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Abstract
BACKGROUND 
Esophageal cancer is the seventh-most common cancer type worldwide, 
accounting for 5% of death from malignancy. Development of novel diagnostic 
techniques has facilitated screening, early detection, and improved prognosis. 
Convolutional neural network (CNN)-based image analysis promises great 
potential for diagnosing and determining the prognosis of esophageal cancer, 
enabling even early detection of dysplasia.

AIM 
To conduct a meta-analysis of the diagnostic accuracy of CNN models for the 
diagnosis of esophageal cancer and high-grade dysplasia (HGD).

METHODS 
PubMed, EMBASE, Web of Science and Cochrane Library databases were 
searched for articles published up to November 30, 2022. We evaluated the 
diagnostic accuracy of using the CNN model with still image-based analysis and 
with video-based analysis for esophageal cancer or HGD, as well as for the 
invasion depth of esophageal cancer. The pooled sensitivity, pooled specificity, 
positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds 
ratio (DOR) and area under the curve (AUC) were estimated, together with the 
95% confidence intervals (CI). A bivariate method and hierarchical summary 
receiver operating characteristic method were used to calculate the diagnostic test 
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accuracy of the CNN model. Meta-regression and subgroup analyses were used to identify sources of hetero-
geneity.

RESULTS 
A total of 28 studies were included in this systematic review and meta-analysis. Using still image-based analysis for 
the diagnosis of esophageal cancer or HGD provided a pooled sensitivity of 0.95 (95%CI: 0.92-0.97), pooled 
specificity of 0.92 (0.89-0.94), PLR of 11.5 (8.3-16.0), NLR of 0.06 (0.04-0.09), DOR of 205 (115-365), and AUC of 0.98 
(0.96-0.99). When video-based analysis was used, a pooled sensitivity of 0.85 (0.77-0.91), pooled specificity of 0.73 
(0.59-0.83), PLR of 3.1 (1.9-5.0), NLR of 0.20 (0.12-0.34), DOR of 15 (6-38) and AUC of 0.87 (0.84-0.90) were found. 
Prediction of invasion depth resulted in a pooled sensitivity of 0.90 (0.87-0.92), pooled specificity of 0.83 (95%CI: 
0.76-0.88), PLR of 7.8 (1.9-32.0), NLR of 0.10 (0.41-0.25), DOR of 118 (11-1305), and AUC of 0.95 (0.92-0.96).

CONCLUSION 
CNN-based image analysis in diagnosing esophageal cancer and HGD is an excellent diagnostic method with high 
sensitivity and specificity that merits further investigation in large, multicenter clinical trials.

Key Words: Esophageal cancer; High-grade dysplasia; Convolutional neural network; Deep learning; Systematic review; Meta-
analysis

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This systematic review provides a meta-analysis of 28 studies evaluating the accuracy of convolutional neural 
network (CNN) models for diagnosing esophageal cancer and high-grade dysplasia, and for predicting the invasion depth of 
esophageal cancer. It also establishes a theoretical foundation for the clinical application of CNN models. Based on this 
meta-analysis, CNN-based image analysis may have great potential for diagnosing and estimating the prognosis of 
esophageal cancer, though further study is needed.

Citation: Zhang JQ, Mi JJ, Wang R. Application of convolutional neural network-based endoscopic imaging in esophageal cancer or 
high-grade dysplasia: A systematic review and meta-analysis. World J Gastrointest Oncol 2023; 15(11): 1998-2016
URL: https://www.wjgnet.com/1948-5204/full/v15/i11/1998.htm
DOI: https://dx.doi.org/10.4251/wjgo.v15.i11.1998

INTRODUCTION
In global data reported by the International Agency for Research on Cancer, esophageal cancer was the seventh-most 
common malignancy in incidence and sixth in mortality worldwide in 2020[1]. Esophageal cancer has two main 
histological subtypes: Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC)[2]. ESCC is 
more common in Asian countries, accounting for approximately 87% of all cases of esophageal cancer, whereas EAC is 
more common in western countries and has been increasing in incidence recently[3-5]. Diverse grades of dysplasia, 
especially high-grade dysplasia (HGD), are precancerous lesions known to progress to esophageal cancer[3,6]. The 
majority of patient with esophageal cancer are diagnosed with advanced disease due to the lack of symptoms at earlier 
stages, resulting in a five-year survival rate of less than 20%[7,8]. When diagnosed and treated early, however, the five-
year survival rate can increase to more than 85%[9,10]. Moreover, the choice of treatment modalities and the prognosis of 
esophageal cancer patients depend heavily on the predicted invasion depth[11,12].

Traditional endoscopy is frequently used to detect esophageal cancer and to estimate its invasion depth. However, 
detection of the minor changes in the surrounding mucosa of early esophageal cancer using only white light imaging 
(WLI) endoscopy remains challenging[13,14]. Although iodine staining provides greater accuracy in detection, it is 
employed infrequently during screening, as it causes discomfort, and allergies to iodine are not infrequent[15,16]. 
Emerging endoscopic techniques such as narrow band imaging (NBI), blue-laser imaging (BLI), and post-processing 
imaging techniques such as i-scan and flexible spectral imaging color enhancement have greatly increased the rate of 
esophageal cancer detection, as has endocytoscopy, which is a novel endoscopic system that provides high-quality 
assessment of lesions in vivo, but these depend upon specialized training and experience for the endoscopist[14,17,18]. 
Additionally, esophageal lesions frequently have irregular shapes and indistinct borders, resulting in variable 
performance even by experts due to the pressure to complete procedures quickly, limiting the time available for diagnosis 
and the degree of confidence in the interpretation[19].

Artificial intelligence (AI) in the medical industry is being utilized at an ever-increasing rate thanks to advances in 
deep learning (DL), one of its core branches[20-22]. Convolutional neural network (CNN) is a DL model inspired by the 
biological mechanism of object perception in the animal brain[23] with unique self-learning abilities that encode complex 
signals. After the original image is entered into the CNN model, the convolution layer automatically recognizes the color, 
texture, detailed features, and global features of the image according to the settings defined by the investigators. It then 
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completes various diagnostic visual tasks, such as recognition of diabetic retinopathy or skin cancer[24,25]. CNN can also 
assist in the diagnosis of gastrointestinal diseases by preserving the spatial relationship characteristics of endoscopic 
images (including the detection of colorectal polyps), Helicobacter pylori infection, and gastrointestinal cancer[20,26-28]. 
Given the recent increasing use of endoscopy, CNN has been used extensively to diagnose esophageal cancer and 
premalignant lesions, as well as in predicting the invasion depth of esophageal cancer[29-31].

For this systematic review we conducted a meta-analysis of the diagnostic test accuracy (DTA) achieved by the CNN 
model in diagnosing esophageal cancer and HGD, as well as its ability to predict the invasion depth of esophageal cancer.

MATERIALS AND METHODS
Literature search
This systemic review and meta-analysis were conducted in accordance with the Preferred Reporting Items for Systematic 
Review and Meta-analyses guidelines. Two investigators independently searched the PubMed, EMBASE, Web of Science, 
and Cochrane Library databases for all studies published before November, 2022 that used the CNN model to detect 
esophageal cancer and HGD. The following terms were used for the search: (“convolutional neural network” OR 
“convolutional neural networks” OR “computer-aided” OR “computer aided” OR “artificial intelligence” OR “machine 
learning” OR “deep learning” OR “hierarchical learning” OR “computational intelligence” OR “machine intelligence” OR 
“computer reasoning”) AND (“esophageal neoplasms” OR “esophageal neoplasm” OR “esophagus neoplasm” OR 
“esophagus neoplasms” OR “esophagus cancer” OR “esophagus cancers” OR “esophageal cancer” OR “esophageal 
cancers” OR “oesophagus cancer” OR “oesophageal cancers” OR “oesophagus neoplasm” OR “oesophageal neoplasms” 
OR “esophageal squamous cell carcinoma” OR “adenocarcinoma of esophagus” OR “oesophageal squamous cell 
carcinoma” OR “esophageal adenocarcinoma” OR “oesophageal adenocarcinoma” OR “Barrett’s esophagus” OR 
“Barrett’s oesophagus”). Only English-language articles were included. The author screened all articles and emailed the 
research author to obtain missing data or study material before excluding any relevant articles from the analysis. 
Repetitive studies, reviews, and meta-analyses, as well as non-relevant studies (as determined by reading the title, 
abstract and full text), were excluded from this meta-analysis. Studies with insufficient information or that did not meet 
the inclusion criteria were excluded. Two authors discussed any differences, and sought advice from a third author to 
reconcile any differences.

Study selection
The inclusion criteria were: (1) Analysis of a CNN model utilizing still images or video to diagnose esophageal cancer or 
HGD; (2) Analysis of a CNN model for predicting the invasion depth of esophageal cancer or HGD, or for identifying 
intrapapillary capillary loops (IPCLs) of esophageal cancer and HGD; (3) Prospective or retrospective studies; (4) Cases of 
histologically-proven esophageal cancer and HGD; and (5) Studies published in English. The exclusion criteria were: (1) 
Reviews or meta-analyses; (2) Proceedings, letters or comments; (3) Experimental studies; (4) Animal studies; or (5) 
Studies with incomplete data.

Data extraction
Two authors independently extracted information from the identified reports, and resolved disagreements through 
extensive discussion to reach a consensus. The authors extracted the following information from each eligible study: First 
author, publication year, continent, scale (single center or multicenter), external validation (yes/no), study format, case 
type (image or patient), real-time (yes/no), histological type, image type, quality (see below), number of patients or 
endoscopic images, and algorithms for CNN models. The rates of true positivity, false positivity, false negativity, and true 
negativity for the CNN models and endoscopists in diagnosing esophageal cancer and HGD were also extracted, together 
with the prediction of invasion depth of esophageal cancer or HGD, or identification of IPCLs of esophageal cancer or 
HGD.

Quality assessment
The Quality for Assessment of Diagnostic Studies (QUADAS) score was used to determine the quality of the included 
studies. This score was assessed in four parts, comprising patient selection, index test, reference standard, and flow and 
timing, with the first three parts utilized for applicability assessment[32]. Each part was graded by two authors as having 
a high, low, or unclear risk of bias.

Outcome measures
The primary outcomes determined were the pooled diagnostic accuracy, pooled sensitivity, pooled specificity, positive 
likelihood ratio (PLR) and negative likelihood ratio (NLR) of the CNN models for diagnosing esophageal cancer and 
HGD, for predicting the invasion depth of esophageal cancer and HGD, and for identifying IPCLs in esophageal cancer or 
HGD. The area under the curve (AUC) was used to measure the accuracy of the CNN. The secondary outcome was the 
performance of endoscopists compared with that of CNN models for detection of esophageal cancer or HGD using the 
same still images and videos.

Statistical analyses
The main statistical data processing for this DTA meta-analysis used the bivariate method and the hierarchical summary 
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Figure 1 Flowchart of the search process.

receiver operating characteristic (HSROC) method to calculate the pooled sensitivity, pooled specificity, PLR, NLR, 
diagnostic odds ratio (DOR) and area under the receiver operating characteristic curve (AUROC) of CNN models and of 
endoscopists to detect esophageal cancer or HGD. This approach also considers the correlation between specificity and 
sensitivity. Heterogeneity was analyzed using the HSROC method to determine the correlation coefficient between logit-
transformed sensitivity and specificity and the asymmetry parameter β. A β value of 0 serves as the standard for 
evaluating the symmetry of the ROC, with the HSROC curve inspected visually for signs of heterogeneity. Regression 
and subgroup analyses were used to determine the source of heterogeneity. The 95% confidence interval (CI) of AUROC 
was calculated and compared within each subgroup. A statistically significant difference between two subgroups was 
indicated by a non-overlapping 95%CI of the AUROC. STATA software version 15.1 (College Station, Texas, United 
States) with the installed packages MIDAS and METANDI was used to perform the main statistical analysis. Meta-DiSc 
1.4 (XI Cochrane Colloquium, Barcelona, Spain) was used for the subgroup analysis of data with a small sample size. The 
figures for methodological quality assessment and the HSROC curve for small sample size data were drawn using 
RevMan 5.3 (The Nordic Cochrane Centre, Copenhagen, Denmark). Publication bias was analyzed using Deeks’ test[33]. 
A P value < 0.05 was considered statistically significant. The statistical methods of the study were reviewed by professor 
Ming-Cheng Li from Beihua University.

RESULTS
Literature search and screening results
A total of 2045 studies were identified initially using the screening search strategy described. Of these, 655 were excluded 
because they were duplicate studies, 133 because they were meta-analyses or reviews, and 1205 because they were 
deemed irrelevant based on their titles and abstracts. The remaining 52 studies were examined in full and 24 were 
rejected because they contained insufficient data, or were comments and proceedings. Finally, the authors identified 28 
studies that met the inclusion and exclusion criteria for this systematic review and meta-analysis[17,20,29,31,34-57]. The 
flowchart for the search procedure is shown in Figure 1.

Quality assessment of the included literature
The QUADAS-2 tool was used to assess the quality and bias risk of the included studies. Most studies were rated as 
having low bias risk in all parts. Of the 28 studies, only three failed to indicate whether the selected patients were 
continuous or chosen at random[41,44,45], hence their risk for patient selection was not clear. The studies included were 
of excellent quality, as shown in Figures 2A and B.
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Figure 2 Methodological quality assessment. A: Summary graph of quality in the methodology; B: Summary table of quality in the methodology.

Meta-analysis of CNN for the diagnosis of esophageal cancer or HGD based on still images
A total of 19 still image-based studies assessed the diagnostic value of CNN for esophageal cancer or HGD[17,20,34-50], 
providing extractable data from a total of 20867 images. Twelve studies assessed images from Asian populations[17,20,34,
37-39,45-50], five from European and American populations[35,41-44], and two from multiregional populations[36,40]. 
Thirteen studies provided CNN data using WLI[17,20,34,36,39,41-44,46-49] and 10 applied advanced imaging techno-
logies, including NBI, BLI, etc.[17,20,35,37,38,40,42,45,48,50]. The histological types examined were sorted into three 
categories: Esophageal cancer (including ESCC and EAC)[17,20,34-38,40,41,46,47], Barrett’s neoplasia (including HGD 
and EAC)[39,42-45,49,50], and esophageal squamous cell neoplasia (including HGD and ESCC)[48]. One study diagnosed 
esophageal cancer IPCLs by CNN based on still images[38]. This study was also included in the meta-analysis. For the 19 
still image-based studies describing the diagnosis of esophageal cancer or HGD, the pooled sensitivity was 0.95 (95%CI: 
0.92-0.97), pooled specificity was 0.92 (0.89-0.94), PLR was 11.5 (8.3-16.0), NLR was 0.06 (0.04-0.09), DOR was 205 (115-
365), and AUC was 0.98 (0.96-0.99) (Table 1). The studies included in this analysis showed heterogeneity (P = 0.000, I² = 
0.98). However, the HSROC shape was symmetric, and the following results negated the impact of the threshold effect: A 
correlation coefficient between logit-transformed sensitivity and specificity of r = -0.225, and an asymmetric β parameter 
with a nonsignificant P value of 0.431 (Figure 3A).

A coupled forest plot of sensitivity and specificity is shown in Figure 3B. Meta-regression analysis of these data 
revealed that histological type was the only significant source of heterogeneity (P = 0.01) when the publication year (P = 
0.26), continent (P = 0.65), scale (P = 0.61), external validation (P = 0.94), study type (P = 0.84), case type (P = 0.10), real-
time (P = 0.90), image type (P = 0.07), quality (P = 0.10) and number of cases (P = 0.22) were included in the analysis. The 
data were also subjected to subgroup analysis (Table 2 and Figure 3C). Three still image-based studies compared the 
diagnostic performance of endoscopists with that of CNN models[20,34,50]. The CNN models showed higher sensitivity 
than did endoscopists [0.96 (95%CI: 0.92-0.98) vs 0.87 (95%CI: 0.81-0.91)] (Figure 4A-D). Using the same still image 
dataset, the diagnostic performance of the CNN models was marginally better than that of endoscopists, as shown by the 
plot of the HSROC curve (Figure 5).

Meta-analysis of CNN models for the diagnosis of esophageal cancer or HGD based on videos
Eight video-based studies reported the diagnostic value of CNN for esophageal cancer or HGD[43,47,51-56], evaluating a 
total of 1262 videos. Six studies provided images from Asian populations[47,51,53-56] and two from European 
populations[43,52]. Five studies provided data using WLI[43,47,53-55] and five using advanced imaging technology 
including NBI, BLI, etc.[51-54,56]. The histological types analyzed in these studies included ESCC[47,51,53-56] and 
Barrett’s neoplasia (including HGD and EAC)[43,52]. Results from these eight video-based studies showed a pooled 
sensitivity of 0.85 (95%CI: 0.77-0.91), pooled specificity of 0.73 (0.59-0.83), PLR of 3.1 (1.9-5.0), NLR of 0.20 (0.12-0.34), 
DOR of 15 (6-38), and AUC of 0.87 (0.84-0.90) (Table 3).

The studies included in the video-based analysis exhibited heterogeneity (P = 0.000, I² = 0.93). Furthermore, the 
HSROC curve shape was symmetric (Figure 6A), the correlation coefficient between logit-transformed sensitivity and 
specificity was observed to be r = 0.277, and an asymmetric β parameter with a nonsignificant P value (0.630) was 
obtained. Thus, the observed heterogeneity was not due to the threshold effect. Coupled forest plots for sensitivity and 
specificity are shown in Figure 6B. Meta-regression and subgroup analyses revealed no obvious sources of heterogeneity 
(Table 4 and Figure 6C) from the publication year (P = 0.86), continent (P = 0.73), scale (P = 0.55), histological type (P = 
0.73), external validation (P = 0.94), study type (P = 0.89), real-time (P = 0.13), image type (P = 0.76), or number of cases (P 
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Table 1 Characteristics of the still image-based studies

Ref. Format Scale Continent Case 
type

Architecture 
of CNN

Image 
type

Histological 
type

Real-
time

External 
validation Quality Endoscopist 

control

Patients 
training 
set

Images 
training 
set

Patients 
test set

Images 
test set TP FP FN TN

Li et al[17], 
2021

Retrospective Multicenter Asia Image Visual 
geometry 
group

NBI/WLI ESCC No No High 20 647 4735 112 632 252 37 14 329

Ohmori et 
al[20], 2020

Retrospective Unicenter Asia Patient SSD NBI/BLI ESCC No No High 15 NM 22562 237 727 51 16 1 34

Cai et al
[34], 2019

Retrospective Multicenter Asia Image 8-layer 
convolutional 
neural network

WLI ESCC No No High 16 746 2428 52 187 89 14 2 82

Ebigbo et al
[35], 2019

Prospective Unicenter Europe Image ResNet WLI/NBI EAC No No High 13 113 248 62 74 32 5 1 36

Ghatwary 
et al[36], 
2019

Retrospective Unicenter Public Image R-CNN, Fast R-
CNN, Faster R-
CNN, SSD

WLI EAC No No High No 21 NM 39 100 48 4 2 46

Kumagai et 
al[37], 2019

Retrospective Unicenter Asia Patient GoogLeNet ECS ESCC No No High No 240 4715 55 1520 25 3 2 25

Zhao et al
[38], 2019

Retrospective Unicenter Asia IPCLs 
image

ImageNet 
VGG-16

ME-NBI ESCC No No High 9 NM 261 NM 1383 1023 33 153 174

Liu et al
[39], 2020

Retrospective Unicenter Asia Image Inception-
ResNet

WLI ESCC/EAC No No High No NM 1017 NM 127 27 4 8 88

Guo et al
[40], 2020

Retrospective Multicenter Public Image SegNet NBI ESCC Yes Yes High No 549 6473 2123 6671 1451 258 29 4933

Ebigbo et al
[41], 2020

Retrospective Unicenter Europe Image ResNet WLI EAC Yes No Low No NM 129 14 62 30 0 6 26

Hashimoto 
et al[42], 
2020

Retrospective Unicenter Ameica Image Inception-
ResNet v2

NBI/WLI Barrett’s 
neoplasia 
(HGD/EAC)

Yes No High No 100 1832 39 458 217 13 8 220

de Groof et 
al[43], 2020

Prospective Multicenter Europe Patient ResNet/U-Net WLI Barrett’s 
neoplasia 
(HGD/EAC)

Yes Yes High 53 NM 1544 20 144 25 15 8 96

de Groof et 
al[44], 2020

Retrospective Multicenter Europe Image ResNet/U-Net WLI Barrett’s 
neoplasia 
(HGD/EAC)

Yes Yes Low 53 15700 495611 255 457 186 31 23 217

Du et al
[45], 2021

Retrospective Unicenter Asia Image DenseNet WLI ESCC/EAC No No Low No 3253 16771 824 4194 1106 109 103 2876
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Tang et al
[46], 2021

Retrospective Multicenter Asia Image ResNet50 WLI ESCC Yes Yes High 10 1078 4002 243 1033 297 87 6 643

Yang et al
[47], 2021

Retrospective Unicenter Asia Image Yolo V3 WLI/ME-
OE

ESCC No No High 6 6215 32373 NM 1123 263 13 5 774

Wang et al
[48], 2021

Retrospective Unicenter Asia Patient SSD WLI/NBI ESCN 
(HGD/ESCC)

No No High No 46 936 202 264 169 5 2 26

Gong et al
[49], 2022

Prospective Multicenter Asia Image Grad-CAM WLI ESCC/EAC No Yes High No NM 4387 NM 1611 631 58 21 901

Zhao et al
[50], 2022

Retrospective Unicenter Asia Patient GoogLeNet-
Inception V3

NBI ESCC/EAC No No High 2 200 NM 100 NM 45 4 5 46

WLI: White-light imaging; NBI: Narrow-band imaging; BLI: Blue-laser imaging; ECS: Endocytoscopic system; ME: Magnifying endoscopy; OE: Optical enhancement; TP: True positive; FP: False positive; FN: False negative; TN: True 
negative; EAC: Esophageal adenocarcinoma; ESCC: Esophageal squamous cell carcinoma; ESCN: Esophageal squamous cell neoplasia; HGD: High-grade dysplasia; IPCL: Intrapapillary capillary loop classification; NM: Not mentioned; 
CNN: Convolutional neural network.

= 0.76). The type of case and quality were consistent among the eight studies, so no relevant meta-regression analysis was 
indicated. Because only one video-based study compared the diagnostic performance of the CNN model to that of 
endoscopists[53], no data analysis was performed for the endoscopists.

Meta-analysis of CNN for predicting the invasion depth of esophageal cancer
Three studies used the CNN model to predict the invasion depth of esophageal cancer and gave precise data[29,31,57]. 
One differentiated between pathological intraepithelial (pEP)-submucosal microinvasive (SM1) (pEP-SM1) and 
pathological submucosal deep invasive (pSM2/3) cancers[29], one reported the diagnostic performance of CNN for pEP-
SM1 and pEP-muscularis mucosa cancer[31], and one reported the diagnostic performance of CNN for pEP-SM1 cancer
[57]. The pooled sensitivity was 0.90 (95%CI: 0.87-0.92), pooled specificity was 0.83 (0.76-0.88), PLR was 7.8 (1.9-32.0), 
NLR was 0.10 (0.41-0.25), DOR was 117.76 (10.63-1304.7), and AUC was 0.95 (0.92-0.96) (Table 5). The HSROC curve and 
coupled forest plots of sensitivity and specificity are shown in Figures 7A-C, respectively. Two studies compared the 
diagnostic performance of endoscopists vs CNN models for predicting the invasion depth of esophageal cancer[31,57]. 
However, because only one of these provided specific data, an analysis was not performed on the diagnostic performance 
of the endoscopists.

Evaluation of publication bias
Deeks’ funnel plot of 19 still image-based studies showed a symmetrical shape with respect to the regression line 
(Figure 8A). The asymmetric test revealed no significant publication bias (P = 0.07). Furthermore, Deeks’ funnel plot of 
eight video-based studies also showed a symmetrical shape with respect to the regression line (Figure 8B), with no 
significant publication bias (P = 0.55).



Zhang JQ et al. Diagnostic accuracy of CNN: A meta-analysis

WJGO https://www.wjgnet.com 2005 November 15, 2023 Volume 15 Issue 11

Table 2 Full detail and meta-analysis and subgroup analysis convolutional neural network model for the diagnosis of esophageal 
cancers or neoplasms in the still image-based analysis

Number of 
studies

Sensitivity 
(95%CI)

Specificity 
(95%CI)

PLR 
(95%CI)

NLR 
(95%CI)

DOR 
(95%CI)

AUC 
(95%CI) P value

CNN 19 0.95 (0.92-0.97) 0.92 (0.89-0.94) 11.5 (8.3-16.0) 0.06 (0.04-
0.09)

205 (115-365) 0.98 (0.96-
0.99)

Continent 0.65

Asian 12 0.95 (0.92-0.97) 0.91 (0.87-0.95) 11.1 (7.0-17.5) 0.05 (0.03-
0.09)

222 (110-444) 0.98 (0.96-
0.99)

Europe/Ameica 5 0.91 (0.86-0.94) 0.90 (0.87-0.92) 9.3 (7.0-12.3) 0.10 (0.06-
0.16)

91 (45-186) 0.95 (0.93-
0.97)

Public 2

Scale 0.61

Unicenter 12 0.94 (0.90-0.97) 0.93 (0.88-0.96) 13.2 (7.8-22.5) 0.06 (0.03-
0.11)

219 (103-465) 0.98 (0.96-
0.99)

Multicenter 7 0.95 (0.91-0.98) 0.90 (0.87-0.93) 10.0 (7.3-13.8) 0.05 (0.03-
0.10)

191 (78-471) 0.97 (0.95-
0.98)

External validation or 
not

0.94

External validation 5 0.95 (0.88-0.98) 0.91 (0.87-0.94) 10.5 (6.9-16.0) 0.06 (0.02-
0.14)

186 (55-635) 0.97 (0.95-
0.98)

No external 
validation

14 0.95 (0.91-0.97) 0.92 (0.88-0.95) 12.1 (7.7-19.1) 0.06 (0.03-
0.09)

213 (111-407) 0.98 (0.96-
0.99)

Format 0.84

Retrospective 16 0.95 (0.92-0.97) 0.92 (0.88-0.95) 12.0 (8.1-17.7) 0.05 (0.03-
0.09)

223 (121-411) 0.98 (0.96-
0.99)

Prospective 3

Case type 0.1

Image 14 0.95 (0.92-0.97) 0.93 (0.90-0.95) 13.7 (9.6-19.6) 0.05 (0.03-
0.09)

252 (132-478) 0.98 (0.96-
0.99)

Patient 5 0.95 (0.84-0.98) 0.84 (0.75-0.90) 5.8 (3.8-8.9) 0.06 (0.02-
0.19)

94 (34-265) 0.92 (0.90-
0.94)

Real-time or not 0.9

Real-time 7 0.94 (0.88-0.97) 0.91 (0.88-0.94) 11.0 (7.6-16.0) 0.06 (0.03-
0.13)

175 (65-471) 0.96 (0.94-
0.98)

No real-time 12 0.95 (0.92-0.97) 0.91 (0.87-0.95) 11.1 (7.0-17.7) 0.05 (0.03-
0.09)

210 (103-430) 0.98 (0.96-
0.99)

Histological type 0.01

ESCN 9 0.97 (0.94-0.98) 0.90 (0.83-0.94) 9.6 (5.6-16.3) 0.04 (0.02-
0.06)

272 (106-699) 0.98 (0.97-
0.99)

Barrett’s neoplasia 6 0.92 (0.85-0.96) 0.91 (0.87-0.93) 9.7 (6.7-14.1) 0.09 (0.05-
0.17)

108 (43-272) 0.96 (0.93-
0.97)

ESCC/EAC 4 0.92 (0.85-0.96) 0.96 (0.94-0.97) 23.0 (17.2-
30.6)

0.08 (0.04-
0.16)

283 (178-450) 0.98 (0.96-
0.99)

Image type 0.07

WLI 13 0.95 (0.91-0.97) 0.89 (0.85-0.92) 8.3 (6.2-11.0) 0.06 (0.03-
0.11)

143 (75-273) 0.96 (0.94-
0.97)

Advanced imaging 10 0.95 (0.91-0.97) 0.93 (0.88-0.96) 13.6 (7.5-24.6) 0.06 (0.03-
0.10)

237 (107-525) 0.98 (0.96-
0.99)

Quality 0.1

High 16 0.96 (0.93-0.97) 0.91 (0.88-0.94) 10.7 (7.6-15.2) 0.05 (0.03-
0.08)

223 (115-434) 0.98 (0.96-
0.99)
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Low 3

CI: Confidence interval; PLR: Positive likelihood ratio; NLR: Negative likelihood ratio; DOR: Diagnostic odds ratio; AUC: Area under the curve; WLI: 
Wight-light imaging; ESCN: Esophageal squamous cell neoplasia; EAC: Adenocarcinoma; ESCC: Esophageal squamous cell carcinoma; CNN: 
Convolutional neural network.

Figure 3 Summary of the receiver operating characteristic, forest plots, and univariable meta-regression plot of convolutional neural 
network for the diagnosis of esophageal cancer or high-grade dysplasia based on still images. A: Summary of the receiver operating 
characteristic of convolutional neural network (CNN) for the diagnosis of esophageal cancer or high-grade dysplasia (HGD) based on still images; B: Coupled forest 
plots for the sensitivity and specificity of CNN in the diagnosis of esophageal cancer or HGD based on still images; C: Univariable meta-regression plot of CNN for the 
diagnosis of esophageal cancer or HGD based on still images. CI: Confidence interval; SROC: Summary receiver operating characteristic.

DISCUSSION
Esophageal cancer is a malignant neoplasm with early, rapid metastasis and a poor prognosis, but endoscopy can provide 
early diagnosis and therapy[58]. Endoscopists can find it challenging to accurately diagnose esophageal cancer and HGD 
when relying solely on their own skills, but AI may have clinical applicability to achieve greater accuracy[59]. CNN is a 
branch of DL that uses a special learning method to develop image recognition capabilities through training datasets. 
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Table 3 Characteristics of the still video-based studies

Ref. Format Scale Continent Case 
type

Architecture of 
CNN Image type Histological 

type
Real-
time

External 
validation Quality Endoscopist 

control

Patients 
training 
set

Videos 
training 
set

Patients 
test set

Videos 
test 
set

TP FP FN TN

de Groof et al
[43], 2020

Prospective Multicenter Europe Video ResNet/U-Net WLI Barrett’s 
neoplasia 
(HGD/EAC)

Yes Yes Hgh 53 NM 1544 20 20 9 3 1 7

Yang et al
[47], 2021

Retrospective Unicenter Asia Video Yolo V3 WLI ESCC No No High 6 6215 32373 
image/104 
video

NM 68 39 2 1 26

Fukuda et al
[51], 2020

Retrospective Unicenter Asia Video SSD/VGG-16 NBI/BLI ESCC Yes Yes High 13 2002 28333 NM 238 80 53 10 95

Struyvenberg 
et al[52], 2021

Retrospective Multicenter Europe Video ResNet/U-Net NBI Barrett’s 
neoplasia 
(HGD/EAC)

Yes Yes High No 15700 495611 50 471 141 58 36 236

Waki et al
[53], 2021

Retrospective Multicenter Asia Video ResNet/ImageNet WLI/NBI/BLI ESCC Yes No High 21 1572 18797 113 200 103 66 23 34

Shiroma et al
[54], 2021

Retrospective Unicenter Asia Video SSD NBI ESCC Yes No High 18 nm 8428 40 80 11 4 9 16

Yuan et al
[55], 2022

Retrospective Multicenter Asia Video YOLO v3 WLI ESCC Yes Yes High 11 2621 
image/19 
video

53933 
image/142 
video

NM 38 17 5 2 14

Tajiri et al
[56], 2022

Retrospective Unicenter Asia Video ResNet/ImageNet WLI/NBI/BLI ESCC No No High 19 1843 29794 130 147 71 16 12 48

WLI: White-light imaging; NBI: Narrow-band imaging; BLI: Blue-laser imaging; TP: True positive; FP: False positive; FN: False negative; TN: True negative; EAC: Esophageal adenocarcinoma; ESCC: Esophageal squamous cell 
carcinoma; HGD: High-grade dysplasia; NM: Not mentioned; CNN: Convolutional neural network.

Recently, CNN has been applied to the analysis of endoscopic images and videos, showing rapid progress and 
developing progressively into a crucial auxiliary tool for endoscopists[60]. Additionally, CNN has been used to recognize 
the geometry of IPCLs to gauge the invasion depth of esophageal cancer, as well as to help medical professionals build 
treatment regimens[61,62]. This systematic review and meta-analysis demonstrates that the CNN method can reliably 
identify esophageal cancer and HGD, providing great clinical applicability. The current meta-analysis found that CNN 
was effective at identifying esophageal cancer based on still image data, with values for pooled sensitivity, pooled 
specificity, PLR, NLR, DOR and AUC of 0.95, 0.92, 11.5, 0.06, 205, and 0.98, respectively. The still image dataset 
demonstrates the ability of CNN to identify uncertain lesions discovered during endoscopy, and CNN showed higher 
sensitivity than endoscopists. It might therefore reduce the rate of missed diagnosis of esophageal cancers and neoplasms 
and help endoscopists find lesions that are easily overlooked.
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Table 4 Full detail and meta-analysis and subgroup analysis convolutional neural network model for the diagnosis of esophageal 
cancers or neoplasms in the video-based analysis

Number of 
studies

Sensitivity 
(95%CI)

Specificity 
(95%CI)

PLR 
(95%CI)

NLR 
(95%CI)

DOR 
(95%CI)

AUC 
(95%CI) P value

CNN 0.85 (0.77-0.91) 0.73 (0.59-0.83) 3.1 (1.9-5.0) 0.20 (0.12-
0.34)

15 (6-38) 0.87 (0.84-
0.90)

Continent 0.73

Asian 6 0.86 (0.76-0.93) 0.71 (0.53-0.85) 3.0 (1.6-5.5) 0.19 (0.09-
0.40)

16 (5-54) 0.87 (0.84-
0.90)

Europe/Ameica 2

Scale 0.55

Unicenter 4 0.87 (0.68-0.96) 0.77 (0.62-0.87) 3.8 (2.0-7.0) 0.17 (0.06-
0.49)

23 (5-106) 0.87 (0.84-
0.90)

Multicenter 4 0.81 (0.77-0.85) 0.65 (0.43-0.82) 2.3 (1.3-
4.2)

0.29 (0.20-
0.41)

8 (3-20) 0.82 (0.78-
0.85)

External validation or 
not

0.94

External validation 0.85 (0.78-0.91) 0.73 (0.63-0.80) 3.1 (2.4-4.1) 0.20 (0.14-
0.29)

16 (10-24) 0.87 (0.84-
0.90)

No external 
validation

0.85 (0.66-0.94) 0.74 (0.45-0.90) 3.2 (1.2-8.5) 0.20 (0.07-
0.60)

16 (2-106) 0.87 (0.84-
0.90)

Format 0.89

Retrospective 5 0.85 (0.76-0.91) 0.73 (0.58-0.84) 3.1 (1.9-5.3) 0.21 (0.12-
0.36)

15 (6-41) 0.87 (0.84-
0.90)

Prospective 1

Real-time or not 0.13

Real-time 6 0.82 (0.74-0.87) 0.68 (0.52-0.80) 2.5 (1.6-3.9) 0.27 (0.19-
0.39)

9 (5-18) 0.83 (0.80-
0.86)

No real-time 2

Histological type 0.73

ESCN 6 0.86 (0.76-0.93) 0.71 (0.53-0.85) 3.0 (1.6-5.5) 0.19 (0.09-
0.40)

16 (5-54) 0.87 (0.84-
0.90)

Barrett’s neoplasia 2

Image type 0.76

WLI 4 0.83 (0.71-0.91) 0.49 (0.27-0.71) 1.6 (0.9-2.8) 0.34 (0.13-
0.88)

5 (1-20) 0.80 (0.77-
0.84)

Advanced imaging 5 0.83 (0.77-0.88) 0.71 (0.56-0.82) 2.9 (1.9-4.3) 0.24 (0.19-
0.30)

12 (8-19) 0.86 (0.82-
0.88)

CI: Confidence interval; PLR: Positive likelihood ratio; NLR: Negative likelihood ratio; DOR: Diagnostic odds ratio; AUC: Area under the curve; WLI: 
Wight-light imaging; ESCN: Esophageal squamous cell neoplasia; CNN: Convolutional neural network.

The meta-analysis of video data revealed that the CNN model performs exceptionally well for the diagnosis of 
esophageal cancer and HGD. The pooled sensitivity, pooled specificity, PLR, NLR, DOR and AUC were 0.85, 0.73, 3.1, 
0.20, 15, and 0.87, respectively. Despite having good diagnostic performance, the meta-analysis results for the CNN 
model based on video data showed that CNN was slightly less accurate when used on video images than on static images 
as the dataset. This reduced accuracy may arise because the performance of CNN on video images is influenced by a 
variety of factors, including poor insufflation, bleeding, blurring, focus, angle, surgical procedure, patient participation, 
and image quality. However, video more accurately mimics the endoscopic procedure performed by the endoscopist, 
which serves as a valuable benchmark for the operational performance of CNN. Esophageal lesions can be overlooked 
due to the endoscope passing through the esophagus too quickly, or because of insufficient expertise by the endoscopist. 
CNN can assist endoscopists to correctly identify and further diagnose esophageal lesions. Refinement and expansion of 
the training dataset should improve CNN performance in the identification of video-based lesions[37,38].
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Table 5 Characteristics of the studies about diagnosis of invasion depth of esophageal cancers

Ref. Format Scale Continent Depth Architecture 
of CNN Image type Histological 

type
Real-
time

External 
validation Quality Endoscopist 

control

Patients 
training 
set

Images 
training 
set

Patients 
test set

Images 
test set TP FP FN TN

Horie et al
[29], 2019

Retrospective Unicenter Asia T1a, 
T1b vs 
T2-4

SSD WLI/NBI ESCC/EAC Yes No High No 384 8428 NM 168 142 2 1 23

Nakagawa 
et al[31], 
2019

Retrospective Unicenter Asia pEP-
SM1, 
pEP-
MM

SSD WLI/NBI/BLI ESCC No No High 16 804 14338 155 914 714 24 60 132

Tokai et al
[57], 2020

Retrospective Unicenter Asia pEP-
SM1

SSD NBI/WLI ESCC No No High 13 NM 10179 NM 279 159 24 30 66

WLI: White-light imaging; NBI: Narrow-band imaging; BLI: Blue-laser imaging; TP: True positive; FP: False positive; FN: False negative; TN: True negative; EAC: Esophageal adenocarcinoma; ESCC: Esophageal squamous cell 
carcinoma; HGD: High-grade dysplasia; NM: Not mentioned; CNN: Convolutional neural network; pEP-SM1: Pathological intraepithelial-submucosal microinvasive; pEP-MM: Pathological intraepithelial-muscularis mucosa.

The robustness of the diagnostic performance of the CNN model can be seen in the subgroup analysis, in that no 
appreciable differences in its performance were observed across different subgroups. Moreover, the diagnostic efficacy of 
the CNN model did not differ significantly according to continent, histology, or case type. Thus, we conclude that CNN 
based on still images can be applied to a wide range of gastrointestinal diseases and endoscopic functions[63,64]. 
Importantly, CNN models based on WLI and other advanced imaging modalities show similarly excellent diagnostic 
performance. Advanced imaging modes such as NBI and BLI can improve detection of the surface structure and 
microvascular morphology of lesions, which is one of the standard ways to diagnose esophageal cancer. It is worth noting 
that the more advanced endocytoscopy can recognize the histological structure of the pre-cancer epithelium with the help 
of intraprocedural coloration, so called “virtual histology”[65]. Application of the CNN model to these methods may 
compensate for interobserver variability[20,66].

Advances in real-time diagnostic capabilities have also increased the importance of CNN in clinical practice. CNN 
requires a recognition speed of at least 25 frames per second, while current methods can frequently achieve more than 30 
to 60 frames/s without a latency period[52,54,55]. The identification speed of CNN may therefore reduce the time needed 
for diagnosis and increase the speed of endoscopic procedures. Determining diagnosis and selecting the appropriate 
treatment strategy depend upon accurate endoscopic prediction of the invasion depth of esophageal cancer. Endoscopic 
resection should be the treatment of choice in esophageal lesions that affect only the EP-SM1 because there is a low 
chance of lymph node metastases for this extent of disease. Lesions that invade SM2-SM should be removed surgically or 
with chemoradiotherapy due to the increased risk of lymph node metastasis[11,67,68]. Based on this meta-analysis, the 
CNN model is ideally suited for predicting the invasion depth of esophageal cancer, with a pooled sensitivity of 0.90 
(95%CI: 0.88-0.93), pooled specificity of 0.83 (0.76-0.88), and AUC of 0.95 (0.92-0.96). Two prior studies compared the 
diagnostic performance of endoscopists to that of CNN models for predicting the invasion depth of esophageal cancer. 
Tokai et al[57] concluded the CNN model was more accurate than were endoscopists, while Nakagawa et al[31] reported 
that CNN performed similarly to experienced endoscopists. Morphological changes in IPCLs, which are microvascular 
structures on the surface of esophageal cancer, are closely associated with the invasion depth of the tumor. Only one of 
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Figure 4 Forest plots of convolutional neural network and endoscopist results for the diagnosis of esophageal cancer or high-grade 
dysplasia based on still images. A: Forest plot of the sensitivity by endoscopists for the diagnosis of esophageal cancer or high-grade dysplasia (HGD) based 
on still images; B: Forest plot of the specificity by endoscopists for the diagnosis of esophageal cancer or HGD based on still images; C: Forest plot of the sensitivity by 
convolutional neural network (CNN) for the diagnosis of esophageal cancer or HGD based on still images; D: Forest plot of the specificity by CNN for the diagnosis of 
esophageal cancer or HGD based on still images. CI: Confidence interval.

Figure 5 Summary of the receiver operating characteristic by convolutional neural network and endoscopists for the diagnosis of 
esophageal cancer or high-grade dysplasia based on still images. CNN: Convolutional neural network.
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Figure 6 Summary of receiver operating characteristic, forest plots, and univariable meta-regression plot of convolutional neural network 
in the diagnosis of esophageal cancer or high-grade dysplasia based on videos. A: Summary of the receiver operating characteristic of convolutional 
neural network (CNN) for the diagnosis of esophageal cancer or high-grade dysplasia (HGD) based on videos; B: Coupled forest plots of sensitivity and specificity of 
CNN for the diagnosis of esophageal cancer or HGD based on videos; C: Univariable meta-regression plot of CNN for the diagnosis of esophageal cancer or HGD 
based on videos. CI: Confidence interval; SROC: Summary receiver operating characteristic.

the studies examined reported the diagnostic performance of CNN for identifying IPCLs in esophageal cancer[38]. Using 
a CNN model based on still images, this study found a mean diagnostic precision of 89.2% at the lesion level and 93.0% at 
the pixel level.

The present DTA meta-analysis has demonstrated the powerful detection efficiency of the CNN model for esophageal 
cancers and neoplasms. This analysis has several limitations that should be considered. First, the included studies did not 
contain sufficient information to allow evaluation of the overall diagnostic accuracy of endoscopists or endocytoscopy. 
Second, despite a recent increase in the number of CNN studies that predict the invasion depth of esophageal cancer, only 
three studies met our inclusion and exclusion criteria to be included in this meta-analysis. Accurate prediction of the 
invasion depth, which is the foundation for early diagnosis and treatment, is vital for the further development of CNN 
for this disease. Third, there was insufficient data to allow comparison of the diagnostic abilities of endoscopic physicians 
with CNN models. Although the majority of current studies reported high diagnostic accuracy for the CNN model, some 
aspects, such as the use of video datasets and prediction of the invasion depth, require additional supporting evidence. 
Fourth, the CNN training procedure used in this meta-analysis has not been standardized, and the training dataset 
cannot be recorded or used in subgroup analysis. A large, multi-center cohort analysis is indicated to validate the use of 
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Figure 7 Summary of receiver operating characteristic and forest plots for convolutional neural network in predicting the invasion depth 
of esophageal cancer. A: Summary of receiver operating characteristic for convolutional neural network (CNN) in predicting the invasion depth of esophageal 
cancer; B: Forest plots of sensitivity for CNN in predicting the invasion depth of esophageal cancer; C: Forest plots of specificity for CNN in predicting the invasion 
depth of esophageal cancer. AUC: Area under the curve; SROC: Summary receiver operating characteristic; CI: Confidence interval.

Figure 8 Deeks’ plot of publication bias. A Deek’s funnel plot of convolutional neural network (CNN) for the diagnosis of esophageal cancer or high-grade 
dysplasia (HGD) based on still images; B: Deek’s funnel plot of CNN for the diagnosis of esophageal cancer or HGD based on videos.



Zhang JQ et al. Diagnostic accuracy of CNN: A meta-analysis

WJGO https://www.wjgnet.com 2013 November 15, 2023 Volume 15 Issue 11

CNN for esophageal cancer and HGD, and to compare its diagnostic ability with that of endoscopists. Follow-up studies 
that use the same video datasets are also needed.

CONCLUSION
In conclusion, the CNN model has excellent potential for accurately diagnosing esophageal cancers and HGD. It is 
anticipated to develop into an important diagnostic tool for endoscopists, showing promise for predicting the invasion 
depth of esophageal cancer.
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