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Abstract
Helicobacter pylori infection (Hp-I) represents a typical microbial agent intervening 
in the complex mechanisms of gastric homeostasis by disturbing the balance 
between the host gastric microbiota and mucosa-related factors, leading to inflam-
matory changes, dysbiosis and eventually gastric cancer. The normal gastric 
microbiota shows diversity, with Proteobacteria [Helicobacter pylori (H. pylori) 
belongs to this family], Firmicutes, Actinobacteria, Bacteroides and Fusobacteria being 
the most abundant phyla. Most studies indicate that H. pylori has inhibitory effects 
on the colonization of other bacteria, harboring a lower diversity of them in the 
stomach. When comparing the healthy with the diseased stomach, there is a 
change in the composition of the gastric microbiome with increasing abundance 
of H. pylori (where present) in the gastritis stage, while as the gastric carcino-
genesis cascade progresses to gastric cancer, the oral and intestinal-type 

https://www.f6publishing.com
https://dx.doi.org/10.4251/wjgo.v14.i5.959
mailto:cliatsos@yahoo.com


Liatsos C et al. Hp, gastric microbiota and gastric cancer

WJGO https://www.wjgnet.com 960 May 15, 2022 Volume 14 Issue 5

pathogenic microbial strains predominate. Hp-I creates a premalignant environment of atrophy 
and intestinal metaplasia and the subsequent alteration in gastric microbiota seems to play a 
crucial role in gastric tumorigenesis itself. Successful H. pylori eradication is suggested to restore 
gastric microbiota, at least in primary stages. It is more than clear that Hp-I, gastric microbiota and 
gastric cancer constitute a challenging tangle and the strong interaction between them makes it 
difficult to unroll. Future studies are considered of crucial importance to test the complex 
interaction on the modulation of the gastric microbiota by H. pylori as well as on the relationships 
between the gastric microbiota and gastric carcinogenesis.

Key Words: Helicobacter pylori infection; Gastric microbiota; Gastric cancer; Oncogenesis; Dysbiosis; 
Helicobacter pylori eradication

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Gastric adenocarcinoma is a leading cause of cancer-related death in the world. Chronic gastric 
infection caused by Helicobacter pylori (H. pylori) is the strongest identified risk factor for gastric 
adenocarcinoma, prompting the World Health Organization to classify it as a class I carcinogen. It has 
been shown that in H. pylori-colonized patients, this pathogen accounts for more than 90% of all gastric 
microbiota modifying healthy microbiota and reducing its overall diversity. In this review, we tackle the 
complicated relationship between H. pylori, gastric microbiota and gastric cancer in an effort to unroll this 
tangle.
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INTRODUCTION
Gastric cancer (GC) has been recognized as a global health concern; it is still the fifth most frequent 
global malignancy and one of the main causes of cancer-related death[1]. Likewise, Helicobacter pylori 
infection (Hp-I), an important public health burden affecting more than half of the global population[2], 
is related with the majority of GC, with an estimate between 74.7% to more than 90% of the new non-
cardia GC cases[1,3].

Regarding the interaction between Hp-I and GC, relevant mechanisms known for many years have 
been studied and are constantly being enriched with new data (Figure 1)[4-17]. In this regard, arising 
evidence indicates that Helicobacter pylori (H. pylori), as the most important member of abnormal gastric 
microbiota (GM), might induce gastric microbiome modifications[11] thereby possibly leading to gastric 
oncogenesis. The gastric flora may be involved in the H. pylori-related oncogenicity, and the variations 
in the GM composition of patients with GC, intestinal metaplasia (IM) and chronic gastritis are defined
[18]. For instance, Campylobacter is among the most influential genera in H. pylori-associated atrophic 
gastritis and gastric atrophy-induced alterations of the GM, namely gastric dysbiosis, might contribute 
to gastric tumorigenic effect[1]. Moreover, H. pylori-related metabolic syndrome induces dysbiosis of 
gastrointestinal tract (GIT) microbiota, thereby contributing to lower and upper GIT carcinogenesis 
including GC[19-21]. However, the interaction between the host, microbiota and H. pylori in the 
pathogenesis of GC still has to be fully elucidated[22].

Based on recent data, this review attempts to unroll the tangle regarding the interaction between Hp-I, 
GM and GC.

GASTRIC MICROBIOTA COMPOSITION
The GIT (mainly intestine) is colonized by 1-4 × 1015 microorganisms, co-existing in a balanced 
relationship[22]; the GIT microbiota is estimated to be up to 2 kg and affects health and disease[23]. The 
majority of the bacteria found in the adults’ gut consists of Bacteroides and Parabacteroides[23]. The 
anaerobic environment of intestinal lumen does not facilitate aerobic pathogens colonization and 
development under normal conditions, though anaerobic and facultative pathogenic species can invade 
it and promote diseases. Each site of the GIT has a unique distribution of microflora; when compared 
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Figure 1 Possible mechanisms involved (A) in the etiology of non-cardiac gastric cancer (intestinal type) resulting in the classical 
cascade of Correa histopathological precancerous lesions (B) as seen in an upper gastrointestinal endoscopy. Hp-I: Helicobacter pylori 
infection; GC: Gastric cancer; PPIs: Proton pump inhibitors; CagA: Cytotoxin-associated gene A; VacA: Vacuolating cytotoxin A; GGT: γ-glutamyl transpeptidase; 
BabA: Blood-group-antigen-binding adhesin; SabA: Sialic acid-binding adhesin; OipA: Outer inflammatory protein; NapA: Neutrophil activation protein A; EMT: 
Epithelial-mesenchymal transition; ROS/RNS: Reactive oxygen species/Reactive nitrogen species; EGFR: Epidermal growth factor receptor; SPEM: Spasmolytic 
polypeptide-expressing metaplasia; CSC: Cancer stem cell; BMDSCs: Bone marrow-derived stem cells; IEN: Intraepithelial neoplasia.

with the stomach and duodenum, bacteria density increases in the jejunum/ileum and colon. To yield 
the optimal conditions for their common interaction and survival, host and microbes have developed 
specific mechanisms; the disruption of those mechanisms triggers an imbalance in microbial species 
abundance, termed dysbiosis, which is incriminated for gut barrier dysfunction and induction of inflam-
matory response. In this regard, the failure to regulate the composition (microbial diversity), probably 
occurs during the beginning and course of several diseases including malignancies, such as GC[24].

Until recently, the gastric environment was considered as sterile, probably due to increased acidity, 
and the microbiota was believed to be isolated in the small intestine and colon. Subsequently, 
identifying H. pylori focused the attention on the gastric microbiota as “an ecological niche for bacteria”
[23]. Emerging data have revealed that there is a broad range of microorganisms in the stomach with a 
density of 101 to 103 colony forming units/g[25,26]. Gastric microbiome is composed of bacteria ingested 
mainly through the ororespiratory tract and secondary from the intestine by transpyloric biliary reflux
[27,28]. Most of those microorganisms cannot resist indigenous gastric defensive mechanisms and there 
are data indicating which microorganisms permanently colonize the gastric mucosa, other than H. 
pylori. Relative reports suggested that the predominant phyla in the gastric mucosa consist of Strepto-
coccus, Rothia, Lactobacillus, Veillonella, Prevotella, Neisseria and Hemophilus, counting more than one 
hundred sorts[28,18]. Specifically, H. pylori, represents the most important member of the GM family 
with the highest relative abundance. Additional GM includes Proteobacteria, Firmicutes, Actinobacteria, 
Bacteroidetes and Fusobacteria being the 5 most abundant phyla[18], in children and adults[29]. In culture-
based studies where cultures of gastric juice or mucosa biopsies were examined, numerous members of 
the Firmicutes, Proteobacteria, Actinobacteria and Fusobacteria phyla were identified, while yeasts were 
recognized in a relatively low abundance[30,31]. Laboratory molecular techniques with high sensitivity 
indicated that Streptococcus, Prevotella, Neisseria, Veillonella and Rothia represent the main bacterial 
populations in the gastric tissue, with Streptococcus being the most dominant genus[32-36]. Sung et al
[37] revealed heterogeneity in the flora of gastric fluid and mucosa. Gastric mucosa has a greater flora 
richness while gastric juice has a greater flora diversity[37]. The presence of bacteria in gastric juice 
could be just transient as a result of their ingestion with food, drinks or saliva without colonizing the 
gastric mucosa so they create a fictional image of the real diversity[18].

More specifically, Bik et al[36] by introducing a small subunit 16S rDNA clone library approach, 
described a diverse population of 128 phylotypes (totally 1833 bacterial isolates obtained from gastric 
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biopsies of 23 healthy adults) within gastric mucosal samples with the majority of bacteria belonging to 
the five abovementioned major groups- Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and 
Fusobacteria phyla[36]. A lot of similar studies confirmed the presence and proportion of these phyla[4,
38-41]. Table 1 shows the taxonomy of most prevalent GM at phylum and genus level.

IMPACT OF HP-I ON GASTRIC MICROBIOTA COMPOSITION
Regarding Hp-I, its impact on the GM remains to be clarified. While Bik et al[36] did not depict an 
impact of the occurrence of H. pylori in gastric biopsies on the composition of GM, several subsequent 
studies characterize H. pylori as the regulator of the GM community. Andersson et al[42] revealed that H. 
pylori was the dominant bacterium whenever isolated, though its absence was associated with a diverse 
microbiota. Analytically, in samples from H. pylori(+) individuals, H. pylori was the mainstay species 
(ninety percent) of the samples examined by 454 pyro-sequencing. Thirty-three phylotypes were 
recognized solely, 229 less when compared with H. pylori(-) individuals[42]. The abovementioned 
signifies that H. pylori has inhibitory effects on the colonization of other bacteria harboring a 
significantly lower diversity of them in the stomach. The GM in H. pylori negative patients was mainly 
dominated by the same phyla, though with diverse percent abundances: 52.6% Proteobacteria, 26.4% 
Firmicutes, 12% Bacteroidetes and 6.4% Actinobacteria[43]. The common genera observed in H. pylori 
negative individuals included Gemella, Prevotella and Streptococcus[42].

In another study which introduced DNA microarrays to characterize the GM in 12 corpus biopsy 
samples (eight H. pylori positive), Maldonado-Contreras et al[44] isolated 44 phyla with four dominant 
Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Hp-I augmented the relative abundance of non-
H. pylori—Proteobacteria, Spirochaetes, and Acidobacteria whereas lessening the relative abundance of 
Actinobacteria, Bacteroidetes and Firmicutes, compared to uninfected stomachs[44]. An additional study 
from Mongolia showed that patients infected with H. pylori exhibited a significantly lesser bacterial 
richness and Shannon and Simpson indices[45,46] compared with H. pylori negative arms. Moreover, 
enrichment of Firmicutes, Fusobacteria, Bacteroidetes and Actinobacteria at phylum level was shown in 
patients with H. pylori negative gastritis by the linear discriminant analysis effect size analysis[47].

Miao et al[48] studied the effect of H. pylori eradication in microbiota composition and found that GM 
profiles between H. pylori negative groups and previously H. pylori positive groups four months after 
successful eradication therapy were almost the same[48].

Table 2 shows the relative abundance of GM at phylum level among H. pylori positive and H. pylori 
negative patient groups. In particular, we present the minimum and the maximum values across the 
studies[36,42,43,47,48]. Also, we calculated the pooled percentages and the relative 95% confidence 
intervals. Among H. pylori positive patient groups, proteobacteria were more frequent, while among H. 
pylori negative patient groups, firmicutes and proteobacteria were more frequent.

IMPACT OF FACTORS ON GASTRIC MICROBIOTA COMPOSITION BEYOND HP-I
Beyond H. pylori, the composition of GM could be modified by some other factors such as dietary habits, 
age, ethnicity, medication use and severity of gastric mucosa inflammation[18,27,49-53].

Proton pump inhibitor (PPI) raises the pH in the stomach thereby altering the GM. Likewise, PPIs-
driven gastric hypo-chlorhydria can cause substantial changes in gut microbiota composition[54,55]. 
Two possible mechanisms by which the mentioned PPIs can influence the GM composition have been 
proposed: (1) By targeting directly bacterial and fungal proton pumps; and (2) By disturbing the natural 
gastric microenvironment through the gastric pH alkalization[56]. More specifically, GM of patients on 
PPIs therapy has more abundant bacteria compared to patients on H2RAs and untreated control. The 
composition of microbiota was quite similar to that of oropharyngeal or fecal bacteria[26]. Paroni 
Sterbini et al[57] showed a significant increase in the relative abundance of Streptococcus in patients 
taking PPIs irrespective of H. pylori status; they revealed that Streptococcus can be an independent 
indicator of the gastric microbiome changes in dyspeptic patients secondary to the use of PPIs[57]. On 
the other hand, Parsons et al[40] by using 16S rRNA sequencing in gastric samples, showed that patients 
receiving PPIs had relatively few changes in the GM compared to healthy controls[39]. Besides, 
numerous reports indicated that the H. pylori moving from the antrum to body and fundus of the 
stomach is recorded particularly by long-term PPIs usage[58]. Thus, Hp-I eradication is proposed for 
patients who received long-term PPI usage in order to prevent the proinflammatory trigger and thereby 
decreasing GC potential. Antibiotic ingestion also effects gastrointestinal microflora. Mason et al[59] 
revealed that treatment with cefoperazone caused changes in GM with an overgrowth of Enterococci and 
a decrease of Lactobacilli[59].

Attempting to correlate gastric mucosal inflammation with GM, a rise in Streptococcus and a reduction 
in Prevotella was found in patients with atrophic gastritis vs healthy subjects[36]. Patients with 
autoimmune atrophic gastritis exhibited a larger concentration of Firmicutes than patients with chronic 
atrophic gastritis (CAG) and a greater variety of microbial species than H. pylori-induced atrophic 
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Table 1 Taxonomy of the most prevalent gastric microbiota at phylum and genus level

Phylum Genus
Proteobacteria Helicobacter, Enterobacteriaceae unknown, Acinetobacter, Pseudomonas, Haemophilus, Agrobacterium, Halomonas, Shewanella, Sphingomonas, 

Methylobacterium, Aquabacterium

Bacteroidetes Prevotella, Chryseobacterium

Firmicutes Streptococcus, Clostridium, Lactobacillus, Staphylococcus, Faecalibacterium, Veillonella, Bacillus, Peptostreptococcus, Selenomonas, Phascolarctobac-
terium, Gemella, Roseburia, Megamonas, Gemmiger, Lactococcus, Granulicatera, Dialister, Alcaliphylus, Ruminococcus, Blautia

Fusobacteria Fusobacterium, Leptotrichia

Actinobacteria Propionobacterium, Corynebacterium, Arthrobacter

Sprirochaetes Bacteroeides

Acidobacteria Streptophyta, Sphingobacterium, Pedobacter

Table 2 Relative abundance of gastric microbiota at phylum level among Helicobacter pylori positive and Helicobacter pylori negative 
patient groups

H. pylori-positive H. pylori-negative
Phylum

Minimum Maximum Pooled (95%CI) Minimum Maximum Pooled (95%CI)
Proteobacteria 68.7 96.7 88.4 (75.4-95.9) 10.8 52.6 27.9 (12.7-43.9)

Bacteroeidetes 0.8 8.3 3.1 (1.1-6.0) 11.1 30.0 20.8 (12.7-28)

Firmicutes 1.3 14.7 6.2 (1.8-12.9) 16.3 29.9 31.1 (20.5-40.1)

Fusobacteria 0.1 1.6 1.1 (0.2-2.3) 1.1 6.1 3.5 (1.6-6.1)

Actinobacteria 0.2 3.1 1.2 (0.4-2.5) 2.8 46.8 16.7 (2.4-37.2)

Values are expressed as percentages. CI: Confidence interval; H. pylori: Helicobacter pylori.

gastritis. This might be due to the differences in gastric acidity between the two conditions or additional 
factors such as their different immune profiles[39]. Researchers from Mexico obtained gastric tissue 
from patients with non-atrophic gastritis (NAG), IM and intestinal type GC through extraction of DNA 
for microbiota analyses using microarray methods and showed that bacterial diversity steadily 
decreased from NAG to IM to GC[59].

THE INTERACTION BETWEEN GASTRIC MICROBIOTA AND GASTRIC CANCER
The existence of multiple homeostasis mechanisms that take place in the human stomach is a well-
recognized phenomenon contributing to health maintenance by balancing the interaction between host 
gastric microbial diversity and mucosa-related factors[60,61]. When this balance is interrupted, a 
cascade of events occurs resulting in the emergence of inflammatory changes, dysbiosis and 
consequently, diseases including GC[36].

The mentioned hypochlorhydria appears to promote a decrease in microbial heterogeneity as well as 
the development of microorganisms which exhibit genotoxic changes, and raising the ratio of nitrate to 
nitrite reductase microbe capacities implicated in gastric oncogenesis. Furthermore, the bacterial balance 
differentiates by raising the stomach pH, giving growth mostly of oral bacteria, such as Streptococcus 
anginosus, Peptostreptococcus stomatis, Slackia exigua and Parvimonas micra as well as Dialister pneumosintes. 
Such bacteria might play a role in GC progression via the induction of various metabolic pathways[62]. 
Thus, to improve the understanding of the influence of promoting the survival and spread of potentially 
genotoxic bacteria in the stomach and other GIΤ locations, it will be critical to describe the properties of 
the mentioned PPIs in GM composition. Nevertheless, no consensus exists regarding the role of PPIs in 
GC development. Based on a number of metanalyses and studies, there is an increased GC risk in 
patients using PPIs for a long time period[63] (approximately 2.4 times more than non-users), despite H. 
pylori eradication[4,64,65].

Hp-I is a precise paradigm of the GM homeostasis disturbance sequelae[66]. The H. pylori-related 
inflammatory effects primarily act on the mucosal surface of the stomach variably affecting the 
production of mucin[67]. Differentiations of the latter seem to play a crucial role regarding the gastric 
carcinogenesis pathway[9]. Nevertheless, it should be stated that studies on the H. pylori-related mucin 



Liatsos C et al. Hp, gastric microbiota and gastric cancer

WJGO https://www.wjgnet.com 964 May 15, 2022 Volume 14 Issue 5

production changes have not yet been able to sort out whether this GC sequelae results in dysbiosis in 
the stomach or, conversely, to microbial diversity. These effects could be the backbone of GC 
development, given the fact that at the last stage of gastric malignancy oral or intestinal-type bacteria 
are predominantly discovered, something not seen in premalignant conditions (chronic gastritis, 
atrophy and IM) where H. pylori abundancy is more than clear. Whether this phenomenon is due to 
tumor-related mucin type differentiation, possibly resulting in GC-related microbiota must be 
elucidated[68].

As already stated, earlier studies have shown that H. pylori negative individuals exhibit a significant 
variability in microbiota composition which mainly consists of Proteobacteria, Firmicutes, Actinobacteria, 
Bacteroidetes and Fusobacteria. On the contrary, the stomach of H. pylori positive patients is almost 
exclusively colonized by this infectious pathogen[42]. In line with this observation, it should be 
highlighted that from a specific point and beyond, the GC progress seems not to be related with H. 
pylori presence, since the gastric adenocarcinoma microbiota mainly consists of intestinal and oral 
bacterial genera, and in addition this progression can happen even after successful H. pylori treatment 
(Figure 2)[67]. Similar findings emerged from the study by Yu et al[27] who investigated 160 individuals 
with gastric malignancy residing in China and Mexico. They showed that in the non-cancerous gastric 
regions, the H. pylori presence was significantly high in contrast to the GC site with depletion even in 
the absence of H. pylori. The difference in microbiota diversity that patients with advanced malignant 
lesions exhibited was further verified in many studies which revealed a marked presence of Lactoba-
cillus, Streptococcaceae, Staphylococcus, Clostridium and Fusobacterium among others, underlying the 
crucial role those intestinal microbes play[63,69]. Lastly, Robinson et al[70] showed, after utilizing an 
advanced computer-based search algorithm, that GC was the second most diversely abundant neoplasm 
in terms of bacterial DNA molecules with dominant species highly comprising Pseudomonas and not H. 
pylori.

The above studies and their subsequent findings have been verified to an accountable level by well-
designed animal model experiments, especially in C57BL/6 mice, where their stomach microbiota 
consisted of similar bacteria categories to those found in humans, namely Firmicutes, Bacteroidetes, 
Proteobacteria and Actinobacteria[71]. For instance, according to Lofgren et al[72], the H. pylori-related 
gastritis not only resulted in decreased GM variety (as seen in human individuals), but also significantly 
extended the interval to gastric malignancy emergence, especially when the only pathogen was H. pylori
. The above interesting outcome was confirmed by the study of Lertpiriyapong et al[73], who showed 
that by adding even a small number of intestinal commensal pathogens to monocolonized by H. pylori 
germ-free insulin-gastrin (INS-GAS) transgenic mouse models’ stomach there was a progressive 
advancement to gastric neoplastic lesions.

Viewing the aforementioned data, while a role for H. pylori in gastric oncogenesis cannot be doubted, 
emerging data shows that additional bacteria in the GM also seem to be involved in the transformation 
of stomach epithelial cells[74]. Nevertheless, whether it is the Hp-I that stimulates growth of unwanted 
bacteria or vice versa warrants clarification.

In a survey, Jo et al[75] showed that in GC patients, the records of nitrosating/nitrate-reducing 
microbes other than H. pylori were no less than doubled in comparison with healthy controls exhibiting 
similar H. pylori status, albeit insignificantly. Thus, further basic research is necessary to illuminate 
whether GM alterations are crucial to GC development or are the result of alterations in the gastric 
setting.

Microbial infections have been incriminated for a variety of cancers by transforming host cells and 
triggering neoplastic characters and inflammatory reactions, disrupting cell configuration and altering 
their genoms. Therefore, it is rational to consider the possible role of the intestinal microbiota in gastric 
oncogenesis[76]. Furthermore, under the consideration that H. pylori plays a dominant role in Correa’s 
cascade (i.e., from NAG to atrophic gastritis and further to IM, dysplasia and GC), the inflammatory 
process of gastritis could be considered to be started and continued by Hp-I, which can colonize 
epithelium decades before neoplastic transformation. Ultimately, this transformation could develop 
owing to augmented pH of the stomach because of the loss of parietal cells and the multiplication of 
microbes other than H. pylori[18]. Certainly, the microbiota differs between patients with chronic 
gastritis, IM and GC. The later indicates the significant role of gut microbiota in H. pylori-related 
tumorigenic effect. In contrast, progressive alterations in gastric pH could also be anticipated through H. 
pylori-derived histological alterations, facilitating the gastric colonization from other bacteria[18]. Other 
investigators showed that the GC microbiota mainly included Citrobacter, Achromobacter, Clostridium, 
Lactobacillus, Phyllobacterium and Rhodococcs. Nevertheless, additional research is warranted to clarify the 
fingerprint of bacterial populations associated with gastric disorders in connection with the Correa’s 
cascade sequence.

Currently, the comprehension of dysbiosis-related genotoxicity and inflammation needs to move 
from descriptive studies to functionally based studies which investigate the effects of specific taxa and 
bacteria-derived metabolites on the gastric mucosa. In this regard, the potential introduction of 
probiotics should be studied thoroughly in order to delineate its effectiveness in the rebalance of human 
microbiota synthesis[77].
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Figure 2 Gastric microbial composition in the healthy and diseased stomach. Under normal healthy conditions without evidence of excessive 
inflammation, Helicobacter pylori (H. pylori) exists in very low abundance. On the contrary, in chronic gastritis, H. pylori is the predominant bacteria with the presence 
of other microorganisms as well but at lower rates. However, as the sequalae of carcinogenesis moves towards malignancy, oral or intestinal-type pathogens 
exclusively predominate.

INTERACTION BETWEEN HP-I, GASTRIC MICROBIOTA AND GASTRIC CANCER
The perpetuation of Hp-I reduces microbiota diversity and is connected with atrophy, IM and GC[78]. 
Although it represents the main genus in chronic gastritis with a mean relative abundance of 42% 
(varying from 0.01%-95%), H. pylori presents a dramatic decrease in GC tissues with a relative 
abundance of 6%. In this regard, recent data based on RNA sequencing analyses revealed that H. pylori 
entirely dominated the microbiota not only in infected patients but also in the majority of individuals 
categorized as H. pylori-uninfected using conventional approaches, thus implying an active role in all 
cases of GC development[78].

The vast majority of information regarding the role of GM in carcinogenesis derives from preclinical 
studies in INS-GAS transgenic mouse models. Complex microbiota has been associated with intensive 
gastric inflammation, epithelial damage, oxyntic gland atrophy, hyperplasia, metaplasia and dysplasia
[71]. Moreover, co-infection with H. pylori in INS-GAS rodents predisposed to more severe gastric 
lesions and earlier development of early GC in comparison to H. pylori-infected germ-free INS-GAS 
mice[71]. Concerning the co-infective bacteria, complex microbiota and restricted microbiota consisting 
of only three species of commensal murine bacteria (Clostridium sp., Lactobacillus murinus and Bacteroides 
sp.) predisposed similarly to neoplasia generation in H. pylori positive models[73]. Further in vivo studies 
with Hp-I revealed that the co-infection with commensal microbiota accelerated the progression to 
gastric intraepithelial neoplasia and the progression to cancer, whereas the treatment with antibiotics 
delayed the gastric tumorigenesis in H. pylori-free and specific pathogen-free INS-GAS mice[73,79,80]. 
Moreover, the environment of gastric atrophy reduces the density of H. pylori aggregates to give rise to 
bacteria from other locations of the GIT, thus perpetuating the inflammatory process and genotoxicity, 
to induce malignant transformation. The overgrowth of such microbiome could partially contribute to 
the “point of no return” of carcinogenesis prevention after H. pylori eradication[81]. As already known, 
eradication of H. pylori is associated with a reduced risk of GC, although ambiguity exists over whether 
this is an isolated result from the eradication of the H. pylori or the modification of the whole GM, as 
bacterial diversity increases probably beneficially[80].

Interestingly, Eun et al[82] reported variations in the composition and diversity of GM among 
patients with chronic gastritis, IM and GC. More specifically, in the early stages of carcinogenesis, H. 
pylori may trigger the development of CAG, rather than direct induction of GC[82]. Subsequently, the 
resulting increased pH provokes changes in the constitution of GM thus facilitating the progression 
from CAG to IM and finally to GC[83]. On the other hand, subjects with GC showed a significant 
increase in the Bacilli class and Streptococacceae family whereas the Epsilonproteobacteria class and Helico-
bacteriaceae family were decreased[82]. As suggested by Correa et al[84], chronic Hp-I triggers a CAG 
with the mentioned defective acid secretion, thus facilitating the excessive colonization of gastric micro-
flora with bacteria capable of reducing nitrate to nitrite, to form N-nitroso compounds that are 
carcinogenic[84,85]. In this regard, the GC microbiome is different from atrophic gastritis and possesses 
increased representation of nitrate reductases, with Citrobacter, Achromobacter, Clostridium, Campylobacter, 
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Deinococcus, Sulfurospirillum and Phyllobacterium representing ascendant species[79], thus accelerating 
the development of GC following Hp-I in INS-GAS mice when compared to germ-free mice that were 
monocolonized by H. pylori[71]. Relatively, chronic treatment with the mentioned PPIs increases the 
potential of atrophy among H. pylori positive subjects[86] in contrast to H. pylori negative individuals or 
patients receiving eradication treatment thus implying that the non-H. pylori microbiota could only 
promote gastric atrophy when co-existing with H. pylori[35,87].

The activity of gastritis is well known for its close relationship with Hp-I. A similar motif of diversity 
is suggested for further phyla, such as Bacteroidetes and increased abundances of Firmicutes or Proteo-
bacteria, thus incriminating their dysbiosis for gastric carcinogenesis[87]. Nevertheless, despite the wide 
range of studies associating Hp-I with gastric dysbiosis, no data interpret the exact background of this 
interaction which seems to promote a sustained inflammation and genotoxicity[88]. A widely acceptable 
pattern suggests that chronic gastric inflammatory response to H. pylori may modify the gastric 
environment, paving the way to the growth of a dysbiotic gastric bacterial community; and H. pylori 
eradication reverses the gastric dysbiosis to a similar level to uninfected patients, and exerts beneficial 
effects on gut microbiota, achieving an increased probiotic and putative downregulation of drug-
resistance[89]. More specifically, successful H. pylori eradication inhibited dysbiosis significantly (P < 
0.001), although it remained higher than that of the H. pylori negative arm (P = 0.025). Nonetheless, 
treatment failure was associated with increased dysbiosis rate comparable to active Hp-I (P = 0.351)[89]. 
Intense dysbiosis was further found to be analogous to the progress from gastritis to atrophy, IM and 
GC (both P < 0.001)[89].

Pathophysiologically, the highly expressed VacA (vacuolating cytotoxin A), after Hp-I, binds to the 
receptor proteins tyrosine phosphatase α and β on gastric cells, thus generating pores to yield bacterial 
internalization[90]. Some data indicated that antibodies against VacA could be correlated with both 
peptic ulcer and gastric malignant disorders, thus it could be considered as a biomarker of both 
pathologies[91]. Additionally, H. pylori survival promoted by VacA is independent of CagA (cytotoxin-
associated gene A) accumulation. VacA is connected with mucolopin 1 (transient receptor channel) 
which impedes the death of microbial cells through autophagic procedure and permits the formation of 
an intracellular niche in which H. pylori survives[91]. In this regard, infection of the AGS gastric 
adenocarcinoma cell line with H. pylori for 6 h, lead to autophagy that was dependent on VacA[92]. This 
implied that autophagy is activated by cells infected by H. pylori to evade the destructive effects of 
toxins thus promoting cell survival. In addition, others reported that 1 d exposure to VacA disturbs the 
antiphagocytic signaling and accumulates defective autophagosomes in cells[92]. Likewise, H. pylori 
controls the autophagocytic pathway as well as the expression of genes related to autophagy in both 
macrophages and gastric epithelial cells[93]. Therefore, it appears that during the initiation of carcino-
genesis, the aforementioned pathway has a regulatory role and when suppressed, leads to premalignant 
disorders, induces oxidative stress, promotes cell growth, penetration and eventually metastases. 
Concerning GC, this could lead to precursor lesions extension[93]. Interestingly, there is a direct 
association between pathogens that induce dysbiosis and disturbed immune responses including 
apoptosis - autophagy and orodigestive cancers, including GC[93].

Besides, H. pylori releases a plethora of adhesins (BabA, BabB, SabA, AlpA and AlpB) which facilitate 
the opening of tight junctions (TJ) and adherent junctions (AJ)[94-96]. In this regard, in vivo CagA causes 
depolarization and disruption of the TJ barrier function in epithelial cells to the H. pylori attachment 
sites[7,94]. Additionally, after in vitro excessive administration, CagA binds to membrane e-cadherins, 
inhibits their interaction with β-catenin to disrupt the AJs’ integrity and tightness[97]. In vivo cagA with 
Lactobacillus enhances the effect of H. pylori to human monocyte-derived dendritic cells (DC) leading to 
DC maturation and induction, beyond H. pylori, additional inflammatory mediators[93]. This implies 
that the bacteria that produce lactic acid could increase H. pylori related inflammation promoting gastric 
oncogenesis. The latter are in concordance with human GM studies displaying a plethora of Lactobacillus 
in H. pylori-connected IM and GC (intestinal type) vs NAG[62] and the increased Lactobacillus in INS-
GAS mouse model studies infected with H. pylori and reduced commensals (Clostridium, Lactobacillus, 
and Bacteroides) which develop gastric intraepithelial neoplasia[73]. Nevertheless, other findings 
indicate a probiotic Lactobacillus strain that inhibits H. pylori colonization in a Mongolian gerbil model
[98]. More relevant to biofilm-associated H. pylori, Streptococcus mitis interacts with H. pylori in co-culture 
studies, converting it to coccoid cells, as proteomic analysis reveals, signifying an apparent impact on 
gastric oncogenesis linked with H. pylori[99,100]. Moreover, experimental data on INS-GAS mice co-
colonized with H. pylori and Streptococcus Salivarius showed more severe gastritis when compared with 
solely Hp-I only at 5 mo post-infection. The latter data signify strong interactions among several bacteria 
and H. pylori that in turn may affect H. pylori-related tumorigenesis[101]. Of note, H. pylori-induced 
biofilms are associated with resistance to H. pylori antibiotic eradication regimens[102]; H. pylori biofilms 
appear to be one of the main barriers to H. pylori eradication, by inhibiting antibiotics penetration and 
augmenting the expression of efflux pumps and mutations, several therapeutic failures and chronic 
infections[103].

Finally, the interplay between H. pylori and GM in the pathogenesis of GC can be dependent on Toll-
like receptors through a perpetual stimulation by H. pylori and potentially by other microorganisms
[104]. In this regard, Hp-I seems to create a premalignant environment of atrophy and IM and the 
subsequent alterations in GM in later stages play a more relevant role in carcinogenesis itself[105].
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CONCLUSION
It is more than clear that Hp-I, GM and GC constitute a challenging tangle due to the strong interaction 
between them making it difficult to unroll it.

The stomach harbors a large and diverse bacterial community with H. pylori, a member of Proteo-
bacteria phylum, being the most dominant and abundant genus. The main phyla colonizing the stomach 
are Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria and Actinobacteria. Most studies show that 
H. pylori has inhibitory effects on the colonization of other bacteria, harboring a lower diversity of them 
in the stomach. Other factors that influence GM are dietary habits, age, ethnicity, medication use (PPIs, 
antibiotics), gastric mucosa inflammation and GC. It is worthwhile to mention that GM differs in 
patients with chronic gastritis, IM, dysplasia or GC, but its role in GC has not yet been fully elucidated. 
Data shows that from a specific point and beyond, apart from H. pylori-related gastritis, the GC progress 
seems not to be related with H. pylori presence, since the gastric adenocarcinoma microbiota mainly 
consists of intestinal and oral bacterial genera, considering that this progression can happen even after 
successful H. pylori eradication. The above has been verified to an accountable level by well-designed 
animal model experiments. In accordance, beyond H. pylori’s role in gastric oncogenesis, other bacteria, 
H. pylori-stimulated or not, in GM also seem to be responsible for transformation of gastric epithelial 
cells.

To conclude, the aforementioned studies amongst others have begun to shed light into the maze of 
GC complex pathogenesis where abundant data show that beyond H. pylori related gastritis, additional 
pathogens might contribute to this type of cancer development. Nevertheless, large-scale experiments 
are needed to discern the exact role of different kinds of pathogens which reside in the stomach and 
their contribution to neoplasia emergence, aiding in the prediction of adverse prognosis of a specific 
microbiota diversity. Only then would the manipulation of GM be feasible, modifying the number and 
the types of the necessary commensals.
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