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Abstract
Colorectal cancer (CRC) is among the most prevalent and deadly neoplasms 
worldwide. According to GLOBOCAN predictions, its incidence will increase 
from 1.15 million CRC cases in 2020 to 1.92 million cases in 2040. Therefore, a 
better understanding of the mechanisms involved in CRC development is 
necessary to improve strategies focused on reducing the incidence, prevalence, 
and mortality of this oncological pathology. Surgery, chemotherapy, and radio-
therapy are the main strategies for treating CRC. The conventional chemothera-
peutic agent utilized throughout the last four decades is 5-fluorouracil, notwith-
standing its low efficiency as a single therapy. In contrast, combining 5-
fluorouracil therapy with leucovorin and oxaliplatin or irinotecan increases its 
efficiency. However, these treatments have limited and temporary solutions and 
aggressive side effects. Additionally, most patients treated with these regimens 
develop drug resistance, which leads to disease progression. The immune 
response is considered a hallmark of cancer; thus, the use of new strategies and 
methodologies involving immune molecules, cells, and transcription factors has 
been suggested for CRC patients diagnosed in stages III and IV. Despite the 
critical advances in immunotherapy, the development and impact of immune 
checkpoint inhibitors on CRC is still under investigation because less than 25% of 
CRC patients display an increased 5-year survival. The causes of CRC are diverse 
and include modifiable environmental factors (smoking, diet, obesity, and 
alcoholism), individual genetic mutations, and inflammation-associated bowel 
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diseases. Due to these diverse causes, the solutions likely cannot be generalized. Interestingly, new 
strategies, such as single-cell multiomics, proteomics, genomics, flow cytometry, and massive 
sequencing for tumor microenvironment analysis, are beginning to clarify the way forward. Thus, 
the individual mechanisms involved in developing the CRC microenvironment, their causes, and 
their consequences need to be understood from a genetic and immunological perspective. This 
review highlighted the importance of altering the immune response in CRC. It focused on drugs 
that may modulate the immune response and show specific efficacy and contrasted with evidence 
that immunosuppression or the promotion of the immune response is the answer to generating 
effective treatments with combined chemotherapeutic drugs.

Key Words: Colorectal cancer; Immunotherapy checkpoint inhibitors; Chemotherapy; Immunotherapy; 
Immune response

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This review focused on the drugs that may modulate the immune response and show specific 
efficacy in the treatment of colorectal cancer. We then presented the evidence that immunosuppression or 
promotion of the immune response is the answer to generating effective treatments with combined 
chemotherapeutic drugs.
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INTRODUCTION
The origin of colorectal cancer (CRC) is heterogeneous. The general classification of CRC is divided into 
inherited, sporadic, and intestinal bowel diseases. Inherited CRC, which represents approximately 5% of 
all CRC cases, includes either the presence or absence of colonic polyps, such as Lynch syndrome and 
serrated polyposis syndrome[1]. Sporadic CRC (approximately 70% of CRC cases) is sustained by 
environmental and modifiable risk factors, including stress, diet, and age. Sporadic CRC has a 
monoclonal origin and is characterized by mutation accumulation in oncogenes and tumor suppressor 
genes. The second pathway of CRC includes the traditional APC-KRAS pathway and the microsatellite 
instability group, both having an essential role in clinical studies[2]. The third pathway includes 
intestinal chronic inflammatory diseases, such as Crohn’s disease and ulcerative colitis, which could 
result in colitis-associated colon cancer[3].

From a biological perspective, this evidence demonstrates that the origin of CRC is diverse. The 
response to therapies is not always homogeneous in patients. The best treatment should be based on the 
tumor’s unique characteristics. Effective treatments need to be broad and involve chemical and 
immunological molecules. The context of the broad causes of CRC development is highly involved in 
the low effectiveness of either single chemotherapeutics or classical immunotherapy by checkpoints 
inhibitor (ICI) administration during this oncological pathology. An in-depth and more precise 
description of the CRC origin and development, including a role for both immune response and inflam-
mation, can be found in[4,5].

CONVENTIONAL TREATMENTS FOR COLON CANCER AND MECHANISMS OF ACTION 
FROM A GENETIC PERSPECTIVE
CRC is one of the deadliest diseases in the world. Despite advances in diagnosis, treatment strategies 
remain an essential bottleneck affecting survival, in which the pathological stage represents the most 
important prognostic factor for patients with CRC. The accurate classification of lesions is the primary 
tool to decide the most appropriate treatment and therapy[6]. The treatment for early-stage CRC (stage I 
and stage II) currently consists of resecting the tumor area with regional lymph nodes, which has a 5-
year disease-free survival rate of 95%[7]. In the advanced stage of the disease (stages III and above), the 
rate of disease-free survival drops from 90% to 50% for surgery alone, requiring the administration of 
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chemotherapeutics, and only 17%-20% of these patients ultimately survive[8,9].
5-Fluorouracil (5-FU) has been central in treating advanced CRC since 1957. Unfortunately, the 

response rate to 5-FU as the first-line chemotherapy in advanced CRC is still only 10%-15%. In contrast, 
5-FU combined with other anticancer drugs as adjuvants, such as leucovorin and oxaliplatin (FOLFOX) 
or leucovorin calcium and irinotecan, increases the effectiveness of 5-FU by 50%[10,11].

5-FU is the third most commonly used chemotherapeutic agent for the treatment of solid 
malignancies worldwide[12]. Heidelberger synthesized it in the early 1950s as a derivate of fluoro-
pyrimidines. This drug was one of the first chemotherapeutics reported to have anticancer activity. It 
was tested in diverse tumors in rats and mice, where it significantly reduced tumor burden. 
Additionally, tumoral tissues incorporated this compound more rapidly than normal tissues, which 
pointed to its potential use as a chemotherapeutic drug[13,14]. In 1962, the Food and Drug Adminis-
tration approved the use of 5-FU for treating CRC.

In intravenous administration, 5-FU is incorporated rapidly into the cells through facilitated transport 
as uracil[15]. Subsequently, its metabolism can be driven in two ways, i.e., via anabolic and catabolic 
routes, which compete with each other. In sensitive cancerous cells, the anabolic pathway leads to the 
conversion of this drug into several active metabolites, such as fluorodeoxyuridine monophosphate, 
fluorodeoxyuridine triphosphate, and fluorouridine triphosphate[16]. The active metabolites interfere 
with nucleoside metabolism and can be incorporated into RNA and DNA, leading to cytotoxicity and 
cell death[17,18]. This mechanism is due to its similar structure to pyrimidine, molecules of DNA and 
RNA, an analog of uracil with a fluorine atom at the C-5 position in place of hydrogen[19]. Fluorodeoxy-
uridine monophosphate disrupts the function of thymidylate synthase, a key enzyme responsible for 
providing deoxynucleotide triphosphates, which are necessary for DNA replication and repair, 
catalyzing the reaction of deoxyuridine monophosphate to deoxythymidine monophosphate synthesis
[14,15]. An insufficiency in deoxythymidine monophosphate leads to the depletion of deoxythymidine 
triphosphate, which perturbs the levels of the other deoxynucleotide triphosphates[16-20] (Figure 1).

5-FU has primarily been used in the treatment of solid cancers of digestive origin, such as colorectal, 
anal, pancreatic, esophageal, gastric, and ampullary tumors, and less frequently in breast, cervical, and 
head and neck cancers[21-23]. CRC treatment includes various chemotherapeutic drugs. As the 
backbone of treatments, 5-FU has been used for more than five decades, and more recently, it has been 
combined with other chemotherapeutic drugs to potentiate its anticarcinogenic effect[22,24].

The use of alternative broad-spectrum chemotherapeutics in addition to 5-FU has been proposed for 
colon cancer treatment. Doxorubicin treatment combined with other drugs, such as metformin and 
sodium oxamate, reduces the proliferation rate of colon cancer cell lines in vitro[25]. However, the use of 
doxorubicin in patients is limited by the side effects frequently associated with this drug, such as 
hepatotoxicity, nephrotoxicity, pulmotoxicity, and cardiotoxicity[26,27]. Additionally, doxorubicin can 
lead to chemoresistance in tumor cells through nuclear factor kappa B translocation to the nucleus and 
DNA binding because of the damage induced by this drug, triggering the expression of antiapoptotic 
genes[28].

In CRC, nuclear factor kappa B nuclear translocation is a characteristic in more than 70% of patients, 
limiting the use of doxorubicin[29]. Another disadvantage of this drug is its anthracycline nature since it 
is extracted from Streptomyces spp. Cancer cells frequently show rapid resistance to naturally occurring 
cancer drugs, diminishing their effectiveness, whereas they are more sensitive to antimetabolites, such 
as 5-FU and cisplatin, among others[30]. The use of other chemotherapeutics, such as tamoxifen, which 
is highly effective and frequently used in breast cancer treatment, has an adverse effect in the treatment 
of CRC[31]. Due to the molecular characteristics of each type of cancer, the successful use of tamoxifen 
in breast cancer lies in its mechanism of action. Approximately 80% of all breast cancers are positive for 
the estrogen receptor, and tamoxifen inhibits the expression of estrogen-regulated genes by the 
competitive inhibition of this receptor. Different reports indicate that tamoxifen has the opposite effect 
on CRC, increasing the risk of developing this type of cancer[31,32].

MOLECULAR PERSPECTIVE FOR THE USE OF CHEMOTHERAPEUTIC STRATEGIES IN 
CRC TREATMENT: WHICH IS THE RIGHT DRUG?
CRC is a molecularly heterogeneous disease in which genetics and cellular events accumulate to endow 
tumor cells with aggressive characteristics, including chemotherapy resistance. Chromosomal 
instability, mismatch repair, and methylator phenotype are the three major pathways involved in 
acquiring tumorigenesis and a malignant phenotype and could be present in sporadic and inherited 
CRC[33,34]. The choice of better therapy is based on cancer-related features and patient-related factors, 
such as the number and localization of metastases, tumor progression, presence or absence of 
biochemical markers, and comorbidity[35-37]. Despite all these characteristics, treatment based on the 
antineoplastic effects of 5-FU is the cornerstone of therapy in advanced CRC stages.

Treatment with 5-FU in combination with other drugs, such as oxaliplatin (OXA), irinotecan, 
capecitabine, bevacizumab, cetuximab, panitumumab, ziv-aflibercept, regorafenib, and ramucirumab, 
increases its effectiveness and has been approved by the Food and Drug Administration for the 
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Figure 1 5-Fluorouracil mechanism of action. The 5-fluorouracil structure is analogous to that of the nucleotide uracil; its ability to disrupt standard RNA 
processing and function is mediated by three primary metabolites: fluorodeoxyuridine monophosphate, fluorodeoxyuridine diphosphate, and fluorouridine 
triphosphate. 1: 5-fluorouracil inhibits thymidylate synthase activity by fluorodeoxyuridine monophosphate metabolite binding, blocking the typical substrate 
deoxyuridine monophosphate that inhibits deoxythymidine monophosphate synthesis leading to deoxythymidine triphosphate imbalance. The consequent result is 
DNA damage due to a deficiency in its synthesis and its repair; 2: DNA replication and repair are regulated by deoxyuridine monophosphate transition to 
deoxythymidine monophosphate. This step is coordinated by thymidylate synthase; FUMP: Fluorodeoxyuridine monophosphate; FUDP: Fluorodeoxyuridine 
diphosphate; FUTP: Fluorouridine triphosphate; dUMP: Deoxyuridine monophosphate; dTMP: Deoxythymidine monophosphate; FUDR: Fluorodeoxyuridine; FdUMP: 
Fluorodeoxyuridine monophosphate; dTTP: Deoxythymidine triphosphate; FdUDP: Fluorodeoxyuridine diphosphate; FdUTP: Fluorodeoxyuridine triphosphate; 5-FU: 
5-Fluorouracil; TS: Thymidylate synthase.

management of CRC[38]. Thus, during stages III or IV in resected CRC patients, the use of combination 
treatment, such as FOLFOX or 5-FU, leucovorin calcium, and irinotecan, is common as a first-line 
treatment. This strategy significantly increases the survival rate of these patients[39]. The initial 
chemotherapy scheme and the decision on better combinatory drugs depends on multiple conditions in 
the patients. In metastatic CRC limited to the liver or lung, surgery and the rapid initiation of 
chemotherapy appears to be the best option. When CRC cure is not possible, three additional scenarios 
can arise: (1) Patients with advanced tumors and symptoms require rapid tumor shrinkage to provide 
palliation, which begins with chemotherapy; (2) Asymptomatic patients with bulky tumor and possible 
rapid progression are likely to become symptomatic in a short period; and (3) Patients without 
symptoms but disseminated disease who never had resectable disease but whose tumors remain non-
bulky are likely to remain asymptomatic for an extended period. In the last two scenarios, the initiation 
of chemotherapy can be discussed[22,40]. Previous work in the Nordic population demonstrated that 
early treatment with 5-FU plus leucovorin in asymptomatic patients with advanced CRC prolonged 
survival and delayed both disease progression and the onset of symptoms[41]. In another study in 
Australasian and Canadian populations of asymptomatic patients using the same chemotherapy 
regimen, no difference was reported between early or delayed chemotherapy use until symptoms 
appeared[42]. Thus, clinical treatment requires a medical discussion and the patient´s preference when 
cure is not possible. The spectrum of molecular alterations that offer alternative management for this 
disease could be explored.

Alterations in genes related to survival, angiogenesis, proliferation, and apoptosis incorporate 
additional strategies into CRC treatment. The RAS, KRAS, and NRAS genes play an essential role as 
prognostic and predictive indicators in CRC treatment[43-45]. Mutations in the DNA at position 12 in 
the KRAS protein are significantly associated with a poor prognosis: a 5-year survival rate of approx-
imately 3%[46]. Patients with this mutation are not candidates to receive treatment with monoclonal 
antibodies, such as cetuximab or panitumumab, which target the epidermal growth factor receptor 
(EGFR)[47-50]. Blocking EGFR represents the second line of treatment in patients with wild-type RAS 
together with the backbone 5-FU, leucovorin calcium, and irinotecan therapy. Therefore, the patient’s 
genetic and tumor-specific factors need to be considered when choosing chemotherapeutic and 
combination schemes to avoid resistance and undesired responses to these therapies.
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Drug resistance and consequent therapy failure are the main problems clinicians face in treating 
different neoplasms, which limit the quality of life and long-term remission rates as a consequence of 
tumor growth and spreading leading to 90% of patients dying[51,52]. Drug resistance is a highly 
complex process that is commonly classified into two types: intrinsic and acquired. Both types of drug 
resistance lead to the regulation of molecular mechanisms of chemoresistance, such as the activation of 
transporter pumps, oncogenes, tumor suppressor genes, mitochondrial alteration, DNA repair, 
autophagy, epithelial-mesenchymal transition, cancer stemness, and exosomes[53,54].

In the intrinsic phenotype, diverse alterations existing before drug administration in the patient 
complicate the selection of chemotherapy. The inherent genetic mutations in tumors, such as a KRAS 
mutation in exon 2 in codon 12 or 13, are the most frequent mutations associated with poor prognosis 
and drug resistance in CRC[55,56]. Therapies based on the first line of treatment using FOLFOX or 5-FU, 
leucovorin calcium, and irinotecan plus cetuximab or panitumumab (anti-EGFR) are ineffective in 
patients with KRAS mutations[57]. Recent studies indicate that mutations in genes related to the 
pathways that regulate tumor cell survival and proliferation and inhibit apoptosis in tumor cells, such 
as AKT1 and CTNNB1, contribute to 5-FU chemotherapeutic resistance in CRC. The CTNNB1 gene 
encodes the β-catenin protein, which plays a crucial role in cancer by activating the Wnt/β-catenin 
signaling pathway. This pathway is associated with tumorigenesis and CRC resistance, and it 
upregulates genes and proteins, such as multidrug resistance gene (MDR1) and inhibitor of apoptosis (
Bcl2), to induce epithelial-mesenchymal transition and regulate the tumor microenvironment (TME)[58-
60].

IS CHEMOTHERAPY AN INDUCER OF IMMUNOSUPPRESSION IN CRC?
The heterogeneity of tumors, including CRC, consists of heterogeneity in cancer and infiltrated resident 
host cells, extracellular matrix, and immune and inflammatory cells, such as macrophages, dendritic 
cells, myeloid-derived suppressor cells, T cells, mast cells, and natural killer cells. These components 
comprise the TME, which has a dynamic composition[61]. It is well known that one of the main 
functions of the TME is to provide a protective function for tumor cells, inducing crosstalk between 
immune and nonimmune cells that leads to tumor-mediated immunosuppression, supporting tumor 
growth and survival[62]. Recent reports indicate that the TME in CRC contributes to cancer progression 
and drug resistance through high interstitial pressure, fibrosis, and the degradation of the therapeutic 
agent by enzymatic activity and inducing immunosuppression[61,63,64]. These findings indicate that 
the regulation of immune cells surrounding the tumor has a critical role in the response to therapies for 
CRC. Thus, chemotherapy and immunotherapies targeting the recovery activity of immune cells are 
likely necessary to fight CRC.

The study of the effect of chemotherapeutic drugs on immune cells is controversial. The central 
concept here is that chemotherapy reduces the capacity of the immune system to function, but how 
could a drug affect the capacity and efficiency of the immune response to induce an efficient post-
treatment response? Perhaps the “original” concept has a flawed approach. Evidence suggests that after 
5-FU treatment in a mouse model, bone marrow cellularity decreases, but platelets and thrombopoietin, 
which are close to the immune response, rebound[64,65]. Similarly, the serum of patients diagnosed 
with stage III/IV CRC who had received FOLFOX chemotherapy showed increased levels of heat shock 
protein 70, which belongs to the damage-associated molecular patterns recognized by innate receptors
[66]. Later, in vitro studies showed that the supernatants of dying CRC cells treated with OXA and 5-FU 
induced a mature phenotype in dendritic cells coexpressing HLA-DR, CD80, and CD86 and producing 
interleukin-1β, tumor necrosis factor-α, and MIP-1α in a TLR-4-dependent manner[66]. These results 
strongly suggested that OXA/5-FU treatment induced the activation of the innate immune response 
during CRC. Additionally, increased numbers of myeloid-derived suppressor cells have been reported 
in a mouse model of thymoma, and treatment with 5-FU combined with gemcitabine selectively 
induced apoptosis in myeloid-derived suppressor cells. Consequently, increased antigen-specific CD8+ 
T cells produced more interferon-γ, generating a T cell antitumor response (Figure 2)[66].

Conversely, high levels of the chemokine CCL20 recruit regulatory T (Treg) cells in CRC patients 
resistant to FOLFOX[67]. However, in blood samples from metastatic FOLFOX-sensitive CRC patients, a 
reduced percentage of Foxp3+ Treg cells was recorded after treatment[68]. Therefore, the increase in 
Treg cells is associated with 5-FU chemoresistance. Thus, evidence of 5-FU chemotherapy suggests a 
role in the specific and direct reduction of suppressive immune cells during CRC. Additionally, the 
increased apoptosis-induced death of tumor cells by 5-FU could increase the ability of immune cells to 
recognize damage-associated molecular patterns released by these dying tumor cells, inducing 
protective inflammation. Evidence needs to be accumulated in this field to clarify whether 
chemotherapy may be an inducer of immune cell activation (Figure 3).
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Figure 2 Mechanism of action using either anti-programmed cell death ligand 1 or anti-nonclassical immune checkpoint inhibitor 
antibodies to increase the effector immune response in colorectal cancer. A: The programmed cell death ligand 1 molecule expressed on both tumor 
and myeloid suppressor cells interacts with programmed cell death 1 molecules expressed on exhausted CD8+ and CD4+ T cells, inducing a state of anergy. 
Additionally, other nonclassical immune checkpoint inhibitor molecules can induce anergy in T cells; B: Anti-programmed cell death ligand 1 antibodies block the 
interaction of the programmed cell death 1/programmed cell death ligand 1 axis, favoring the return from the state of anergy to exert the effector function of CD4+ and 
CD8+ T cells, favoring the reduction of the tumor burden. Most likely, nonclassical immune checkpoint inhibitor antibodies may have a similar effect; C: Once CD4+ T 
cells are activated, they produce cytokines for the efficient activation of CD8+ T cells, which in turn produce granzyme and perforin, inducing apoptosis in tumor cells. 
The addition of chemotherapeutic drugs increases the induction of neoantigens, favoring immune response activation. PDL1: Programmed cell death ligand 1; PD1: 
Programmed cell death 1; ICI: Immune checkpoint inhibitor.

CLASSICAL ICIS USED AS MONOTHERAPY DURING CRC
The effectiveness of ICI as an immunotherapy treatment has been evaluated in the last decade. The 
efficacy of these agents is evident in liquid tumors, such as melanoma, leukemia, and solid non-small 
cell lung carcinoma. Classical ICIs used to treat these oncological pathologies are anti-programmed cell 
death 1 (PD1), anti-programmed cell death ligand 1 (PDL1), and anti-cytotoxic T-lymphocyte-associated 
protein 4 (CTLA4) monoclonal antibodies, where anti-CTLA4 has a lower clinical efficacy[68,69] 
(Table 1).

Diverse reports suggest single or combined therapy using different antibodies targeted against the 
same or another molecule. In melanoma therapy, nivolumab, a human immunoglobulin G4 anti-PD1 
pathway monoclonal antibody, results in an overall survival (OS) rate of 72.9%, whereas the antineo-
plastic chemotherapeutic dacarbazine resulted in a survival rate of 42.1%[69]. In metastatic melanoma 
refractory to chemotherapy, treatment with ipilimumab, an anti-CTLA4 antibody, shows high efficacy 
when combined with anti-PD1 antibodies (either pembrolizumab or nivolumab)[70]. Additionally, 
nivolumab and ipilimumab combination treatment prolongs progression-free survival, mainly in 
patients with tumors testing positive for PDL1 expression[71]. Although in vitro studies suggested that 
atezolizumab, avelumab, and durvalumab, all anti-PDL1 antibodies, more effectively block PD1/PDL1 
signaling (Figure 2)[72], evidence of the use of an anti-PDL1 antibody as a single approved treatment 
without immunotherapy or chemotherapy combination is insufficient to conclude their role in inducing 
protection in metastatic melanoma[73]. Immunotherapy with the anti-PDL1 antibody atezolizumab has 
been approved to treat non-small cell lung carcinoma combined with chemotherapy, and anti-PDL1 has 
been approved to treat triple-negative breast cancer[74,75]. Therefore, increased PDL1 expression in the 
TME of melanoma patients is an efficient marker to predict response to anti-PD1 treatments, which 
must be applied in all types of cancer when this immunotherapy is suggested[76].

Notwithstanding the successful use of immunotherapy in the neoplasms mentioned above, few 
reports show an influential role for classical monoclonal ICI using anti-CTLA4 and anti-PD1/PDL1 axis 
antibodies in CRC. Most clinical assays were disappointing. For example, tremelimumab, a human 
immunoglobulin G2 anti-CTLA4 antibody, did not produce clinically meaningful results when it was 
used as a monotherapy in patients with refractory metastatic CRC[77] (Table 1).
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Table 1 Types of immune checkpoint inhibitor antibodies used as monotherapy, combined immune checkpoint inhibitor, and immune 
checkpoint inhibitor + chemotherapy in colorectal cancer

Antibody 
name Isotype Target 

molecule
Effectiveness1 as 
monotherapy

Effectiveness as 
combined ICI

Effectiveness as ICI + 
chemotherapy Ref.

Ipilimumab IgG1 CTLA4 Yes Well tolerated in 
combination with 
nivolumab

No Suzuki et al[80], 
2021; Lenz et al[86], 
2022; Cohen et al
[90], 2020

Tremelimumab IgG2 CTLA4 No Yes, durvalumab 
improved OS and 
increased lymphoid 
response

Combined with durvalumab + 
fluoropyrimidines, oxaliplatin, 
irinotecan, showed increased OS

Chung et al[77], 
2010; Kanikarla 
Marie et al[85], 2021; 
Chen et al[102], 2020

Nivolumab IgG4 PD1 Well tolerated Well tolerated in 
combination with low 
ipilimumab dose, with 
increased OS

Yes Overman et al[78], 
2017; Kawazoe et al
[79], 2021; Lenz et al
[86], 2022; Morse et 
al[87], 2019

Pembrolizumab IgG4 PD1 Well tolerated, 
increased OS

No There is no evidence Haag et al[82], 2022

Atezolizumab IgG1 PDL1 There is no evidence There is no evidence Safe when combined with cobimetinib, 
having no effect on OS. Combined with 
FOLFOX and bevacizumab showed 
increased progression-free survival, but 
adverse events were shown

Eng et al[91], 2019; 
Antoniotti et al[94], 
2022

Avelumab IgG1 PDL1 Increased OS but 
adverse events were 
shown

There is no evidence Combined with cetuximab showed 
increased T cell killing

Haag et al[82], 2022; 
Stein et al[97], 2021

Durvalumab IgG1 PDL1 Increased 
progression-free 
survival, but adverse 
events were shown

There is no evidence Safe when combined with MEKi, having 
no effect on OS

Oh et al[84], 2022

1Effectiveness was considered as increased survival, well tolerated treatment in patients, or simply a lack of side effects associated with the treatment.
IgG: Immunoglobulin G; OS: Overall survival; PDL1: Programmed cell death ligand 1; PD1: Programmed cell death 1; CTLA4: Cytotoxic T-lymphocyte-
associated protein 4; ICI: Immune checkpoint inhibitor; FOLFOX: 5-FU therapy with leucovorin and oxaliplatin; MEKi: Inhibitor of MAPK/ERK kinase.

Another monotherapy treatment using nivolumab in CRC patients with microsatellite instability and 
FOLFOX chemoresistance showed excellent control of the disease, and patients tolerated this treatment 
well[78]. CRC patients treated with nivolumab combined with an oral heat shock protein 90 inhibitor 
showed safety profiles and antitumor activity associated with reduced activity of Treg cells and better 
response of tumor-infiltrating lymphocytes[79]. Interestingly, a report of a woman treated with 
nivolumab for melanoma with no hereditary CRC background developed colon carcinoma after 7 years 
of anti-melanoma treatment. The medical service then decided to switch the treatment to ipilimumab, 
and after four cycles of monotherapy, the colon tumor was in complete remission[80]. Pembrolizumab 
used as monotherapy in either microsatellite instability-high or mismatch repair-deficient CRC patients 
produced improvements in health-related quality of life compared to patients treated with leucovorin, 
5-FU, and OXA[81]. In one study of refractory mismatch repair, CRC patients treated with pembrol-
izumab as monotherapy plus maraviroc, an agonist of CCR5 that promotes the activation and 
recruitment of macrophages inducing immune cell infiltrate in tumors, showed a beneficial toxicity 
pattern. The OS was higher than expected[82].

ICI with avelumab monotherapy in unresectable metastatic CRC patients who failed FOLFOX 
chemotherapy showed an OS of 72.2% at 8.1 mo, which was similar to the effect of ICI monotherapy 
using either pembrolizumab or nivolumab. However, some patients showed treatment-related adverse 
events[83]. Durvalumab used as monotherapy in microsatellite-instability high/mismatch repair-
deficient metastatic CRC patients whose disease had progressed after chemotherapy showed efficiency 
and a satisfactory progression-free survival of 58.2%; however, side effects were found in 36.4% of 
patients[84].

Taken together, these results suggest that contrary to anti-CTLA4, ICI monotherapy blocking the 
PD1/PDL1 axis has a better effect in high microsatellite instability/mismatch repair-deficient metastatic 
CRC patients who previously displayed chemoresistance. Additionally, combining ICI PD1/PDL1 
monotherapy with either antibodies or immune cell stimulators improves treatment efficacy. However, 
only a small number of clinical trials show increased OS (Table 1). Most likely, the TME reduces the 
access of ICI antibodies to the target molecules expressed in either immune or epithelial cells (Figure 3).
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Figure 3 The tumor microenvironment favors or does not allow the access of both classical and nonclassical immune checkpoint 
inhibitors to their targets in immune cells. A: The classical immune checkpoint inhibitor (ICI) antibody cannot access its target because immune cells are 
surrounded by tumor cells, although immune cells may express classical ICIs; B: On the other hand, classical ICIs probably have access to immune cells but may not 
express the targeting molecules; C: Chemotherapy can induce the death of tumoral cells, favoring the formation of neoantigens that may reactivate immune cells. 
Additional classical ICI antibodies target individual molecules such as cytotoxic T-lymphocyte-associated protein 4, programmed cell death 1, and programmed cell 
death ligand 1; D: Finally, immune cells expressing nonclassical ICIs could have effector profiles such as helper T type 1 cells, cytotoxic T cells, M1, or N1 when 
nonclassical antibodies target them. Additionally, tumor epithelial cells may likely express both classical and nonclassical ICIs. ICI: Immune checkpoint inhibitor.

DOES COMBINED IMMUNOTHERAPY INCREASE THE EFFECTIVENESS OF TREATMENT 
FOR CRC?
Little evidence of the apparent effect of ICI monotherapy on CRC development is available. Conversely, 
increasing evidence suggests a better outcome using combined ICI, i.e., the use of two monoclonal 
antibodies targeting CTLA4 or the PD1/PDL1 axis. To improve the immune response, combination 
treatment with tremelimumab and durmalumab was used in patients for the preoperative management 
of resectable CRC and liver metastases. These patients improved their OS to 24.5 mo; interestingly, their 
CD4+, CD8+, and B cells displayed an activated profile[85]. Additionally, first-line treatment consisting 
of nivolumab plus low-dose ipilimumab treatment in patients with microsatellite instability and 
metastatic CRC without previous chemotherapy showed that this combination was well tolerated at the 
primary endpoint, with robust and durable clinical benefit. However, the study is ongoing, and OS data 
are not yet available[86]. Previous ICI studies using similar inclusion criteria and antibody doses 
showed that follow-up over 12 mo of combined treatment resulted in an 85% OS[87]. Recently, the 
combined use of ipilimumab plus nivolumab before surgery in either mismatch repair-deficient or 
mismatch repair-proficient CRC patients induced an antitumoral response associated with a lack of 
signs of cancer after surgery with increased infiltration of CD8+PD1+ cells; the authors suggested that 
this combined ICI therapy may be the standard treatment for mismatch repair-deficient CRC patients
[21].

Additionally, circulating tumor DNA detection in the blood of patients with durable and ongoing 
responses to ipilimumab plus nivolumab could be used as a monitoring response and dynamic marker 
of this combined ICI treatment[88,89]. Finally, a study attempted to analyze whether pseudo 
progression was observed in mismatch repair-deficient CRC patients treated with nivolumab plus 
ipilimumab, showing that this treatment rarely induces and confirming a high disease control rate of 
86%[90]. Taken together, this evidence strongly suggests that the combined ICI blockade of CTLA4-
PD1/PDL1 in mismatch repair-deficient CRC patients is highly successful. However, these patients 
represent only a tiny fraction of all CRC-diagnosed patients. Therefore, more clinical trials must be 
developed to obtain sufficient evidence to conclude the positive effects of the classic ICI combination.
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USE OF EITHER MONOTHERAPY OR COMBINED IMMUNOTHERAPY PLUS 
CHEMOTHERAPY TO INCREASE THE EFFECTIVENESS OF TREATMENTS FOR CRC
The combined use of atezolizumab plus aobimetinib, a MAPK/ERK kinase 1 and 2 inhibitor that 
increases CD8+ cell infiltration in tumors of patients with microsatellite-stable metastatic CRC, showed 
no improvement in OS and was consistent with the safety of using both drugs[91] (Table 1). A similar 
effect showing only acceptable tolerance to this treatment was observed with durmalumab plus 
inhibitor of MAPK/ERK kinase in microsatellite-stable metastatic CRC patients[89]. No improved OS 
was observed using atezolizumab combined with cobimetinib in metastatic CRC patients[92]. A 
multicenter phase I/II study in June 2017 aimed to analyze the role of durmalumab plus tremelimumab 
combined with FOLFOX chemotherapy in patients with metastatic CRC, expecting a 6-mo progression-
free survival of over 70.7%; however, the authors do not have the final results to date[93].

Recently, the combination of atezolizumab with FOLFOX chemotherapy plus bevacizumab 
(monoclonal anti-vascular endothelial growth factor antibody) in mismatch repair metastatic CRC 
patients induced a median progression-free survival of 13 mo, while FOLFOX plus bevacizumab alone 
resulted in 11 mo of progression-free survival, suggesting that the addition of atezolizumab improves 
progression-free survival. However, 42% of patients showed neutropenia, and 27% displayed severe 
adverse events[94]. The same treatment consisting of atezolizumab combined with FOLFOX plus 
bevacizumab was used in patients with untreated unresectable metastatic CRC, showing no 
improvement in OS and safety signals[95]. The use of the anti-EGFR antibody cetuximab plus avelumab 
for treating wild-type RAS metastatic CRC patients was safe; the authors suggested that an analysis of 
circulating DNA in plasma could be an indicator of the positive effects of this treatment. However, the 
data are insufficient to show the impact on the OS rate[96].

Treatment with cetuximab plus the ICI avelumab in microsatellite stable metastatic CRC patients 
showed that subclones of tumors expressing PDL1 mutations mediated the resistance to direct 
avelumab antitumor effects but also increased T cell killing[97]. An analysis of the neutrophil-to-
lymphocyte ratio in the blood of chemorefractory metastatic CRC patients treated with cetuximab plus 
avelumab showed that a high neutrophil-to-lymphocyte ratio was a poor prognostic factor. Thus, the 
neutrophil-to-lymphocyte ratio could also be a predictor for the effectiveness of the combined ICI 
cetuximab plus avelumab[98].

Regorafenib, an inhibitor of protein kinases in tumor angiogenesis used in combination with 
avelumab in microsatellite stable CRC patients, showed increased infiltration of CD8+ T cells associated 
with better outcomes, with an OS of 10.8 mo[99]. Metastatic CRC patients who previously received two 
radiotherapies and who were treated with durvalumab plus tremelimumab before the third round of 
radiotherapy showed increased circulating, differentiated, and proliferating CD8+ T cells, but the 
authors concluded that this finding does not meet the prespecified endpoint criteria to consider this 
combined ICI plus radiotherapy worthwhile for further study; specifically, the authors suggested an 
objective response rate of at least 25%, but they only obtained a response rate of 8.3%[100].

The addition of FOLFOX-based chemotherapy to avelumab plus an adenovirus vector vaccine 
capable of inducing a CD4+/CD8+ T cell response in mismatch repair-deficient microsatellite instability-
high metastatic CRC patients showed no improvement in progression-free survival[101]. However, The 
Canadian Cancer Trials Group suggests that combining tremelimumab and durmalumab to treat 
patients with high microsatellite instability who had previously received chemotherapy (fluoro-
pyrimidines, OXA, irinotecan, and others) may prolong OS. They correlated the increased effectiveness 
of this immunotherapy combination with the tumor mutation burden elevated in plasma[102].

It is essential to mention that some research about the combination of chemotherapy and ICI is under 
development[93]. For example, a phase II trial in 2020 will show whether atezolizumab combined with 
OXA, radiotherapy, and bevacizumab may increase progression-free survival in microsatellite 
instability CRC patients[103]. Additionally, in microsatellite instability-high metastatic CRC patients 
with deficient mismatch repair, a study is currently underway to prove the improvement of disease-free 
survival by ICI with avelumab plus fluoropyrimidine; the authors suggested that this ICI plus 
chemotherapy treatment would improve the expected 3-year disease-free survival rate by 12%[104]. 
Evidence showing that combining ICI with chemotherapy improves treatment efficacy continues to 
accumulate.

Most clinical trials reported here are recent, and perhaps the evidence is insufficient to conclude that 
a treatment criterion has already been established. Consequently, evidence supports the hypothesis that 
the use of classical ICIs improves chemotherapy treatment, mainly in CRC patients with high 
microsatellite instability. It is crucial for patients who do not have a good prognosis with chemotherapy 
alone to have a better response with the combination of classical ICI antibodies.



Olguin JE et al. Immunotherapy on colorectal cancer

WJGO https://www.wjgnet.com 260 February 15, 2023 Volume 15 Issue 2

MULTIOMICS, INDIVIDUALIZED IMMUNOTHERAPY, ADOPTIVE TRANSFER OF 
“TRAINED” IMMUNE CELLS, AND NONCLASSICAL ICIS ARE A NEW HOPE FOR CRC
In recent years, mechanisms have begun to be developed to understand and explain why, in some cases, 
classical immunotherapy is sufficient to generate benefits in some patients. Multiple factors participate 
in the development of any pathology, such as the patient’s clinical history, genetics, and the ability of 
their immune cells to act during cancer. We emphasize the importance of the recruitment of immune 
cells to the TME; in the case of melanoma, non-small cell lung cancer, and leukemia, the capacity of the 
immune cells to access is greater, which together with ICIs increases the bioavailability of monoclonal 
antibodies to find the antigens expressed in the required enclosures to be detected and removed or 
blocked[105]. In contrast, other types of oncological pathologies are available when access to the tumor 
site is more difficult for both immune cells and classical ICI antibodies, such as CRC[106]. In addition, 
the causes of CRC are multiple, and we cannot attempt to generalize a unique treatment for all varieties 
of CRC to reduce the statistics of this oncological pathology on the rise.

The single-cell multiomics technique has shed light on the complexity of the individual immune 
response elicited against any agent. This approach facilitates the individual characterization of groups 
of cells by identifying the gene transcripts at a specific time[107]. This technique depends on the 
efficiency of flow cytometry to distinguish and separate individual cells, the equipment used to amplify 
mRNA transcripts and synthesize complementary strand DNA, and sequencing equipment, allowing 
for robust data with high precision and certainty[108]. The advancement of these latest-generation 
technologies allows not only the expression of the classic ICI (CTLA4, PD1/PDL1) to be distinguished 
but also the characterization of mRNA transcripts in specific immune or epithelial cell populations at a 
particular time. These transcripts, already expressed as proteins, can individually be proposed as new 
nonclassical ICIs in patients[109], generating a wide range of therapeutic targets that, as in the case of 
CRC, increase the efficiency of previous treatments.

Some surface molecules involved in suppressive functions for activated T cells, Treg cells, 
macrophages, neutrophils, and epithelial cells have been proposed as immunotherapy targets. 
Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR), T cell immunoglobulin 
and mucin domain 3 (TIM3), LAG3, CD39, CD73, CD47, and SIRP-1α (a do not eat me signal)[110] 
warrant evaluation as monotherapy or combined therapy in CRC.

TIM3 is an overexpressed inhibitory receptor in active immune cells, including myeloid and 
lymphoid cells, with suppressive and modulatory characteristics. It is relevant in reducing interferon-γ 
production by helper T type 1 cells after binding to its ligand, galectin-9[111]. TIM3 is also overex-
pressed by Treg cells in a colitis-associated colon cancer mouse model[112]. The combination of TIM3 
with anti-PD1 ICI antibodies is a good prospect in a murine breast cancer model[113]. Sabatolimab, an 
anti-TIM3 antibody, has already been used as a treatment in ovarian, CRC, and non-small cell lung 
cancer combined with an anti-PD1 antibody, being well tolerated and improving antitumor activity
[114]. GITR has a role in the immunomodulation of effector T cells and increases tumor resistance[113,
115]. Treatment with an anti-GITR antibody combined with pembrolizumab improves the disease 
control rate compared with anti-GITR used as monotherapy for treating CRC, melanoma, and adrenal 
carcinoma[116].

Lymphocyte activation gene-3 (LAG3 or CD223) has a structure similar to that of the CD4 molecule, 
joining major histocompatibility complex II in antigen-presenting cells. However, two of their immuno-
globulin-like domains can bind receptors in tumor cells[81]. Blockage of LAG3 induces increased 
interleukin-2 production and enhances T cell proliferation[117]. Therefore, LAG3 has been proposed as 
an ICI; the genes LAG3 and IDO1 were shown to be overexpressed in a phase II study of pembrol-
izumab use as ICI monotherapy in patients with esophageal squamous cell carcinoma. The authors 
suggested that a combination of ICIs is needed to induce immunity against this tumor[118]. CD73 is an 
extracellular adenosine receptor expressed in immunosuppressant cells (such as Treg cells), favoring 
tumor progression[119].

Recently, single-cell RNA sequencing in a colitis-associated CRC murine model showed that an anti-
CD73 antibody has a significant role in improving the anticancer functions of Treg cells, and exhausted 
CD8+ T cells became activated CD8+ T cells. In contrast, anti-PD1 antibodies in the same model depleted 
Treg cells and M2 macrophages[120], suggesting a synergistic role for the new ICI anti-CD73 that may 
improve the positive effects of anti-PD1 monotherapy. Ex vivo samples of blood and tumors from 
microsatellite instability CRC patients showed that atezolizumab alone could reactivate T cells.

Furthermore, adding tiragolumab, an anti-TIGIT antibody, restored intraepithelial CD4 T and CD8 T 
cell function by favoring interferon-γ and tumor necrosis factor-α production[120,121]. TIGIT is a 
receptor upregulated in natural killer and activated T cells when the modulation of their effector 
abilities is necessary for the microenvironment, such as cancer. It is also overexpressed in Treg cells
[122]. The use of avelumab plus the adoptive transfer of autologous dendritic cell vaccine in 
chemotherapy-treated mismatch repair-proficient metastatic CRC patients had a successful result 
because this treatment was well tolerated. Furthermore, treatment was terminated early because 11% of 
patients were disease free at 6 mo, and progression-free survival was increased by 40%[123]. This 
evidence also suggests that new ICI research could open other possibilities for specific and beneficial 
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treatment for CRC patients because either immune or epithelial cells may express nonclassical ICI 
molecules (Figure 2).

CONCLUSION
Chemotherapy using 5-FU remains the primary treatment for CRC, despite its high toxicity and low 
efficacy. New strategies targeting ICIs have been useful in some oncological pathologies; however, 
evidence showing the effectiveness of classical ICI monotherapy in CRC is scarce. A combination of 
classical ICI antibodies targeting CTLA4 and PD1/PDL1 molecules showed stronger efficacy for CRC 
treatment. Finally, classical ICI plus conventional chemotherapy is effective, as evidenced by increased 
OS, but these strategies are not yet well established, and some clinical studies are ongoing. Evidence 
suggests that chemotherapy produces neoantigens, increasing tumor immunogenicity that may activate 
immune responses[124]. This increased immunogenicity is likely the reason for a better response when 
classical ICI plus chemotherapy is used and may represent a pathway to design new therapeutic 
strategies aimed at improving the response in CRC patients based on immunological reactivation 
combined with conventional chemotherapy. Knowledge of the TME in CRC is essential to understand 
immunosuppression. New options for nonclassical ICIs obtained by single-cell sequencing are shedding 
light on this area and will probably improve the effectiveness of many treatments.

We are possibly on the verge of major findings in the study of CRC, where the immune response will 
continue playing a leading role and where new proposals with nonclassical ICIs may reduce the current 
statistics and poor prognoses for this oncological pathology.
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