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Abstract
Pancreatic cancer (PanCa) presents a catastrophic disease with poor overall 
survival at advanced stages, with immediate requirement of new and effective 
treatment options. Besides genetic mutations, epigenetic dysregulation of 
signaling pathway-associated enriched genes are considered as novel therapeutic 
target. Mechanisms beneath the deoxyribonucleic acid methylation and its utility 
in developing of epi-drugs in PanCa are under trails. Combinations of epigenetic 
medicines with conventional cytotoxic treatments or targeted therapy are 
promising options to improving the dismal response and survival rate of PanCa 
patients. Recent studies have identified potentially valid pathways that support 
the prediction that future PanCa clinical trials will include vigorous testing of 
epigenomic therapies. Epigenetics thus promises to generate a significant amount 
of new knowledge of biological and medical importance. Our review could identi-
fy various components of epigenetic mechanisms known to be involved in the 
initiation and development of pancreatic ductal adenocarcinoma and related 
precancerous lesions, and novel pharmacological strategies that target these 
components could potentially lead to breakthroughs. We aim to highlight the 
possibilities that exist and the potential therapeutic interventions.
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Core Tip: Given the limited commercial availability of targeted epi-drugs and pathway-based biomarkers, it is important to 
generalize them for appropriate treatment of pancreatic cancer and related precancerous lesions. We also highlighted the 
clinical use of these therapeutic targets based on methylation driven pathways. This review will successfully help readers 
address current issues and support cutting-edge development of targeted therapies using epigenetically regulated pathways.
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INTRODUCTION
Pancreatic cancer (PanCa) is one of the fatal malicious carcinomas globally. Currently, PanCa is one of the foremost 
causes of death by cancer especially in the United States[1]. According to GLOBACON 2020, PanCa is the 12th most 
common cause of cancer with 495000 new cases worldwide, of which approximately 47% of new cases occurred in Asia 
and another significant proportion, 28%, in Europe[2]. By the end of 2022, the incidence could increase by 70%, equivalent 
to about 844000 new cases per year[3]. Recent studies elucidate deoxyribonucleic acid (DNA) methylation depiction from 
inflammatory diseases thus opening a new profile for the biomarker development in early prognosis. Cell-free DNA 
methylation, in particular, could be used to identify pre-neoplastic features in individuals with suspected pancreatic 
disorders. This is a clear non-invasive approach of PanCa pre-diagnosis[4]. It is observed through the years that PanCa 
consists of extremely fatal malignancies, having less than 5 year of survival rate. Early detection and treatment of this 
disease is hampered due to a lack of reliable diagnostic and prognostic markers[3]. It has been noted that there is 
epigenetic variance between populations which can be accounted for by a variety of racial, demographic, and vocational 
characteristics. Only a few research have examined the Pancreatic ductal Adenocarcinoma (PDAC) progression stage 
globally and the shifting epigenetic landscape in various ethnic groups[5]. Recent research has demonstrated the dynamic 
changes in the global DNA methylation and gene expression patterns play important roles in cancer development, 
including PanCa development. These findings offer important new information for understanding the onset and 
progression of this malignancy[5].

PanCa is clinically allied with an elevated rate of mortality. In terms of geographic features, Northern America and 
Europe show the maximum prevalence of PanCa where more males tend to get affected. There are an estimated 62210 
(male) and 32970 (female) new cases in the United States alone in 2022, with an estimated 25970 male and 23860 PanCa-
related deaths[2,3]. In South Eastern countries like India, the rate of incidence of PanCa are comparatively lower 
compared to the Western world. According to per year statistics in Eastern countries like in India, the rate of prevalence 
of PanCa seems to be 0.5 to 2.4 out of 100000 women and 0.2 to 1.8 out of 100000 men. Although, regardless of the 
prevalence of this deadly disease, patient survivability with PanCa is comparatively downcast with 1 to 5-year of relative 
survival rates for all stages[6]. The main reason for such miserable and prolonged consequences is perhaps because of the 
fact that this fatal disease is predominantly lacks any symptoms in the early stages. Meanwhile, the symptoms commence 
to expand largely and eventually tend to get metastatic in nature[7]. As a result, enucleating a metastatic tumor is 
frequently impossible. PanCa has a 1-year survival rate of 26%, and the 5-year survival rate is roughly 6% for advanced 
cancer and 22% for early stages when surgical removal of the tumor is still possible[8]. For this reason, few new 
therapeutic strategies like radiotherapy and chemotherapy are effective to mitigate the tumor size in selected PanCa 
patients[9]. Hypermethylation in DNA methylation can promote tumorigenesis. However, with histone and RNA 
methylation, both writers and erasers can be PanCa oncogenes such as SMYD3, KDM1, MELLT3 and FTO[10].

The study of malignant genomic modifications has been ongoing over the past few decades, and it has become quite 
evident that epigenetics are crucial to carcinogenesis. DNA methylation, a key component of epigenetics, affects a variety 
of biological functions, including gene imprinting, genome stability, and cell differentiation. Hypermethylation and 
hypomethylation are the two categories of abnormal DNA methylation. DNA hypomethylation refers to less DNA 
methylation, which frequently causes disturbance of chromosome stability or increased aneuploidy. On the other hand, 
DNA hypermethylation refers to the buildup of methylation, which mostly results in transcriptional repression and 
reduced gene expression. Typically, abnormal DNA methylation can be seen in the promoter regions of transcription 
factors, which promotes the growth and metastasis of cancers[11,12]. DNA methylation plays a crucial role in the onset 
and progression of cancer. Early on in the tumorigenic process, DNA methylation alterations frequently take place. This 
phenomenon has been confirmed for the bladder, lung, breast, colorectal, and pancreatic pre-neoplastic lesions[13,14].

https://www.wjgnet.com/1948-5204/full/v15/i9/1505.htm
https://dx.doi.org/10.4251/wjgo.v15.i9.1505
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According to Thompson et al[15], 2015, out of around 250000 assessed CpG sites, 20000 hotspots were correlated with 
patient survival. The two categories that were survival (-) and survival (+) which represented the connection between 
higher methylation and survival. The survival (+) sites were more evenly dispersed intragenically, whereas the survival 
(-) sites tended to group close to the TSS (transcription start site), indicating hypermethylation of promoter regions. An 
increased methylation pattern, associated with shorter survival was observed in survival (-) groups, while reduced 
methylation led to longer survival times in survival (+) groups. Some of the important genes [within the top 10 in 
survival (-) groups] which were found to be hypermethylated were FAM150A, ONECUT1, RASSF10, RNF207, PanCa 
DH9. The tumor-suppressor role of these genes are well-established in other aggressive cancers. While the genes such as 
PTPRN2, MAD1L1, CBFA2T3, COL5A1, and SHANK2 etc. made their way into the top ten differentially methylated genes 
in the survival (+) group[16]. Thus, this segmentation, together with the fact that promoter regions of genes are typically 
better defined and documented, led to the surviving sites producing a clearer recovery of functional annotation and genes 
overall[17]. There is growing evidence that DNA methylation can affect how genes are expressed, despite the fact that the 
majority of research on DNA methylation has focused on the methylation state of promoters and CpG islands. 
Importantly, a mutation of KRAS in acinar or ductal cells causes the development of pancreatic lesions, which is the 
causative genetic event in over 90% of PDAC cases (PanIN). Along with the KRAS mutation, subsequent deletion 
mutations or mutations of other types in tumor suppressor genes promote tumor growth and accelerate the course of the 
disease[10,18].

The Advantageous incidence of this systematic review is to summarize all the differential methylation pathways in 
several precancerous lesions of PanCa. The alterations in epigenetics occurring in PanCa also discussed in this review. 
This review also gives insight into landscapes of the early epigenetics in precursor lesions. In this review also highlighted 
the differentially methylated enriched signaling pathways and methylated modulators, and their therapeutic targets for 
precancerous as well as PanCa. In brief, we describe an overview of differentially methylated genes, highlighting their 
diagnostic or prognostic potential in PanCa related enriched pathways (Figure 1).

PRECANCEROUS LESIONS OF THE PANCREAS
PanCa shows a proclivity for almost about 5 to 7 years of retention rate. Over the years it has been observed that a 
significant number of patients execute an immensely impoverished prophecy. Recent clinical studies clearly depict that 
throughout a long period of time; over 10 to 11 years, cellular level observation shows a clear tendency to originate 
various invasive proficiency. These series of phenomena conciliate the detection factors as well as root out the precursor 
lesions in PanCa[19]. From recent clinical studies, it is observed that the prior detection of these precancerous lesions put 
forward the possibility to reduce the death rate. The studies also delineate the fact that several non-intrusive prototype 
lesions exhibit malignant PanCa. From the surgical history of PanCa, it has been observed that patients having a previous 
history of PDAC may have microscopic pancreatic intraepithelial neoplasms (PanINs). Furthermore, these multifocal 
PanINs is clinically allied with diagnosable lobulocentric atrophy. Moreover, Intraductal papillary mucinous neoplasms 
(IPMNs) and mucinous cystic neoplasms (MCN) are another couple of prominent pre-cancerous lesions which give rise to 
PanCa. These lesions are often considered to form cysts as well[20]. The surgical treatment and revelation of these MCN, 
IPMNs and PanINs can often create disturbance in the advancement to incursive PanCa. These eventually shows a high 
efficacy to save the lives of cancer patients[3,20].

PANCREATIC CANCER AND ITS EPIGENETICS LANDSCAPE
Due to epigenetic alterations, oncogenic signaling pathways specifically derived from transcriptional deregulation create 
a trademark to PanCa. 5-Hydroxymethylcytosine (5-hmC) is a chemical (epigenetic) modification of DNA at regulatory 
regions that result in the generation of 5-methylcytosine (5-mC) residue and has been thoroughly studied in PanCa. 
Genome analysis of 5-hmC occupied loci was done in the cell lines of short-passaged PanCa. As a result, surprising 
patterns of alteration were seen in neoplastic tissues in primary cancer patients[19,21]. It was observed that near the open 
chromatin regions, the 5-hmC was very much enhanced and thus tends to show upregulation of the allied transliteration
[22]. The transcripts involve a few important oncogenic signaling pathways enmeshed in pancreatic neoplasia, such as 
KRAS, master regulator of cell cycle (MYC), BRD4 and VEGFA where BRD4 tends to be highly overexpressed in nature. In 
terms of functional approach, accession of 5-hmC at promoter BRD4 was implicated along with the transcript expression 
elevation specifically in primary patient samples. It was also noticed that the in in-vivo experiments the growth of PanCa 
is highly inhibited by the BRD4 blockage. Concisely, it can be said that in human PanCa and oncogenic enhancers, 
partisan enhancement and 5-hmC reallocation tend to be an important regulatory mechanism[22,23].

ROLE OF THE KEY PATHWAY MODULATORS IN PANCA AND ITS ASSOCIATED PRECANCEROUS 
LESSIONS
In PanCa, some important pathways are Raf/Ras/ERK. MEK interposes specific cellular responses to a few growth factor 
actions. In the past years, inhibitors emergence is highly noticed that directly target KRAS. This circumvents the long-
harboured speculation that drugs cannot be produced by KRAS. In PDAC, several attempts have been made to target this 



Bararia A et al. Methylation driven therapeutic pathways in pancreatic cancer

WJGO https://www.wjgnet.com 1508 September 15, 2023 Volume 15 Issue 9

Figure 1 Comprehensive visualization showcasing interaction between epigenetic pathways and probable drug treatments concerning 
pancreatic cancer. EGF: Epidermal growth factor; Ras/Raf/MEK/ERK: Rat sarcoma virus/Rapidly Accelerated Fibrosarcoma/Mitogen-activated protein 
kinase/extracellular-signal-regulated kinase; PI3K/AKT/mTOR: Phosphoinositide 3-kinases/Ak strain transforming/Mammalian target of rapamycin; Wnt: Wingless-
related integration site; PDGF: Platelet-derived growth factor; SCF/c-Kit: Stem cell factor/receptor tyrosine kinase; ALK: Anaplastic lymphoma kinase; TGF-β: 
Transforming growth factor beta; HGF: Hepatocyte growth factor; JAK/STAT: Janus kinase/signal transducers and activators of transcription; BTK: Bruton tyrosine 
kinase; Src: Tyrosine-protein kinase (sarcoma); COX-2: Cyclooxygenase 2; NRF2: Nuclear factor erythroid 2–related factor 2; HIF-1: Hypoxia-inducible factor-1; 
PKCδ-PKD1: Protein Kinase Cδ-Polycystin 1, Transient Receptor Potential Channel Interacting; IGF: Insulin like growth factor; VEGF: Vascular endothelial growth 
factor.

important oncogenic pathway in various approaches. The downstream regulation of frequently mutated KRAS is 
eventually considered to be an esoteric drug target[24,25]. On the other hand, owing to the offsetting mechanism that 
involves the enzyme, geranylgeranyl transferase, the upstream regulation of KRAS, using inhibitors like farnesyltrans-
ferase has been completely nugatory[26]. It is also observed that the inhibitors like MRTX8, AMG510 and others 
specifically target only the KRAS mutant variant such as G12C[27,28]. Over 1%–5% of PDACs portray this kind of 
mutation and the progress is really promising. In PDAC, to regulate the antitumor pursuit in KRAS, the genetic inhibition 
of some autophagy regulators reciprocally enhances the propensity of ERK inhibitors (Table 1)[29].

EPIDERMAL GROWTH FACTOR PATHWAY MODULATORS
Epidermal growth factor receptor (EGFR) functions in a significant way in PanCa specifically in terms of tumorigenesis. 
Epidermal growth factor (EGF) is one of the classic pathways that works in a dysregulated manner in PDAC and is thus 
often considered as a potent therapeutic target. EGF signaling pathway inhibitors are considered as one of the efficient 
and significant regulators for cellular viability. These pathway regulators often mediate a wide range of signaling 
activities, precisely Jak-STAT, Akt/PI3K, Ras/Raf/ and MEK/ERK[29,30]. In PanCa patients, it is often noticed that 
affirmative activation and regulation of EGFR works effectively for the activation of KRAS and ERK and this persuades 
the formation of tumor more profoundly[31]. It is found that in Phase III clinical trial, the add-on of erlotinib elevates 
more positive improvements in cell survival in PanCa patients. The presence of KRAS gene (wild type) in PDAC tumors 
with a tiny proportion also leads to a significant improvement in PDAC patient survival[27,31].

WNT PATHWAY MODULATORS
In case of tissue development and maintenance in both embryos and adults, The Wnt signaling pathway plays a critical 
role. Digressive activation of this Wnt pathway has been closely associated with cancers like PanCa, specifically to the 
severely affected digestive tract. It is observed that Cancer stem cells are strongly associated with the activation of this 
pathway[32]. Furthermore, a precise monoclonal antibody named Wnt inhibitor vantictumab, which eventually targets 
the decrepitate receptor. This depicts a huge responsive activity of tumors and is often found to be combined with 
gemcitabine[33].
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Table 1 Targeting various characteristics of pancreatic carcinomas and their associated therapeutic strategies

Potent therapeutics Cancer Hallmarks

TGF-β pathway inhibitors HGF; Met pathway inhibitors Activating invasion/metastasis

JAK/STAT pathway inhibitors; BTK inhibitors; Src inhibitors; COX-2 inhibitors Tumour-promoting inflammation

NRF2 pathway inhibitors; HIF-1 pathway inhibitors; PKCδ-PKD1 inhibitors; Amino acid 
transporter inhibitors; α-Glucosidase inhibitors

Deregulating cellular metabolism

EGF pathway inhibitors; Ras/Raf/ MEK/ERK pathway inhibitors; PI3K/AKT/mTOR 
pathway inhibitors; Wnt pathway inhibitors; PDGF pathway inhibitors; SCF/c-Kit 
pathway inhibitors; ALK pathway inhibitors; Hedgehog pathway inhibitors

Sustaining proliferative signalling

IGF pathway inhibitors; NF-κB pathway inhibitors Resisting apoptosis

VEGF pathway inhibitors Inducing angiogenesis

Shh pathway inhibitors; FAK inhibitors; Src inhibitors; EGFR inhibitors Expansive desmoplasia

Aurora kinase inhibitors; Cyclin-dependent kinase inhibitors Eluding growth suppressors

PD-L1 inhibitors; CTLA-4 inhibitors Avoiding immune destruction

PARP inhibitors Photodynamic agents; Bromodomain inhibitors; HDAC inhibitors Genome instability and damage

EGF: Epidermal growth factor; Ras/Raf/MEK/ERK: Rat sarcoma virus/Rapidly Accelerated Fibrosarcoma/Mitogen-activated protein 
kinase/extracellular-signal-regulated kinase; PI3K/AKT/mTOR: Phosphoinositide 3-kinases/Ak strain transforming/Mammalian target of rapamycin; 
Wnt: Wingless-related integration site; PDGF: Platelet-derived growth factor; SCF/c-Kit: Stem cell factor/receptor tyrosine kinase; ALK: Anaplastic 
lymphoma kinase; TGF-β: Transforming growth factor beta; HGF: Hepatocyte growth factor; JAK/STAT: Janus kinase/signal transducers and activators of 
transcription; BTK: Bruton tyrosine kinase; Src: Tyrosine-protein kinase (sarcoma); COX-2: Cyclooxygenase 2; NRF2: Nuclear factor erythroid 2–related 
factor 2; HIF-1: Hypoxia-inducible factor-1; PKCδ-PKD1: Protein Kinase Cδ-Polycystin 1, Transient Receptor Potential Channel Interacting; IGF: Insulin 
like growth factor; VEGF: Vascular endothelial growth factor.

STEM CELL FACTOR/C-KIT PATHWAY MODULATORS
In several cell lines of PanCa, the occupancy of c-Kit has been clearly mentioned. The stem cell factor tends to reinforce 
the differentiation as well as the proliferation of cells and also seems to be expressing towards its ligands. Masitinib tends 
to strongly inhibit both the platelet derived growth factor and stem cell factor signaling pathways, thus delivering such 
extremely promising outcomes. This affirmative feedback is often found to be combined with gemcitabine[34]. Moreover, 
this c-Kit pathway inhibitors effluxes the overexpressed ACOX1 marker which elucidates the efficiency in cancer patients
[35].

PI3K/AKT/MTOR PATHWAY MODULATORS
The inhibitors of some specific signaling pathways like PI3K/mTOR and Akt bring into play some indispensable control 
over multifarious processes that are closely related to the growth and survival of cells in case of disease as well as health
[36]. The mTOR/Akt and PI3 pathways also play distinctive key roles in several important cellular mechanisms like cell 
invasion, adhesion, and migration[37].

ROLE OF EPIGENETIC MODULATED PATHWAYS IN PANCA
Whole genome and exome sequencing has shown that a considerable portion of PDAC patients also carries non-germline 
mutations in chromatin remodelling complexes and epigenetic regulators, such as ARID1A/B, MLL2/3/4, PBRM1, 
SMARCA2/4, and KDM6A in addition to germline mutations. Moreover, the inactivation of KDM6A, MLL3, and MLL5 
(histone modification enzymes) and non-germline mutations in ARID1A occurred simultaneously with oncogenic KRAS 
in insertional mutagenesis screening of sleeping beauty transposon[38]. Vincent et al[39] discovered that the histone-
modifying enzyme-coding genes were mutated in all of the malignancies in our screen. These mutations helped 
oncogenic KRAS accelerate the progression of PDAC, indicating that changes to the epigenome are crucial for accelerating 
PDAC. These results demonstrate the importance of epigenetic regulation in the progression of PanCa[40].

Transcriptional silencing is linked to abberant CpG island methylation of multiple tumor suppressor genes, including 
p16, in pancreatic and other carcinomas. In 15% of PanCa, the p16 gene is reported to be inactive due to hypermethylation 
of the CpG island. With higher PanIN grades, there is a greater tendency for the loss of p16 protein production, The 
ppENK gene exhibits anomalous methylations in pancreatic carcinomas, as was recently established using representa-
tional difference analysis and methylation CpG island amplification (MCA)[41].
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PENK DNA methylation has been widely observed in precancerous lesions of varying severity, including extra- and 
intraluminal PTs and CPs, PanINs, IPMNs, and mucinous cystic neoplasms. Changes in PENK methylation increased 
with increasing coverage of tumor tissue, but were absent in autoimmune pancreatitis (AIP) and adjacent normal 
pancreatic tissue[3].

The m6A demethylase ALKBH5 was found to be downregulated in a gemcitabine-treated patient-derived xenograft 
model, and its overexpression made PDAC cells more sensitive to treatment. Reduced ALKBH5 levels predict poor 
clinical outcome in PDAC and other malignancies. Furthermore, both in vitro and in vivo, downregulation of ALKBH5 
greatly promotes PDAC cell proliferation, migration, and invasion, whereas overexpression has the opposite impact. The 
m6A global profile indicated changes in the expression of certain ALKBH5 target genes, such as Wnt inhibitor 1 (WIF-1), 
which associated with Wnt signaling pathway mediation and WIF-1 transactivation[42].

Met-enkephalin, a tonically active inhibitory factor that interacts with the opioid growth factor receptor, is encoded by 
the ppENK gene. Met-enkephalin was found to slow the growth of various human cancers, including PanCa, according to 
Zagon and colleagues. Comb and associates claim that the CpG island methylation of ppENK directly prevented a 
positively active transcription factor from binding, which in turn suppressed the production of the gene. Given this, it is a 
possible outcome that cell growth and carcinogenesis of the pancreas are promoted because of the methylation of the 
ppEK gene[41]. Moreover, α-catenin, angiogenesis inhibitor BAI3, CTNNA2, DPP6 (dipeptidyl-peptidase), GUCY1A2 
(guanylate cyclase), heterotrimeric G-protein-coupled receptor, protein kinases like PRKCG, and Q9H5F0- these genes 
were often altered at significantly lower frequencies[43]. According to the reports of Li et al[44] a total of 16420 genes 
having methylation information were found to be differently methylated, including 40 and 831 significantly 
hypomethylated and hypermethylated genes, respectively. SARM1, IRX4, IRF4, FOXC2, EN2, ZSCAN23, PTPN5, HOXB4, 
CACNA1, and IGF2BP1 were the 10 genes with the most significantly different methylation patterns. The 10 genes with 
the most different methylation patterns were REG4, C11orf34, BRD9, S100A16, HIST1H2BK, STATH, LRRC31, UBD, 
MIR548A1, and PSMG3[45].

Processes like the differentiation of neurons in the CNS, neuropeptide signaling pathway and organ development at 
the embryonic stage, were the most observed enrichment functions. According to the study, these genes were primarily 
engaged in signaling pathways for neuroactive ligand-receptor interaction, cAMP, salivary secretions, glutamatergic 
synapses, calcium, morphine addiction, circadian rhythm, nicotine addiction, and pancreatic secretions. Genes that 
significantly affect survival were included as taxonomic features in order to define molecular subtypes of PDAC in 
relation to prognosis[46]. An important finding from the univariate Cox proportional hazards regression model 
developed for clinical factors indicated that age should be considered as a significant parameter related to patient 
survival. These 135 significantly differentially methylation genes were included in the above-mentioned multivariate 
regression model together with age as a covariate to find variables that independently influence prognosis. Using 
multivariate Cox regression models, 78 differentially methylation genes substantially linked with prognosis were 
discovered[46,47].

Chatterjee et al[5], identified "regulation of ion transport", "alpha/beta interferon signaling", "morphogenesis and 
development" and "transcriptional dysregulation" as the four most statistically significant extended terms. Voltage-gated 
ion channels are membrane proteins that selectively transport ions and are activated by changes in membrane potential. 
The activation of channels permits potassium ions to move along the electrochemical gradient. Hypermethylation of the 
KCNA3 gene promoter may explain the poor expression of Kv1.3 in PDAC. The modulation of ion channels has been 
demonstrated to play a significant role in the regulation of cell death, evasion, and survival in the context of PDAC 
invasion and development.

In a study by Nones et al[48] 25 pathways were reported to be significantly affected by DNA methylation in PDACs. 
Axon guidance was one of the most significant (adjusted P value 5 1.91E-05) and was supported by MetaCore pathway 
analysis. This pathway was recently implicated in PDAC. Other pathways identified here as enriched for genes 
aberrantly methylated including cell adhesion, hedgehog signaling, TGF-b, integrin signaling and WNT/NOTCH 
signaling are well-known key cancer signaling previously described to be genetically altered in PDAC. WNT signaling 
has been reported to be aberrant methylated in PDAC cell lines. Our results confirm that this pathway is aberrantly 
methylated in this large cohort of PDAC. Stellate cell activation (adjusted P value3.26E-05) another interesting pathway 
identified here as significantly affected by DNA methylation deserves further investigation due its importance in PDAC. 
Pancreatic stellate cells are the main fibroblastic cells in PDAC and are known to interact with PanCa cells creating the 
fibrotic microenvironment of PDAC. It is hypothesized that the fibrous microenvironment of PDAC creates a barrier that 
impairs the delivery of chemotherapeutic drugs and promotes aggressive behaviour of tumor cells. Known genes are 
involved in astrocyte activation [cyclooxygenase-2, transforming growth factor-beta receptor 1, EGFR, tumor necrosis 
factor-alpha and MET were hypomethylated in PDAC and confirmed by bisulfite amplicon deep sequencing[48].

miRNAs are frequently suppressed in cancer cells and have the potential to act as tumor suppressors. Several miRNAs 
have been implicated in the development and spread of cancer in the pancreas, and it may one day be possible to stop the 
disease's progression by increasing the activity of a particular miRNA within a cell. The Food and Drug Administration 
(FDA) -approved drug Miravirsen, which employs miRNA to treat hepatitis C, has sparked interest in miRNA-based 
medicines for the treatment of PanCa. Regrettably, no treatments employing miRNAs or siRNAs that are comparable to 
them have been tried in clinical trials to treat PanCa, therefore miRNA will not be explored in great detail in this review. 
Nevertheless, we recommend individual study into the state of the art in miRNA studies[49].

In addition to confirming the mutations in the tumor suppressor and classical PDAC-associated oncogenes listed 
above, sequencing efforts have also revealed mutations in a variety of chromatin-modifying enzymes and complexes. The 
chromatin remodelers like, SWI/SNF family which alters nucleosome structure using ATP and accessibility of DNA in 
order to control gene transcription, includes the ARID1A component as one of their most often altered genes. 6% of the 
ARID1A mutations in human PDAC were found using multiplatform sequencing analysis. Although the role of ARID1A 
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as a PDAC-associated tumor suppressor gene is well documented, lymph node or distant metastases do not coincide with 
its expression levels. Instead, they are related to tumor stage and differentiation. When ARID1A is knocked out, acinar to 
ductal metaplasia and PanIN lesions develop as a result[41]. It's interesting to note that a recent study using genetically 
altered PanCa mice models demonstrated the importance of the survival gene Arid1a, whose absence inhibits cell 
development and causes cell death. In Ras-driven animal models, the deletion of ARID1A also prevents cell growth, 
leading to the emergence of inactive and low-quality cystic precursor lesions known as IPMNs[50]. The progression of 
Arid1a-deficient progenitor cells to adenocarcinomas, however, occurs during carcinogenesis via routes involving Tp53 
loss or Myc overexpression. PDAC has also been linked to mutations in the SWI/SNF subunits SMARCB1, ARID1B, 
BRG1, PBRM1, SMARCA2, and SMARCA4. In PanCa cell lines, BRG1 inactivating mutations and deletions have been 
discovered. BRG1, a crucial entity of the SWI/SNF chromatin remodelling complex, is an ATP-dependent helicase. 
Neoplastic lesions that mirror human intraductal papillary mucinous neoplasms are produced as a result of BRG1 
deletion and KRAS mutation, which aids in the progression of PDAC[41,51].

Methylation at particular genomic locations may put patients at risk for tumor recurrence following total surgical 
removal and may be a sign of local and/or systemic metastasis. The surgical resection margin methylation profile may be 
used as a biologic marker in the absence of histologic disease to detect remaining pancreatic tissue that is susceptible to 
tumor recurrence or that harbours multi-focal disease throughout the gland. The link between methylation abnormalities 
and Auto immuno pancreatitis (AIP), a representative Immunoglobulin G4 (IgG4)-related illness, has yet to be 
determined. Through methylation array research using the Methylation 450K BeadChip array, the scientists discovered 
that sphingosine kinase inhibitor (SKI) may have a major methylation anomaly in AIP and explored the connection of SKI 
with AIP clinicopathological characteristics. AIP had a considerably lower SKI methylation ratio than PDAC and nurse 
practitioner (NP). Furthermore, the immunohistochemical staining-index (SI) score for SKI in AIP was substantially 
greater than in NP, despite no significant difference between AIP and PDAC[52]. Both the serum IgG4 concentration and 
the SKI methylation ratio showed a strong negative connection between the SI score and the methylation ratio. SI and the 
serum IgG4 concentration were shown to be somewhat positively correlated. Givien that SKI is regarded as an oncogene, 
hypomethylation of SKI and carcinogenesis may be connected to AIP[53]. Additionally, the association between serum 
IgG4 levels and SKI methylation raises the possibility that SKI plays the role in the aetiology of AIP. NPTX2, along with 
Cyclin D2, FOXE1, TFPI2, ppENK, and p16 all had hypermethylation events (10%) according to a research by Kinugawa et 
al[54]. However, compared to NCA and NP, AIP had a considerably greaterTFPI2 methylation ratio.

THERAPEUTIC ASPECTS OF EPIGENETIC MODULATED PATHWAYS IN PDAC AND ITS ASSOCIATED 
PRECANCEROUS LESIONS
PDAC is a deadly illness with few therapy options. According to new research, PDAC includes numerous layers of 
epigenetic alterations. Because the change is possibly reversible, it is a possible therapeutic target. Epigenetic changes can 
potentially affect the tumor microenvironment, modulating and enhancing treatment. Because epigenetic changes occur 
early in the disease, epigenetic markers can also be employed as diagnostic screening tools. Immunotherapy is being used 
more frequently to treat solid organ tumors, however there is no benefit for PDAC because most patients do not respond 
to these new treatments[55,56]. Because epigenetic processes regulate underlying immune cell activities, resulting in an 
anti-tumor response, combining immunotherapy and epigenetic therapy may improve patient outcomes even more. 
PDACs are currently classified as three to five subtypes according on the system used[57,58]. Using transcriptomic 
profiling, two primary molecular subtypes of PDAC were discovered: classical and basal[59]. The traditional kind has a 
better prognosis and clinical significance. Basal subtypes have altered the methylation of effectors and inhibitors of the 
Wnt signaling pathway by analyzing the epigenomic landscape. Classical tumors are hypomethylated, resulting in 
upregulation of the cholesterol transporter NCP1L1[60]. Furthermore, basal tumors were discovered to contain dysregu-
lation of multiple genes related with established oncogenic signaling networks, including the MYC, erythroblastic 
oncogene B/EGFR, and transforming growth factor (TGF) signaling pathways. Chronic pancreatitis is a well-known risk 
factor for PDAC, which is consistent with the previously documented general link between tumor and inflammation[61,
62]. Early stage PanCa caused by inflammation is linked to epigenetic alterations. Damage to the pancreatic epithelium 
during a pancreatitis episode results in long-lasting transcriptional and epigenetic remodelling that creates epithelial 
memory that protects against strokes in the future[63].

Reader proteins, have lately been identified as prospective therapeutic targets, in particular the chromatin adaptors of 
the bromo and extra C-terminal (BET) family, after directly engaging with the histone tails with acetylated lysine 
residues, these proteins with bromodomains can bind transcription factors to the DNA, boosting the acetylation-induced 
transcriptional activation. BET proteins use the epigenetic landscape in this way to support the growth of PDAC cells. 
Given the wide variety of abnormal epigenetic marks that are possible targets for the advancement of anticancer therapy, 
the study of and application of epigenetic enzyme inhibitors for the anti-cancer therapy show promise[49,64].

Cell interactions and released substances can cause epigenetic alternations. It has been demonstrated that PDAC cells 
induced DNA methylation of the SOCS1 gene, acytokine supressor and cancer promoting growth factor, to boost tumor 
cell proliferation in vitro[63,65]. Clinical evidences demonstrating a higher 3-mo overall survival in patients missing 
SOCS1 methylationl end credence to this. In PDAC, lysine demethylase 3A (KDM3A) is an effective epigenetic regulator 
of immunotherapy responses. This enzyme controls the EGFR expressions[66]. Tumors produced by cancer cells deficient 
in KDM3A have infiltrating immune cells that are responsive to immunotherapy. To distinguish between PDAC and 
cancer precursor phase, methylation -specific electrophoresis was used to determine the methylation status of the MUC1, 
MUC2, and MUC4 genes in pancreatic fluids[67]. Additionally, the methylation status of the mucin genes was examined 
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using machine learning, and it was discovered that MUC1 and MUC4 hypomethylation levels were significantly 
correlated with poor prognosis[68].

Through the suppression of Hedgehog (Hh) signaling, improved gemcitabine delivery was shown in preclinical invest-
igations. Clinical studies were conducted for a number of cancers, but they were unsuccessful and did not progress to 
phase III trials[69]. However, preclinical research using epigenetic targeting of the proteins known as BET 
bromodomains, which controls the transcriptional output of Hh signaling, demonstrated positive results in vitro, 
suggesting possible synergistic therapeutic approaches[70]. BET bromodomain proteins are thought to be crucial contri-
bution to PDAC development and are a topic of active investigations[71]. Based on the transcription factor GATA-
binding factor 6 (GATA6)'s function as a regulator of the traditional PDAC subtype identity, the method to induce 
subtype switching in PDAC has been further investigated. A basal state is provided in PDAC by GATA6 depletion[72]. As 
a regulator of GATA6 transcription in PDAC, the histone methyltransferase zeste homologue 2 (EZH2) enhancer prevents 
the decreased EZH2-GATA6 and induced gene signatures present in traditional PDAC subtypes. Therefore, a potential 
target for PDAC treatment in the future is the EZH2-GATA6 axis[73]. Tazemetostat, an EZH2 inhibitor, has been FDA-
approved for use in the treatment of advanced epithelioid sarcoma and is currently being investigated in a phase II 
research in conjunction with ICI in the treatment of other solid tumors, including PDAC (NCT04705818)[74]. A hostile 
squamous cell subtype is promoted to differentiate in PDAC by epigenetic silencing of GATA6. Using genome-wide 
epigenetic mapping of the alterations 5-methylcytosine and 5-hydroxymethylcytosine (5hmC), this epigenetic dysregu-
lation was demonstrated[75]. Due to decreased production of the enzyme 5-methylcytosine hydroxylase TET2, these 
transcriptional subtypes exhibit a higher loss of 5hmC. In addition, reduction of SMAD4 expression revealed decreased 
5hmC and GATA6, resulting in a more squamous-like tumor. Blocking DNA methylation by utilizing the DNA methyl-
transferase (DNMT) inhibitor 5-azacytidine slows the growth of typical PDAC tumor. In contrast, utilising the same 
medication or DNMT knockdown via small interfering RNA boosted hyaluronic acid synthesis, ultimately increasing the 
advancement of PDACI[76]. Epithelial cells from normal pancreata and PDAC underwent transcriptomic and DNA 
methylomic analysis, which identified a subpopulation characterised by hypomethylation of repetitive regions, which in 
turn triggers an interferon-linked transcriptional programme[77]. The relationship between cell-of-origin and epigenetics 
and tumor heterogeneity can be seen in the fact that tumors with low methylation were more aggressive than tumors 
with high methylation, which kept more of their cell-of-origin characteristics[78].

A clinical trial examining the medication in solid tumor types, including PDAC, and the recent FDA approval of the 
EZH2 inhibitor tazemetostat for the treatment of advanced epithelioid sarcoma show a potential clinical relevance of the 
found EZH2-GATA6 axis in PDAC tumor[79]. Numerous researches have examined how DNA methylation mechanisms 
control the expression of genes in various TME components[80]. For instance, 5-azacytidine, a DNA methyltransferase 
(DNMT) inhibitor, inhibited global DNA methylation in epithelial PDAC cells and cancer-associated fibroblasts (CAFs), 
which slowed the evolution of PDAC[75]. In immunocompetent PDAC models, DNMT inhibition increased CD4 and 
CD8 T-cell infiltration and significantly reduced tumor size. Espinet et al[77] have discovered a link between low DNA 
methylation levels and subpar PDAC patient outcomes. They show that tumors with low levels of overall DNA 
methylation in the epithelial cells exhibit increased expression of endogenous retroviral transcripts, robust double-
stranded RNA sensing machinery engagement, activation of an interferon signature, and stromal cell reprogramming 
that is pro-tumourigenic in the PDAC TME. Clinical trials for a sequential strategy based on HDAC/DNMT inhibition, 
chemotherapy, and then PD-L1 blocking are now being conducted in PDAC, and the findings are highly anticipated[81].

Specifically, nucleoside-like inhibitors induce cytotoxicity through DNA damage brought on by the creation of DNMT-
DNA abducts, disrupt DNA methylation, and encourage the re-expression of dormant genes. Both outcomes support 
anticancer action[82]. Additionally, RNA modification of N6-methyladenosine (m6A) is a unique strategy for dynamic 
and reversible epigenetic control that has been discovered by researchers. By triggering the Wnt signaling cascade and 
changing Wnt I[82].

Inhibitory factor 1 (WIF-1), m6A accelerates the course of PanCa. Demethylase, m6A rubber, and the alkylation repair 
protein 5 (ALKBH5) homolog are increased in gemcitabine-treated sensitized PDAC cells. By demethylating m6A and 
consequently reducing WIF-1 and deactivating Wnt signaling, it slows the growth of tumors. In vitro and in vivo 
development and invasiveness are accelerated when PanCa cells lack ALKBH5[42,83]. As a result, ALKBH5 might be a 
brand-new target for PanCa treatment. Numerous studies have shown how DNMT inhibitors affect PanCa cell lines in 
vitro by inhibiting them, radiosensitizing them, and immunological sensitizing them. PanCa DNA repair regulation is 
mediated by H3K36 methylation. H3K36 is a SETD2-dependent protein that is essential for HR repair. Demethylating 
H3K36 by demethylase KDM4A alters heart rate. A transcription factor for MHCII, RFXAP has been linked to the 
inhibition of tumor growth. PDAC survival was favourably linked with RFXAP deficiency[84]. Ding et al[85] found that 
the natural flavonoid fisetin regulates H3K36 methylation to promote RFXAP and KDM4A expression and interferes with 
HR, leading to DNA damage and PDAC S-phase arrest[85]. Therefore, this tactic may constitute a cutting-edge 
therapeutic method for treating PanCa. DNMT inhibitors (DNMTis) are undertaking Phase I/II clinical trials in patients 
with PanCa and have been shown to sensitize PDAC cells to immune checkpoint blockade treatment and chemotherapy
[86]. Decitabine, alongside 5-aza, and guadecitabine are DNMTs used for PDAC. Haematological malignancies are also 
accepted to be treated with HDAC inhibitors (HDACis)[87]. Another therapeutic epigenetic approach for PanCa patients 
is HDAC inhibition. In PanCa cells, HDAC is, which includes SAHA and CUDC-101, can downregulate apoptotic 
inhibitory proteins including survivin and XIAP. Additionally, these HDACs can make PanCa more radiosensitive and 
make it cytotoxic[88]. AR-42, which is another potent HDACi against PanCa cells, can inhibit cell proliferation via 
inducing cell cycle arrest at G2 phase. Additionally, it can induce DNA damage, apoptosis, and p53 expression, 
suggesting that it may have therapeutic promise for the treatment of PanCa[89]. In addition to that, reader proteins with 
different bromodomains that attract proteins implicated in tumor initiation and elongation are blocked by the BET 
inhibitor JQ1 from binding to the BET domain. In the framework of personalized medicine, Bian et al[90] defined a novel 
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technique for PDAC classification and management based on sensitivity to JQ1 treatment. In order to select PanCa 
patients with unregulated c-MYC signaling pathways and demonstrate that these selected tumors exhibited greater 
susceptibility to BET inhibitor JQ1 treatment, the technique involved molecularly characterizing patient xenografts. 
According to the study, administering BET inhibitors in conjunction with conventional anticancer regimens may 
constitute an efficient therapy option for individuals who have been carefully chosen and categorized (Table 2)[83,91].

Mechanisms of faulty negative control of cell proliferation, in particular immune evasion, can also produce abnormal 
proliferation in the development of gastrointestinal malignancies, in addition to unchecked proliferation brought on by 
cell cycle dysregulation[92]. For instance, it was discovered by researchers that during PanCa, H3K4me3 of the BCL2L1, 
CFLAR, and MCL-1 gene promoters upregulates the production of the anti-apoptotic proteins Bcl-x, FLIP, and MCL-1, as 
well as the BAK1, BAX, and BCL2L11 gene promoters of Bak and Bax. Proapoptotic proteins like the Bim protein, for 
example, have their expression downregulated[93]. These six apoptosis-controlling genes are all essential for PanCa 
growth and development[94].

Initial investigations with human pancreatic cell lines showed that silencing KMT2D lowered the number and 
proportion of cells in G0/G1, which was accompanied by a drop in H3K4me1/2/3, indicating that histone methylation is 
actually involved in cells cycle management[95]. Further research has primarily focused on CKI control. P15 and P21 
genes, which encode two often reported CKIs, show higher levels of H3K27me3 and H3K9me3 and lower levels of 
H3K4me2/3 in gastrointestinal malignancies such as GC, CRC, HCC, and PanCa[96]. Upstream lncRNAs such as 
BLACAT1, SNHG17, and CASC15 can decrease P15 and P21 expression and cause G0/G1 checkpoint deficit. DZNep (3-
deazaneplanocin A), a powerful pharmacologic inhibitor of S-adenosylhomocysteine hydrolase, modifies chromatin 
accessibility via inhibiting histone methyltransferases such as EZH2[97,98]. It results in a large decrease in H3K27me3 (a 
primary repressive histone mark) levels, as well as a significant decrease in cell proliferation and migration in CRC. 
Similar effects can be seen in PanCa, with decreased global H3K27me3 levels leading to re-expression of miR-218, limiting 
cell growth, encouraging apoptosis, and finally triggering cell cycle arrest in PanCa cells[99]. Another study found that 
DZNep significantly modulates miR-663a and miR-4787-5p expression and consecutively suppresses TGFb1-induced 
EMT signaling in PanCa[98,100]. UNC1999, an EZH2-specific inhibitor, not only lowers the abnormal H3K27 methylation 
that characterizes PanCa cells, but it also slows cancer cell proliferation in three model systems[101]. Furthermore, chaeto-
spirolactone has been shown to suppress the activity of the epigenetic regulator EZH2 and consistently decrease 
H3K27me3 to allow for the transcription of DR4, which then binds to TRAIL and culminates in the activation of initiator 
caspase-8 and the formation of the death-inducing signaling complex[102]. As a result, diosgenin, garcinol, FBW7 and 
curcumin analogue CDF have also been identified as potential agents targeting EZH2 to prevent the development of 
PanCa[97,103]. Amalgamation treatment with the HMT inhibitor panH3K9me chaetocin and an aurorakinase A (AURKA) 
inhibitor reduces H3K9 methylation at the centrosome, generating mitotic abnormalities that eventually drive aberrant 
mitotic checkpoint responses and eventually mitotic catastrophe in PanCa[104].

CONCLUSION
Since PanCa patients have a dismal prognosis, understanding the molecular events that drive this terrible tumor disease 
is critical for developing alternative and more effective treatment regimens and determining trustworthy diagnostic 
indicators. The role of epigenetics in the initiation, development, and evolution of PDAC has been demonstrated by 
advances in high throughput sequencing and genome-wide association studies. This review covers the major epigenetic 
signaling pathways as well as how the epigenetic machinery is altered or 'hijacked' in PanCa. Recent epigenetic research 
has considerably expanded our understanding of the regulatory characteristics involved in PanCa initiation, and 
progression, along with metastasis tumor. As discussed in this article, DNA-based epigenetic processes have been shown 
to play a role in PanCa and may serve as potential therapeutic targets aimed at rectifying epigenetic dysregulation of 
cellular machinery. Initial clinical trials with DNMT inhibitors at stages I-III are presently underway, paving the path for 
the creation of innovative, and hopefully more successful, 'epidrugs' for patients with PanCa. As a result, we believe that 
targeting epigenetic regulators and modulators with successful pharmaceutical or even immunotherapeutic techniques 
would be a game changer in the fight against this aggressive cancer. One significant restriction of using such epigenetic 
reprogramming of PDAC tumors is the danger of pleiotropic effects, which occur when certain components of the 
epigenetic machinery have opposite effects in different cellular compartments. Recent improvements in single-cell 
sequencing technologies that provide multi-omics information from the genome and transcriptome may be useful in 
determining the specific involvement of the several players in the epigenetic regulation of PDAC tumors. Overall, 
manipulating the epigenetic machinery, either alone or as part of a combination treatment plan, has the potential to 
reprogram the aggressive PDAC tumor profile to a less aggressive or easily identifiable and curable state, thereby 
benefiting patients in the future. In conclusion, we conclude that when cancer-associated signaling pathways are 
evaluated as a combined shift in "genomic-epigenomic-and-nuclear" structure, an even more realistic picture of PanCa 
will be obtained. Early preneoplastic lesions in this organ appear to require only a few mutations to initiate a process of 
aberrant organogenesis via self-reinforcing pathological loops. During metastatic progression, epigenomic landscapes 
defined by the differential acquisition of enhancers and super-enhancers appear to be required to maintain inheritable, 
cancer-associated gene expression patterns that support the heterogeneous differentiation of human PanCa tumors. This 
has given unique insights into an arsenal of novel, potentially actionable signaling pathways that were not previously 
achieved through genomic analyses, supporting the notion that effective future PDAC therapeutic regimens will require 
precision medicine approaches that include epigenomic targets.



Bararia A et al. Methylation driven therapeutic pathways in pancreatic cancer

WJGO https://www.wjgnet.com 1514 September 15, 2023 Volume 15 Issue 9

Table 2 Current ongoing trails targeting epigenetic therapy (combination drugs) in Pancreatic Cancer

Drug names Combination agents Trail phase NCT number

Panobinostat vorinostat Various antineoplastic drugs Phase 1 NCT03878524

Vorinostat Capecitabine + radiation Phase 1/2 NCT00948688

Tazemetostat Durvalumab/gemcitabine Phase 2 recruiting NCT04705818

Durvalumab Tazemetostat Phase 2 NCT04705818

Romidepsin, azacitidine Durvalumab, lenalidomide, nab-paclitaxel Phase 1/2 recruiting NCT04257448

Azacitidine Chemotherapy after progression Phase 2 active NCT01845805

Vorinostat Gemcitabine, sorafenib +/−, radiation Phase 1 active NCT02349867

CC-486 (oral azacitidine) – Phase 2 active NCT01845805

Azacitidine, not recruiting Pembrolizumab Phase 2 active NCT03264404

Tazemetostat Durvalumab Phase 2 NCT04705818

MK-8628 - Phase 1 completed NCT02259114

Rx-3117 Nab-paclitaxel 1,2 NCT03189914

Entinostat Nivolumab Phase 2 completed NCT03250273

Decitabine Tetrahydrouridine Phase 1 completed NCT02847000

Vorinostat Capecitabine Phase 1 completed NCT00983268

Azacitidine nab-Paclitaxel, carboplatin Phase 1 completed NCT01478685

Vorinostat NPI-0052 (marizomib) Phase 1 completed NCT00667082

Azacitidine Pembrolizumab Phase 2 recruiting NCT03264404

Azacitidine Abraxane, gemcitabine Phase 2 active NCT01845805

Entinostat Nivolumab Phase 2 active NCT03250273
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