies, the degree of sirtuin expression was assessed by immunohistochemistry. However, the cut-off values for sirtuin expression differed among studies, and this heterogeneity in assessment methods may have led to conflicting results among cancer types. Therefore, more accurate and less-invasive evaluations are anticipated in the future. Serum SIRT3 Levels have been reported to be a potentially useful biomarker, not only in EC[63] but also in lung cancer[111], suggesting that serum sirtuin levels merit exploration as a minimally invasive biomarker. Furthermore, in recent years, a wide variety of public databases, such as TCGA, have been used for analyses[67]. This is expected to make it possible to obtain more comprehensive and standardizable information in the future.

Since sirtuin enzymes play an important role in the regulation of various cellular events, there is strong interest in pursuing sirtuins as therapeutic targets. Although many reports related to the development of sirtuin inhibitors/activators have been found in electronic searches, only a very limited number of small-molecule compounds, such as reveratol and Ex-527, have been subjected to clinical trials[112]. In the field of EC, the effects of the SIRT1 inhibitors rapamycin and sirtinol have been reported *in vitro* and *in vivo*[35,36]. However, SIRT1, like other sirtuins, has been suggested to promote or inhibit cancer in a context-dependent manner so many comprehensive studies are needed to determine its clinical application. Although not yet presented, other sirtuin-targeted agents still have great therapeutic potential and advances in this area will contribute to the development of EC treatment.

In recent years, the breakthrough of immunotherapy has been considered an important topic in EC [113]. The involvement of sirtuins in immunity has been widely studied since the early discovery that SIRT1 regulates NF- κ B, a transcription factor known to control inflammation and immune cell proliferation[114]. There have been no reports on the role of sirtuins in immunotherapy of esophageal cancer, although some reports have appeared in other cancer types. Zhang *et al*[115] showed that pharmacological inhibition of SIRT2 increased natural killer cell infiltration into the tumor and suppressed tumor growth in allograft melanoma. Furthermore, Xiang *et al*[116] demonstrated that SIRT7 suppressed myocyte enhancer factor 2D acetylation and programmed death ligand 1 expression and promoted HCC cell proliferation. Thus, the role of sirtuins in anti-tumor immunity in EC is an issue that deserves further attention and research.

CONCLUSION

In summary, sirtuins may be a key target for EC treatment in the future. However, much research is still needed to determine the clinical application as many aspects remain unresolved. We hope that this review will contribute to the development of this field.

FOOTNOTES

Author contributions: Otsuka R contributed to conception and design; All authors contributed to manuscript writing, figure preparation and review and approval of the article to be published.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Japan

ORCID number: Ryota Otsuka 0000-0001-7360-9069; Koichi Hayano 0000-0003-4733-8220; Hisahiro Matsubara 0000-0002-2335-4704.

S-Editor: Gong ZM L-Editor: Filipodia P-Editor: Gong ZM

Baishidena® WJGO | https://www.wjgnet.com

REFERENCES

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249 [PMID: 33538338 DOI: 10.3322/caac.21660]
- 2 Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet 2013; 381: 400-412 [PMID: 23374478 DOI: 10.1016/S0140-6736(12)60643-6]
- 3 Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007; 404: 1-13 [PMID: 17447894 DOI: 10.1042/bj20070140]
- Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 4 2000; 273: 793-798 [PMID: 10873683 DOI: 10.1006/bbrc.2000.3000]
- Jaiswal A, Xudong Z, Zhenyu J, Saretzki G. Mitochondrial sirtuins in stem cells and cancer. FEBS J 2021 [PMID: 5 33866670 DOI: 10.1111/febs.15879]
- Zhao E, Hou J, Ke X, Abbas MN, Kausar S, Zhang L, Cui H. The Roles of Sirtuin Family Proteins in Cancer Progression. 6 Cancers (Basel) 2019; 11 [PMID: 31817470 DOI: 10.3390/cancers11121949]
- 7 Li K, Luo J. The role of SIRT1 in tumorigenesis. N Am J Med Sci (Boston) 2011; 4: 104-106 [PMID: 22180829 DOI: 10.7156/v4i2p104
- Sasca D, Hähnel PS, Szybinski J, Khawaja K, Kriege O, Pante SV, Bullinger L, Strand S, Strand D, Theobald M, Kindler 8 T. SIRT1 prevents genotoxic stress-induced p53 activation in acute myeloid leukemia. Blood 2014; 124: 121-133 [PMID: 24855208 DOI: 10.1182/blood-2013-11-538819]
- Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116: 551-563 [PMID: 14980222 DOI: 10.1016/s0092-8674(04)00126-6]
- Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, Nemoto S, Finkel T, Gu W, Cress WD, Chen J. Interactions between 10 E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006; 8: 1025-1031 [PMID: 16892051 DOI: 10.1038/ncb1468
- 11 Dai JM, Wang ZY, Sun DC, Lin RX, Wang SQ. SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol 2007; 210: 161-166 [PMID: 16998810 DOI: 10.1002/jcp.20831]
- 12 Wong S, Weber JD. Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J 2007; 407: 451-460 [PMID: 17620057 DOI: 10.1042/bj20070151]
- Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA. 13 Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004; 305: 390-392 [PMID: 15205477 DOI: 10.1126/science.1099196]
- Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN, Herman JG, Baylin SB. Inhibition of SIRT1 14 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2006; 2: e40 [PMID: 16596166 DOI: 10.1371/journal.pgen.0020040]
- 15 Byles V, Zhu L, Lovaas JD, Chmilewski LK, Wang J, Faller DV, Dai Y. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 2012; 31: 4619-4629 [PMID: 22249256 DOI: 10.1038/onc.2011.612]
- Noguchi A, Kikuchi K, Zheng H, Takahashi H, Miyagi Y, Aoki I, Takano Y. SIRT1 expression is associated with a poor 16 prognosis, whereas DBC1 is associated with favorable outcomes in gastric cancer. Cancer Med 2014; 3: 1553-1561 [PMID: 25146318 DOI: 10.1002/cam4.310]
- 17 Li C, Wang L, Zhan Z, Xu B, Jiang J, Wu C. SIRT1 expression is associated with poor prognosis of lung adenocarcinoma. Onco Targets Ther 2015; 8: 977-984 [PMID: 25995644 DOI: 10.2147/OTT.S82378]
- 18 Zu G, Ji A, Zhou T, Che N. Clinicopathological significance of SIRT1 expression in colorectal cancer: A systematic review and meta analysis. Int J Surg 2016; 26: 32-37 [PMID: 26763348 DOI: 10.1016/j.ijsu.2016.01.002]
- 19 Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, Bhimavarapu A, Luikenhuis S, de Cabo R, Fuchs C, Hahn WC, Guarente LP, Sinclair DA. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 2008; 3: e2020 [PMID: 18414679 DOI: 10.1371/journal.pone.0002020]
- Wang RH, Zheng Y, Kim HS, Xu X, Cao L, Luhasen T, Lee MH, Xiao C, Vassilopoulos A, Chen W, Gardner K, Man YG, Hung MC, Finkel T, Deng CX. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell 2008; 32: 11-20 [PMID: 18851829 DOI: 10.1016/j.molcel.2008.09.011]
- Simic P, Williams EO, Bell EL, Gong JJ, Bonkowski M, Guarente L. SIRT1 suppresses the epithelial-to-mesenchymal 21 transition in cancer metastasis and organ fibrosis. Cell Rep 2013; 3: 1175-1186 [PMID: 23583181 DOI: 10.1016/i.celrep.2013.03.019]
- 22 Qin T, Liu W, Huo J, Li L, Zhang X, Shi X, Zhou J, Wang C. SIRT1 expression regulates the transformation of resistant esophageal cancer cells via the epithelial-mesenchymal transition. Biomed Pharmacother 2018; 103: 308-316 [PMID: 29656187 DOI: 10.1016/j.biopha.2018.04.032]
- 23 Ma MC, Chiu TJ, Lu HI, Huang WT, Lo CM, Tien WY, Lan YC, Chen YY, Chen CH, Li SH. SIRT1 overexpression is an independent prognosticator for patients with esophageal squamous cell carcinoma. J Cardiothorac Surg 2018; 13: 25 [PMID: 29636061 DOI: 10.1186/s13019-018-0718-5]
- Chen GQ, Tian H, Yue WM, Li L, Li SH, Qi L, Gao C, Si LB, Lu M, Feng F. SIRT1 expression is associated with 24 lymphangiogenesis, lymphovascular invasion and prognosis in pN0 esophageal squamous cell carcinoma. Cell Biosci 2014; 4: 48 [PMID: 25922660 DOI: 10.1186/2045-3701-4-48]
- He Z, Yi J, Jin L, Pan B, Chen L, Song H. Overexpression of Sirtuin-1 is associated with poor clinical outcome in 25 esophageal squamous cell carcinoma. Tumour Biol 2016; 37: 7139-7148 [PMID: 26662958 DOI: 10.1007/s13277-015-4459-y]
- 26 Han F, Zhang S, Liang J, Qiu W. Clinicopathological and predictive significance of SIRT1 and peroxisome proliferatoractivated receptor gamma in esophageal squamous cell carcinoma: The correlation with EGFR and Survivin. Pathol Res

Pract 2018; 214: 686-690 [PMID: 29625788 DOI: 10.1016/j.prp.2018.03.018]

- Yan L, Zhao Q, Liu L, Jin N, Wang S, Zhan X. Expression of SIRT1 and survivin correlates with poor prognosis in 27 esophageal squamous cell carcinoma. Medicine (Baltimore) 2020; 99: e21645 [PMID: 32846774 DOI: 10.1097/MD.00000000021645]
- 28 Zhu L, Dong L, Feng M, Yang F, Jiang W, Huang Z, Liu F, Wang L, Wang G, Li Q. Profiles of autophagy-related genes in esophageal adenocarcinoma. BMC Cancer 2020; 20: 943 [PMID: 32998713 DOI: 10.1186/s12885-020-07416-w]
- Cao B, Shi Q, Wang W. Higher expression of SIRT1 induced resistance of esophageal squamous cell carcinoma cells to 29 cisplatin. J Thorac Dis 2015; 7: 711-719 [PMID: 25973238 DOI: 10.3978/j.issn.2072-1439.2015.04.01]
- Chen Y, Xie T, Ye Z, Wang F, Long D, Jiang M, Fang J, Lin Q, Li K, Wang Z, Fu Z. ADC correlation with Sirtuin1 to 30 assess early chemoradiotherapy response of locally advanced esophageal carcinoma patients. Radiat Oncol 2019; 14: 192 [PMID: 31684999 DOI: 10.1186/s13014-019-1393-y]
- 31 Kuo IY, Huang YL, Lin CY, Lin CH, Chang WL, Lai WW, Wang YC. SOX17 overexpression sensitizes chemoradiation response in esophageal cancer by transcriptional down-regulation of DNA repair and damage response genes. J Biomed Sci 2019; 26: 20 [PMID: 30777052 DOI: 10.1186/s12929-019-0510-4]
- Ye Z, Xie T, Yan F, Wang L, Fang J, Wang Z, Hu F, Wang F, Fu Z. MiR-34a reverses radiation resistance on ECA-109 32 cells by inhibiting PI3K/AKT/mTOR signal pathway through downregulating the expression of SIRT1. Int J Radiat Biol 2021; 97: 452-463 [PMID: 33507132 DOI: 10.1080/09553002.2021.1866225]
- 33 Zhang S, Wang XI. SIRT1 is a useful biomarker for high-grade dysplasia and carcinoma in Barrett's esophagus. Ann Clin Lab Sci 2013; 43: 373-377 [PMID: 24247792]
- 34 Otsuka R, Sakata H, Murakami K, Kano M, Endo S, Toyozumi T, Matsumoto Y, Suito H, Takahashi M, Sekino N, Hirasawa S, Kinoshita K, Sasaki T, Matsubara H. SIRT1 Expression Is a Promising Prognostic Biomarker in Esophageal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Canner Diagn Progn 2022; In press
- Liu T, Liang X, Sun Y, Yang S. Rapamycin suppresses the PI3K/AKT/mTOR signaling pathway by targeting SIRT1 in 35 esophageal cancer. Exp Ther Med 2021; 22: 1190 [PMID: 34475980 DOI: 10.3892/etm.2021.10624]
- Jiang H, Patil K, Vashi A, Wang Y, Strickland E, Pai SB. Cellular molecular and proteomic profiling deciphers the 36 SIRT1 controlled cell death pathways in esophageal adenocarcinoma cells. Cancer Treat Res Commun 2021; 26: 100271 [PMID: 33341453 DOI: 10.1016/j.ctarc.2020.100271]
- Xie HJ, Jung KH, Nam SW. Overexpression of SIRT2 contributes tumor cell growth in hepatocellular carcinomas. Mol 37 Cell Toxicol 2011; 7: 367-374 [DOI: 10.1007/s13273-011-0046-5]
- 38 Liu PY, Xu N, Malyukova A, Scarlett CJ, Sun YT, Zhang XD, Ling D, Su SP, Nelson C, Chang DK, Koach J, Tee AE, Haber M, Norris MD, Toon C, Rooman I, Xue C, Cheung BB, Kumar S, Marshall GM, Biankin AV, Liu T. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ 2013; 20: 503-514 [PMID: 23175188 DOI: 10.1038/cdd.2012.147]
- 39 Chen G, Huang P, Hu C. The role of SIRT2 in cancer: A novel therapeutic target. Int J Cancer 2020; 147: 3297-3304 [PMID: 32449165 DOI: 10.1002/ijc.33118]
- 40 Xu L, Wang L, Zhou L, Dorfman RG, Pan Y, Tang D, Wang Y, Yin Y, Jiang C, Zou X, Wu J, Zhang M. The SIRT2/cMYC Pathway Inhibits Peroxidation-Related Apoptosis In Cholangiocarcinoma Through Metabolic Reprogramming. Neoplasia 2019; 21: 429-441 [PMID: 30933885 DOI: 10.1016/j.neo.2019.03.002]
- Chen J, Chan AW, To KF, Chen W, Zhang Z, Ren J, Song C, Cheung YS, Lai PB, Cheng SH, Ng MH, Huang A, Ko BC. 41 SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3β/β-catenin signaling. *Hepatology* 2013; 57: 2287-2298 [PMID: 23348706 DOI: 10.1002/hep.26278]
- Huang S, Zhao Z, Tang D, Zhou Q, Li Y, Zhou L, Yin Y, Wang Y, Pan Y, Dorfman RG, Ling T, Zhang M. 42 Downregulation of SIRT2 Inhibits Invasion of Hepatocellular Carcinoma by Inhibiting Energy Metabolism. Transl Oncol 2017; 10: 917-927 [PMID: 28992545 DOI: 10.1016/j.tranon.2017.09.006]
- 43 Nguyen P, Lee S, Lorang-Leins D, Trepel J, Smart DK. SIRT2 interacts with β-catenin to inhibit Wnt signaling output in response to radiation-induced stress. Mol Cancer Res 2014; 12: 1244-1253 [PMID: 24866770 DOI: 10.1158/1541-7786.MCR-14-0223-T
- 44 Damodaran S, Damaschke N, Gawdzik J, Yang B, Shi C, Allen GO, Huang W, Denu J, Jarrard D. Dysregulation of Sirtuin 2 (SIRT2) and histone H3K18 acetylation pathways associates with adverse prostate cancer outcomes. BMC Cancer 2017; 17: 874 [PMID: 29262808 DOI: 10.1186/s12885-017-3853-9]
- Yang LP, Feng HQ, Ma JC, Wu H, Liu CR, Hou JD. SIRT2 expression exhibits potential to serve as a biomarker for 45 disease surveillance and prognosis in the management of cervical cancer patients. Medicine (Baltimore) 2020; 99: e18668 [PMID: 32176025 DOI: 10.1097/MD.00000000018668]
- 46 Du F, Li Z, Zhang G, Shaoyan S, Geng D, Tao Z, Qiu K, Liu S, Zhou Y, Zhang Y, Gu J, Wang G, Li L, Wu W. SIRT2, a direct target of miR-212-5p, suppresses the proliferation and metastasis of colorectal cancer cells. J Cell Mol Med 2020; 24: 9985-9998 [PMID: 32697380 DOI: 10.1111/jcmm.15603]
- 47 Yan L, Zhan X, Jia Z, Liu L, Jin N. Sirtuin 2 (Sirt2) Expression Predicts Lymph Node Metastasis and Poor Overall Survival of Patients with Esophageal Squamous Cell Carcinoma. Clin Lab 2018; 64: 669-675 [PMID: 29739048 DOI: 10.7754/Clin.Lab.2018.170905]
- Ong CA, Shapiro J, Nason KS, Davison JM, Liu X, Ross-Innes C, O'Donovan M, Dinjens WN, Biermann K, Shannon N, Worster S, Schulz LK, Luketich JD, Wijnhoven BP, Hardwick RH, Fitzgerald RC. Three-gene immunohistochemical panel adds to clinical staging algorithms to predict prognosis for patients with esophageal adenocarcinoma. J Clin Oncol 2013; 31: 1576-1582 [PMID: 23509313 DOI: 10.1200/JCO.2012.45.9636]
- 49 Peters CJ, Rees JR, Hardwick RH, Hardwick JS, Vowler SL, Ong CA, Zhang C, Save V, O'Donovan M, Rassl D, Alderson D, Caldas C, Fitzgerald RC; Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Study Group. A 4-gene signature predicts survival of patients with resected adenocarcinoma of the esophagus, junction, and gastric cardia. Gastroenterology 2010; 139: 1995-2004.e15 [PMID: 20621683 DOI: 10.1053/j.gastro.2010.05.080]
- 50 Li S, Banck M, Mujtaba S, Zhou MM, Sugrue MM, Walsh MJ. p53-induced growth arrest is regulated by the

mitochondrial SirT3 deacetylase. PLoS One 2010; 5: e10486 [PMID: 20463968 DOI: 10.1371/journal.pone.0010486]

- Wei Z, Song J, Wang G, Cui X, Zheng J, Tang Y, Chen X, Li J, Cui L, Liu CY, Yu W. Deacetylation of serine 51 hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat Commun 2018; 9: 4468 [PMID: 30367038 DOI: 10.1038/s41467-018-06812-y]
- 52 Bergaggio E, Riganti C, Garaffo G, Vitale N, Mereu E, Bandini C, Pellegrino E, Pullano V, Omedè P, Todoerti K, Cascione L, Audrito V, Riccio A, Rossi A, Bertoni F, Deaglio S, Neri A, Palumbo A, Piva R. IDH2 inhibition enhances proteasome inhibitor responsiveness in hematological malignancies. Blood 2019; 133: 156-167 [PMID: 30455381 DOI: 10.1182/blood-2018-05-850826
- 53 Xu LX, Hao LJ, Ma JQ, Liu JK, Hasim A. SIRT3 promotes the invasion and metastasis of cervical cancer cells by regulating fatty acid synthase. Mol Cell Biochem 2020; 464: 11-20 [PMID: 31677030 DOI: 10.1007/s11010-019-03644-2]
- 54 Allison SJ, Milner J. SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways. Cell Cycle 2007; 6: 2669-2677 [PMID: 17957139 DOI: 10.4161/cc.6.21.4866]
- Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, 55 Pandolfi PP, Haigis MC. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1a destabilization. Cancer Cell 2011; 19: 416-428 [PMID: 21397863 DOI: 10.1016/j.ccr.2011.02.014]
- 56 Xiao K, Jiang J, Wang W, Cao S, Zhu L, Zeng H, Ouyang R, Zhou R, Chen P. Sirt3 is a tumor suppressor in lung adenocarcinoma cells. Oncol Rep 2013; 30: 1323-1328 [PMID: 23842789 DOI: 10.3892/or.2013.2604]
- 57 Fan J, Shan C, Kang HB, Elf S, Xie J, Tucker M, Gu TL, Aguiar M, Lonning S, Chen H, Mohammadi M, Britton LM, Garcia BA, Alečković M, Kang Y, Kaluz S, Devi N, Van Meir EG, Hitosugi T, Seo JH, Lonial S, Gaddh M, Arellano M, Khoury HJ, Khuri FR, Boggon TJ, Kang S, Chen J. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell 2014; 53: 534-548 [PMID: 24486017 DOI: 10.1016/j.molcel.2013.12.026]
- 58 Yang H, Zhou L, Shi Q, Zhao Y, Lin H, Zhang M, Zhao S, Yang Y, Ling ZQ, Guan KL, Xiong Y, Ye D. SIRT3dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. *EMBO J* 2015; **34**: 1110-1125 [PMID: 25755250 DOI: 10.15252/embj.201591041]
- 59 Yu W, Denu RA, Krautkramer KA, Grindle KM, Yang DT, Asimakopoulos F, Hematti P, Denu JM. Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies. J Biol Chem 2016; 291: 3268-3279 [PMID: 26631723 DOI: 10.1074/jbc.M115.702076
- 60 Li R, Quan Y, Xia W. SIRT3 inhibits prostate cancer metastasis through regulation of FOXO3A by suppressing Wnt/βcatenin pathway. Exp Cell Res 2018; 364: 143-151 [PMID: 29421536 DOI: 10.1016/j.yexcr.2018.01.036]
- Ozden O, Park SH, Wagner BA, Song HY, Zhu Y, Vassilopoulos A, Jung B, Buettner GR, Gius D. SIRT3 deacetylates 61 and increases pyruvate dehydrogenase activity in cancer cells. Free Radic Biol Med 2014; 76: 163-172 [PMID: 25152236 DOI: 10.1016/j.freeradbiomed.2014.08.001]
- Torrens-Mas M, Oliver J, Roca P, Sastre-Serra J. SIRT3: Oncogene and Tumor Suppressor in Cancer. Cancers (Basel) 62 2017: 9 [PMID: 28704962 DOI: 10.3390/cancers9070090]
- Cobanoğlu U, Dülger C, Kemik O, Celik S, Sayir F. A novel screening test for esophageal squamous cell carcinoma: 63 sirtuin-3. Eur Rev Med Pharmacol Sci 2017; 21: 5399-5401 [PMID: 29243781 DOI: 10.26355/eurrev 201712 13926]
- 64 Yang M, Yang C, Pei Y. Effects of downregulation of SIRT3 expression on proliferation and apoptosis in esophageal squamous cell carcinoma EC9706 cells and its molecular mechanisms. Biomed Mater Eng 2014; 24: 3883-3890 [PMID: 25227106 DOI: 10.3233/BME-141219]
- 65 Zhao Y, Yang H, Wang X, Zhang R, Wang C, Guo Z. Sirtuin-3 (SIRT3) expression is associated with overall survival in esophageal cancer. Ann Diagn Pathol 2013; 17: 483-485 [PMID: 23871415 DOI: 10.1016/j.anndiagpath.2013.06.001]
- Yan SM, Han X, Han PJ, Chen HM, Huang LY, Li Y. SIRT3 is a novel prognostic biomarker for esophageal squamous 66 cell carcinoma. Med Oncol 2014; 31: 103 [PMID: 25005846 DOI: 10.1007/s12032-014-0103-8]
- Wang YS, Du L, Liang X, Meng P, Bi L, Wang YL, Wang C, Tang B. Sirtuin 4 Depletion Promotes Hepatocellular 67 Carcinoma Tumorigenesis Through Regulating Adenosine-Monophosphate-Activated Protein Kinase Alpha/Mammalian Target of Rapamycin Axis in Mice. *Hepatology* 2019; **69**: 1614-1631 [PMID: 30552782 DOI: 10.1002/hep.30421]
- 68 Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K, Li YH, Wang X, Laurent G, German NJ, Xu X, Li C, Wang RH, Lee J, Csibi A, Cerione R, Blenis J, Clish CB, Kimmelman A, Deng CX, Haigis MC. SIRT4 has tumorsuppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 2013; 23: 450-463 [PMID: 23562301 DOI: 10.1016/j.ccr.2013.02.024]
- 69 Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ, Jeong SM, Dempsey JM, Parkhitko A, Morrison T, Henske EP, Haigis MC, Cantley LC, Stephanopoulos G, Yu J, Blenis J. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2021; 184: 2256 [PMID: 33861966 DOI: 10.1016/j.cell.2021.03.059]
- Miyo M, Yamamoto H, Konno M, Colvin H, Nishida N, Koseki J, Kawamoto K, Ogawa H, Hamabe A, Uemura M, 70 Nishimura J, Hata T, Takemasa I, Mizushima T, Doki Y, Mori M, Ishii H. Tumour-suppressive function of SIRT4 in human colorectal cancer. Br J Cancer 2015; 113: 492-499 [PMID: 26086877 DOI: 10.1038/bjc.2015.226]
- Sun H, Huang D, Liu G, Jian F, Zhu J, Zhang L. SIRT4 acts as a tumor suppressor in gastric cancer by inhibiting cell 71 proliferation, migration, and invasion. Onco Targets Ther 2018; 11: 3959-3968 [PMID: 30022839 DOI: 10.2147/OTT.S156143
- 72 Hu Y, Lin J, Lin Y, Chen X, Zhu G, Huang G. Overexpression of SIRT4 inhibits the proliferation of gastric cancer cells through cell cycle arrest. Oncol Lett 2019; 17: 2171-2176 [PMID: 30745932 DOI: 10.3892/ol.2018.9877]
- Wang C, Liu Y, Zhu Y, Kong C. Functions of mammalian SIRT4 in cellular metabolism and research progress in human 73 cancer. Oncol Lett 2020; 20: 11 [PMID: 32774484 DOI: 10.3892/ol.2020.11872]
- 74 Jeong SM, Hwang S, Seong RH. SIRT4 regulates cancer cell survival and growth after stress. Biochem Biophys Res Commun 2016; 470: 251-256 [PMID: 26775843 DOI: 10.1016/j.bbrc.2016.01.078]
- Liu M, Wang Z, Ren M, Yang X, Liu B, Qi H, Yu M, Song S, Chen S, Liu L, Zhang Y, Zou J, Zhu WG, Yin Y, Luo J. SIRT4 regulates PTEN stability through IDE in response to cellular stresses. FASEB J 2019; 33: 5535-5547 [PMID:

30649986 DOI: 10.1096/fj.201801987R]

- 76 Cui Y, Yang J, Bai Y, Zhang Y, Yao Y, Zheng T, Liu C, Wu F. miR-424-5p regulates cell proliferation and migration of esophageal squamous cell carcinoma by targeting SIRT4. J Cancer 2020; 11: 6337-6347 [PMID: 33033517 DOI: 10.7150/jca.50587
- 77 Nakahara Y, Yamasaki M, Sawada G, Miyazaki Y, Makino T, Takahashi T, Kurokawa Y, Nakajima K, Takiguchi S, Mimori K, Mori M, Doki Y. Downregulation of SIRT4 Expression Is Associated with Poor Prognosis in Esophageal Squamous Cell Carcinoma. Oncology 2016; 90: 347-355 [PMID: 27082627 DOI: 10.1159/000445323]
- 78 Wang YO, Wang HL, Xu J, Tan J, Fu LN, Wang JL, Zou TH, Sun DF, Gao QY, Chen YX, Fang JY. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat Commun 2018; 9: 545 [PMID: 29416026 DOI: 10.1038/s41467-018-02951-4]
- 79 Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, Chen S, Ren M, Wang Y, Yu M, Wang B, Zou J, Zhu WG, Yin Y, Gu W, Luo J. SHMT2 Desuccinylation by SIRT5 Drives Cancer Cell Proliferation. Cancer Res 2018; 78: 372-386 [PMID: 29180469 DOI: 10.1158/0008-5472.CAN-17-1912]
- 80 Lu W, Zuo Y, Feng Y, Zhang M. SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol 2014; 35: 10699-10705 [PMID: 25070488 DOI: 10.1007/s13277-014-2372-4]
- 81 Lv XB, Liu L, Cheng C, Yu B, Xiong L, Hu K, Tang J, Zeng L, Sang Y. SUN2 exerts tumor suppressor functions by suppressing the Warburg effect in lung cancer. Sci Rep 2015; 5: 17940 [PMID: 26658802 DOI: 10.1038/srep17940]
- 82 Xiangyun Y, Xiaomin N, Linping G, Yunhua X, Ziming L, Yongfeng Y, Zhiwei C, Shun L. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 2017; 8: 6984-6993 [PMID: 28036303 DOI: 10.18632/oncotarget.14346]
- Zhang R, Wang C, Tian Y, Yao Y, Mao J, Wang H, Li Z, Xu Y, Ye M, Wang L. SIRT5 Promotes Hepatocellular 83 Carcinoma Progression by Regulating Mitochondrial Apoptosis. J Cancer 2019; 10: 3871-3882 [PMID: 31333804 DOI: 10.7150/jca.31266]
- Gu W, Qian Q, Xu Y, Xu X, Zhang L, He S, Li D. SIRT5 regulates autophagy and apoptosis in gastric cancer cells. J Int 84 *Med Res* 2021; **49**: 300060520986355 [PMID: 33530803 DOI: 10.1177/0300060520986355]
- Chang L, Xi L, Liu Y, Liu R, Wu Z, Jian Z. SIRT5 promotes cell proliferation and invasion in hepatocellular carcinoma 85 by targeting E2F1. Mol Med Rep 2018; 17: 342-349 [PMID: 29115436 DOI: 10.3892/mmr.2017.7875]
- 86 Du Z, Liu X, Chen T, Gao W, Wu Z, Hu Z, Wei D, Gao C, Li Q. Targeting a Sirt5-Positive Subpopulation Overcomes Multidrug Resistance in Wild-Type Kras Colorectal Carcinomas. Cell Rep 2018; 22: 2677-2689 [PMID: 29514096 DOI: 10.1016/j.celrep.2018.02.037]
- 87 Chen XF, Tian MX, Sun RQ, Zhang ML, Zhou LS, Jin L, Chen LL, Zhou WJ, Duan KL, Chen YJ, Gao C, Cheng ZL, Wang F, Zhang JY, Sun YP, Yu HX, Zhao YZ, Yang Y, Liu WR, Shi YH, Xiong Y, Guan KL, Ye D. SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Rep 2018; 19 [PMID: 29491006 DOI: 10.15252/embr.201745124]
- Lin ZF, Xu HB, Wang JY, Lin Q, Ruan Z, Liu FB, Jin W, Huang HH, Chen X. SIRT5 desuccinylates and activates SOD1 88 to eliminate ROS. Biochem Biophys Res Commun 2013; 441: 191-195 [PMID: 24140062 DOI: 10.1016/j.bbrc.2013.10.033
- Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, Steegborn C, Nowak T, Schutkowski M, 89 Pellegrini L, Sansone L, Villanova L, Runci A, Pucci B, Morgante E, Fini M, Mai A, Russo MA, Tafani M. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 2015; 11: 253-270 [PMID: 25700560 DOI: 10.1080/15548627.2015.1009778
- 90 Chen X, Xu Z, Zeng S, Wang X, Liu W, Qian L, Wei J, Yang X, Shen Q, Gong Z, Yan Y. SIRT5 downregulation is associated with poor prognosis in glioblastoma. Cancer Biomark 2019; 24: 449-459 [PMID: 30909186 DOI: 10.3233/CBM-182197
- 91 Chen X, Hao B, Liu Y, Dai D, Han G, Li Y, Wu X, Zhou X, Yue Z, Wang L, Cao Y, Liu J. The histone deacetylase SIRT6 suppresses the expression of the RNA-binding protein PCBP2 in glioma. Biochem Biophys Res Commun 2014; 446: 364-369 [PMID: 24607900 DOI: 10.1016/j.bbrc.2014.02.116]
- 92 Zhang ZG, Qin CY. Sirt6 suppresses hepatocellular carcinoma cell growth via inhibiting the extracellular signalregulated kinase signaling pathway. Mol Med Rep 2014; 9: 882-888 [PMID: 24366394 DOI: 10.3892/mmr.2013.1879]
- 93 Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010; 140: 280-293 [PMID: 20141841 DOI: 10.1016/j.cell.2009.12.041]
- Fukuda T, Wada-Hiraike O, Oda K, Tanikawa M, Makii C, Inaba K, Miyasaka A, Miyamoto Y, Yano T, Maeda D, 94 Sasaki T, Kawana K, Fukayama M, Osuga Y, Fujii T. Putative tumor suppression function of SIRT6 in endometrial cancer. FEBS Lett 2015; 589: 2274-2281 [PMID: 26183563 DOI: 10.1016/j.febslet.2015.06.043]
- 95 Ouyang L, Yi L, Li J, Yi S, Li S, Liu P, Yang X. SIRT6 overexpression induces apoptosis of nasopharyngeal carcinoma by inhibiting NF-κB signaling. Onco Targets Ther 2018; 11: 7613-7624 [PMID: 30464510 DOI: 10.2147/OTT.S179866]
- 96 Bhardwaj A, Das S. SIRT6 deacetylates PKM2 to suppress its nuclear localization and oncogenic functions. Proc Natl Acad Sci U S A 2016; 113: E538-E547 [PMID: 26787900 DOI: 10.1073/pnas.1520045113]
- 97 Shi L, Wang Y, Oppong TB, Fu X, Yang H. Prognostic role of SIRT6 in gastrointestinal cancers: a meta-analysis. Open Med (Wars) 2020; 15: 358-365 [PMID: 33335996 DOI: 10.1515/med-2020-0403]
- 98 Zhang C, Yu Y, Huang Q, Tang K. SIRT6 regulates the proliferation and apoptosis of hepatocellular carcinoma via the ERK1/2 signaling pathway. Mol Med Rep 2019; 20: 1575-1582 [PMID: 31257493 DOI: 10.3892/mmr.2019.10398]
- Zhou HZ, Zeng HQ, Yuan D, Ren JH, Cheng ST, Yu HB, Ren F, Wang Q, Qin YP, Huang AL, Chen J. NQO1 potentiates apoptosis evasion and upregulates XIAP via inhibiting proteasome-mediated degradation SIRT6 in hepatocellular carcinoma. Cell Commun Signal 2019; 17: 168 [PMID: 31842909 DOI: 10.1186/s12964-019-0491-7]
- 100 Bai L, Lin G, Sun L, Liu Y, Huang X, Cao C, Guo Y, Xie C. Upregulation of SIRT6 predicts poor prognosis and promotes metastasis of non-small cell lung cancer via the ERK1/2/MMP9 pathway. Oncotarget 2016; 7: 40377-40386

[PMID: 27777384 DOI: 10.18632/oncotarget.9750]

- 101 Garcia-Peterson LM, Ndiaye MA, Singh CK, Chhabra G, Huang W, Ahmad N. SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. Genes Cancer 2017; 8: 701-712 [PMID: 29234488 DOI: 10.18632/genesandcancer.153
- 102 Huang N, Liu Z, Zhu J, Cui Z, Li Y, Yu Y, Sun F, Pan Q, Yang Q. Sirtuin 6 plays an oncogenic role and induces cell autophagy in esophageal cancer cells. Tumour Biol 2017; 39: 1010428317708532 [PMID: 28653878 DOI: 10.1177/1010428317708532]
- Yu H, Ye W, Wu J, Meng X, Liu RY, Ying X, Zhou Y, Wang H, Pan C, Huang W. Overexpression of sirt7 exhibits 103 oncogenic property and serves as a prognostic factor in colorectal cancer. Clin Cancer Res 2014; 20: 3434-3445 [PMID: 24771643 DOI: 10.1158/1078-0432.CCR-13-2952]
- Wei W, Jing ZX, Ke Z, Yi P. Sirtuin 7 plays an oncogenic role in human osteosarcoma via downregulating CDC4 104 expression. Am J Cancer Res 2017; 7: 1788-1803 [PMID: 28979804]
- 105 Wang HL, Lu RQ, Xie SH, Zheng H, Wen XM, Gao X, Guo L. SIRT7 Exhibits Oncogenic Potential in Human Ovarian Cancer Cells. Asian Pac J Cancer Prev 2015; 16: 3573-3577 [PMID: 25921180 DOI: 10.7314/apjcp.2015.16.8.3573]
- Zhang S, Chen P, Huang Z, Hu X, Chen M, Hu S, Hu Y, Cai T. Sirt7 promotes gastric cancer growth and inhibits 106 apoptosis by epigenetically inhibiting miR-34a. Sci Rep 2015; 5: 9787 [PMID: 25860861 DOI: 10.1038/srep09787]
- 107 Yu W, Cui X, Wan Z, Yu Y, Liu X, Jin L. Silencing forkhead box M1 promotes apoptosis and autophagy through SIRT7/mTOR/IGF2 pathway in gastric cancer cells. J Cell Biochem 2018; 119: 9090-9098 [PMID: 29953672 DOI: 10.1002/jcb.27168]
- 108 Li W, Zhu D, Qin S. SIRT7 suppresses the epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis by promoting SMAD4 deacetylation. J Exp Clin Cancer Res 2018; 37: 148 [PMID: 30001742 DOI: 10.1186/s13046-018-0819-y]
- 109 Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, Xu Q, Zhou M, Cao X, Zhu WG, Liu B. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun 2017; 8: 318 [PMID: 28827661 DOI: 10.1038/s41467-017-00396-9]
- Wu D, Li Y, Zhu KS, Wang H, Zhu WG. Advances in Cellular Characterization of the Sirtuin Isoform, SIRT7. Front 110 Endocrinol (Lausanne) 2018; 9: 652 [PMID: 30510540 DOI: 10.3389/fendo.2018.00652]
- 111 Tao F, Gu C, Li N, Ying Y, Feng Y, Ni D, Zhang Q, Xiao Q. SIRT3 acts as a novel biomarker for the diagnosis of lung cancer: A retrospective study. Medicine (Baltimore) 2021; 100: e26580 [PMID: 34232204 DOI: 10.1097/MD.00000000026580]
- 112 Curry AM, White DS, Donu D, Cen Y. Human Sirtuin Regulators: The "Success" Stories. Front Physiol 2021; 12: 752117 [PMID: 34744791 DOI: 10.3389/fphys.2021.752117]
- 113 Puhr HC, Preusser M, Ilhan-Mutlu A. Immunotherapy for Esophageal Cancers: What Is Practice Changing in 2021? Cancers (Basel) 2021; 13 [PMID: 34572859 DOI: 10.3390/cancers13184632]
- 114 Warren JL, MacIver NJ. Regulation of Adaptive Immune Cells by Sirtuins. Front Endocrinol (Lausanne) 2019; 10: 466 [PMID: 31354630 DOI: 10.3389/fendo.2019.00466]
- Zhang M, Acklin S, Gillenwater J, Du W, Patra M, Yu H, Xu B, Yu J, Xia F. SIRT2 promotes murine melanoma 115 progression through natural killer cell inhibition. Sci Rep 2021; 11: 12988 [PMID: 34155309 DOI: 10.1038/s41598-021-92445-z]
- 116 Xiang J, Zhang N, Sun H, Su L, Zhang C, Xu H, Feng J, Wang M, Chen J, Liu L, Shan J, Shen J, Yang Z, Wang G, Zhou H, Prieto J, Ávila MA, Liu C, Qian C. Disruption of SIRT7 Increases the Efficacy of Checkpoint Inhibitor via MEF2D Regulation of Programmed Cell Death 1 Ligand 1 in Hepatocellular Carcinoma Cells. Gastroenterology 2020; 158: 664-678.e24 [PMID: 31678303 DOI: 10.1053/j.gastro.2019.10.025]

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

