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Abstract
The gut is the most common extranodal site where 
lymphomas arise. Although all histological lymphoma 
types may develop in the gut, small and large B-cell 
lymphomas predominate. The sometimes unexpected 
finding of a lymphoid lesion in an endoscopic biopsy 
of the gut may challenge both the clinician (who is 
not always familiar with lymphoma pathogenesis) and 
the pathologist (who will often be hampered in his/her 
diagnostic skill by the limited amount of available tis-
sue). Moreover, the past 2 decades have spawned 
an avalanche of new data that encompasses both the 
function of the reactive B-cell as well as the pathogenic 
pathways that lead to its neoplastic counterpart, the 
B-cell lymphoma. Therefore, this review aims to offer 
clinicians an overview of B-cell lymphomas in the gut, 
and their pertinent molecular features that have led to 
new insights regarding lymphomagenesis. It addresses 
the question as how to incorporate all presently avail-
able information on normal and neoplastic B-cell dif-
ferentiation, and how this knowledge can be applied in 
daily clinical practice (e.g., diagnostic tools, prognostic 
biomarkers or therapeutic targets) to optimalise the 
managment of this heterogeneous group of neoplasms.
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INTRODUCTION
The gastrointestinal (GI) tract is the most common site 
of  extra-nodal lymphoma, accounting for 40% of  cases. 
This is not surprising since the GI tract contains more 
native lymphoid tissue than that collectively present in 
all of  the lymph nodes and spleen. Virtually all B-cell 
lymphoma-subtypes that arise in peripheral lymphoid 
organs may also occur as primary tumors of  the GI tract. 
In contrast, GI Hodgkin’s disease is quite rare, and al-
though certain extranodal T-cell and NK-cell lymphomas 
can occur primarily in the GI tract, most nodal peripheral 
T-cell lymphomas rarely if  ever present as primary GI 
lymphomas. Accurate diagnosis/classification of  lym-
phomas based upon limited biopsy material obtained at 
endoscopy may be problematic for several reasons: the 
small size of  endoscopic tissue-samples often precludes 
evaluation of  lymphoid nodule architecture; hyperplastic 
mucosa-associated lymphoid tissue (MALT) may show 
reactive changes that simulate low-grade lymphoma, 
especially in fragmented specimens; and some immune-
mediated inflammatory disorders, such as Helicobacter 
pylori (H. pylori)-related gastritis and celiac disease, evolve 
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via poorly defined transitional stages to lymphoma. Thus, 
molecular analysis has assumed an increasingly important 
role in the evaluation of  GI lymphoid lesions and pro-
vides an important adjunct to careful clinical evaluation 
and histologic assessment of  mucosal biopsy samples. 
 
NORMAL B-CELL MATURATION
B-lymphocytes elaborate a multitude of  antibodies with 
diverse antigen-binding specificities, and are produced 
during two successive stages: a primary B-cell repertoire 
is first generated in the bone marrow, while antigen en-
counter in the peripheral lymphoid organs (spleen, lymph 
nodes and MALT) will lead to a secondary B-cell reper-
toire (Figure 1)[1].

The primary B-cell repertoire emerges from committed 
hematopoietic stem-cells and is determined by transcrip-
tional events involving numerous factors, including PU.1, 
Ikaros, E-box-factor-2A, early-B-cell-factor (also known as 
OLF1), paired-box-protein-5 (PAX5, also known as BSAP) 
and Forkhead-box-protein-P1 (FOXP1)[2,3]. It requires a 
highly regulated series of  genetic events, so called im-
munoglobulin (Ig) gene-rearrangements, that result in the 
membranous expression of  a functional B-cell receptor[4]. 
The variable regions of  the Ig heavy-chain are assembled 
from 123 variable (V), 27 diversity (D) and 6 junctional (J) 
genes present on chromosome 14 at the Ig heavy-chain 
gene locus. The variable regions of  the Ig light-chains 
are assembled from V and J elements at either the Igk 
or Igλ gene locus on chromosome 2 and 22, respectively. 
As there are many different V-, D- and J-segments in 
the germline, each B-cell has the potential to generate a 
unique antibody that is expressed on subsequent progeny. 
The earliest B-cell found in bone marrow, so called pro-
B-cells, are transformed into early pre-B-cells following 
recombination of  the DH and JH gene-segments in the 
Ig heavy-chain locus. Subsequent rearrangements attach 
one of  the VH gene-segments to the DH-JH-segment and 
give rise to late pre-B-cells, which express a functionally 
rearranged VH-DH-JH-Cµ-chain on the cell-surface. Sub-
sequent rearrangement of  the Ig light-chain gene-locus 
leads to surface expression of  a complete IgM-molecule, 
at which time the cell is designated an immature B-cell. 
Immature B-cells undergo alternative splicing of  Ig 
heavy-chain mRNA to become mature B-cells that ex-
press both IgM and IgD.

These mature B-cells, considered naïve because they 
have not yet encountered an antigen, migrate to second-
ary lymphoid organs, including the GI MALT, where they 
form primary follicles. Here they transform into large 
B-cells following antigenic stimulation, after which most 
proliferate and differentiate into short-lived, IgM-pro-
ducing plasma-cells[5]. A few B-cell blasts migrate into the 
centre of  the follicle where they proliferate and differ-
entiate into germinal centre (GC) B-cells[6]. Naïve B-cells 
that are not triggered to differentiate by antigen exposure 
are pushed aside and form the mantle surrounding the 
GC. Follicles containing a GC and mantle are called sec-
ondary B-follicles. 

GC B-cells undergo randomized introduction of  
mutations in the Ig-gene that encode the antigen-binding 
site and this process is termed somatic hypermutation 
(SHM)[7]. B-cells with unfavourable mutations will not 
bind with high affinity to antigens and consequently, will 
not appropriately interact with nor receive survival signals 
from the GC T-cells. In fact, more than 90% of  the GC 
B-cells die as a result of  apoptosis. Positively selected GC 
B-cells that do survive activate T-cells to express CD40-
ligand (CD40L) and secrete interleukin (IL)-4 and IL-10. 
These molecules induce a class switch recombination 
(CSR) from IgM and/or IgD to IgG, IgA, or, less com-
monly, IgE[8]. B-cells in the gut will preferentially switch 
to IgA. Although SHM and CSR display distinct molecu-
lar features, they are mediated by a shared pathway that is 
controlled by a B-cell-specific enzyme: activation-induced 
cytidine deaminase (AID)[9]. 

Selected GC B-cells may either undergo subsequent 
round(s) of  SHM, CSR and positive selection, or dif-
ferentiate into post-GC B-cells (plasma-cells or memory 
B-cells). Plasma-cell differentiation requires the continued 
presence of  B-lymphocyte-induced-maturation-protein-1 
and X-box-binding-protein-1 in the absence of  B-cell-
lymphoma-6 (BCL6), PAX5 and metastasis-associated-
1-family-member-3[10]. Alterations in these transcription 
factors results in plasma-cell death or dedifferentiation. 
The CD40/CD40L-mediated interaction with GC T-cells 
in an IL-4-rich microenvironment is important for direct-
ing GC B-cells toward the memory B-cell pathway[11]. 
Memory B-cells reside in a particular zone of  the B-folli-
cle, the marginal zone, which is the outer part of  the fol-
licular mantle. 

CLASSIFICATION OF GI B-CELL 
LYMPHOMAS
Lymphoma classification has evolved over the past de-
cades and now incorporates a combination of  morphol-
ogy, immunophenotype and genetic aberrations that 
correlates well with clinical presentation, disease course 
and overall prognosis. The 2008 WHO classification is 
now widely accepted and has enabled clincians to better 
understand GI lymphomas[12]. 

MALT-lymphoma 
MALT-lymphoma is a low-grade B-cell lymphoma that 
preferentially affects the stomach. It accounts for 5%-10% 
of  all GI malignancies and at least 50% of  gastric lym-
phomas, making it the most frequent GI lymphom[13]. 
MALT-lymphomas show differentiation and immu-
nophenotypic features similar to those of  marginal zone 
B-cells. Gastric MALT-lymphoma is etiologically linked 
to chronic H. pylori infection. Presumably, sustained anti-
genic stimulation by H. pylori triggers a polyclonal B-cell 
proliferation and attracts neutrophils to the site of  in-
flammation, with subsequent release of  reactive oxygen 
species. These molecules are genotoxic and cause a wide 
range of  genetic abnormalities that accumulate as lym-
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phocytes proliferate[14]. Prolonged B-cell proliferation also 
increases the risk of  various types of  DNA-damage, such 
as double-strand DNA-breaks, due to intrinsic genetic in-
stability of  B-cells during SHM and CSR[15]. Characteristic 
genetic changes of  MALT-lymphomas include transloca-
tions t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21) 
and t(3;14)(p13;q32), which result in BIRC3-MALT1, IGH-
BCL10, IGH-MALT1 and IGH-FOXP1 rearrangements 
respectively[16-18]. Although the t(11;18)(q21;q21) transloca-
tion is the most frequent molecular anomaly encountered 
in gastric MALT-lymphomas, the genes targeted by three 
of  these translocations (BCL10 and MALT1) participate 
in the same signalling pathway that drives activation of  
nuclear factor κB (NF-κB)[19,20]. This molecule is a key 
transcription factor in immune responses. It regulates 
expression of  several survival- and proliferation-related 
genes in B-cells. Thus, its constitutive activation results in 
uncontrolled B-cell proliferation and lymphomagenesis.

Demonstration of  a monoclonal rearrangement of  the 
Ig heavy- and/or light-chain gene(s) by molecular analy-
sis is an important adjunct to the diagnosis of  MALT-
lymphoma because morphologically, these tumors often 
contain a polymorphous mixture of  centrocyte-like cells, 
small lymphocytes, plasma-cells, and scattered large blasts 
that mask the presence of  neoplastic marginal zone B-cells 
(Figure 2A). The tumor cells frequently surround reactive 
GC, as well as invade and destroy the overlying GI epi-
thelium, resulting in lymphoepithelial lesions (Figure 2B). 
The immunophenotype of  MALT-lymphoma is similar 
to that of  normal marginal zone B-cells, with positive 

immunostains for surface Ig (strongly IgM positive), pan 
B-cell markers (CD20, CD19, CD79a), and complement 
receptors (CD21, CD35). However, there are no specific 
biomarkers for MALT-lymphomas, with the exception 
of  t(11;18)(q21;q21) which can be demonstrated in either 
fresh-frozen or paraffin-embedded tumor tissue by mo-
lecular techniques. Detection of  t(11;18)(q21;q21) may 
facilitate and/or confirm the diagnosis of  MALT-lym-
phoma, although current guidelines do not recommend 
routine screening for t(11;18)(q21;q21) once the diagnosis 
of  gastric MALT-lymphoma is established since its iden-
tification has no bearing on treatment or outcome. All 
patients with H. pylori-positive gastric MALT-lymphoma 
should undergo eradication therapy, regardless of  their 
t(11;18)(q21;q21)-status[19-21]. Importantly, the presence of  
a t(11;18)(q21;q21) in a MALT-lymphoma does not ex-
clude the possibility of  progression to diffuse large B-cell 
lymphoma (DLBCL)[22], despite earlier literature claiming 
the contrary. In general, MALT-lymphomas are indolent 
lymphomas with a 5-year survival rate of  approximately 
95%. Once progression to DLBCL occurs, data on sur-
vival are conflicting: in the early 1990s, two retrospective 
studies reported 5‑year survival of  42% and 56%, respec-
tively[23,24], while prospective studies conducted 10 years 
later showed no or only a marginal difference in overall 
survival between gastric MALT-lymphoma and DLB-
CL[25,26]. The mechanism by which low-grade MALT -lym-
phomas transform to DLBCLs are unknown, although 
some studies have implicated FOXP1, a transcription fac-
tor, as a key molecule in this process[27].

240WJGO|www.wjgnet.com December 15, 2012|Volume 4|Issue 12|

Primary B-cell repertoire

Bone marrow Peripheral lymphoid organs 
(spleen, lymph nodes, MALT)

Secondary B-cell repertoire

Progenitor B-cell

Pre-B-cell

Immature B-cell

Mature B-cell
IgD

IgM

IgM

Rearraragement
Ig heavy chain genes

Rearraragement
Ig light chain genes

Short-living
Plasma cell

B-blast

Antigen
encounter

Follicle
centre

SHM
CSR

Centroblast

Centrocyt

Follicle
mantle Memory B-cell

Long-living
Plasma cell

Mature B-cell

Marginal zone

Figure 1  B-cell development. Schematic representation of the events in the development of primary and secondary B-cell repertoire. Ig: Immunoglobulin; CSR: 
Class switch recombination; SHM: Somatic hypermutation.
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Follicular lymphoma
Follicular lymphoma is the most common subtype of  non-
Hodgkin’s lymphoma in the Western world[6]. Most cases 
are initially detected in the lymph nodes. Involvement 
of  extranodal sites, including the GI tract, usually occurs 
following dissemination of  nodal disease[28]. Primary GI 
follicular lymphoma accounts for less than 3% of  GI lym-
phomas, but it is the second most common lymphoma 
subtype of  the small intestine and the most common type 
of  duodenal lymphoma[29,30]. Follicular lymphomas rep-
resent the neoplastic counterpart of  GC B-cells, so they 
display a follicular architecture (Figure 2C) and contain 
variable numbers of  centroblasts and centrocytes. Dis-
tinguishing these tumors from MALT-lymphoma may 
be difficult, especially in cases of  MALT-lymphoma with 
colonization of  GC by tumour cells. In contrast to colo-

nized reactive GCs, however, the neoplastic GC B-cells of  
follicular lymphomas aberrantly express BCL2 (Figure 2D) 
as well as CD10 and BCL6. BCL2 is an anti-apoptotic and 
oncogenic protein and its overexpression often reflects the 
presence of  a BCL2-gene-rearrangement that occurs via 
a t(14;18)(q32;q21)-translocation. These BCL2-rearrange-
ments are detected in 85%-90% of  all follicular lymphomas 
and, thus, detection of  abnormal BCL2 immunoexpression 
or BCL2-IGH demonstration by molecular pathology dis-
tinguishes follicular from MALT-lymphoma[31]. Of  interest 
and in contrast to systemic follicular lymphomas, primary 
duodenal follicular lymphomas frequently express IgA as 
well as the α4β7 mucosal homing receptor (suggesting 
an origin from local antigen-driven B-cells) and lack AID 
expression[32,33]. Clinically, primary GI follicular lymphoma 
behaves remarkably indolent, which, even left untreated, 
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Figure 2  Histology of gastrointestinal mucosa-associated lymphoid tissue, follicular and mantle-cell lymphomas. A: Hematoxylin eosin (HE) staining of a 
gastric mucosa-associated lymphoid tissue lymphoma demonstrates presence of reactive follicles surrouned by a neoplastic lymphoid infiltrate (magnification 50 ×); B: 
Destruction of a gastric gland by the neoplastic B-cellss: lymphoepithelial lesion (magnification 400 ×); C: HE staining of a duodenal follicular lymphoma highlights the 
presence of aberrant follicular growth pattern (magnification 100 ×); D: Aberrant B-cell-lymphoma-2 expression by a duodenal follicular lymphoma (magnification 100 ×); E: 
HE staining of a mantle-cell lymphoma in the colon (magnification 200 ×); F: Aberrant cyclin D1 expression by an intestinal mantle-cell lymphoma (magnification 100 ×).
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does not develop tumorous growth, only rarely dissemi-
nates and does not transform into high grade disease. As 
such, in the absence of  documented disease progression, 
a watch and wait approach appears to be the most sensible 
strategy[32-35].

Mantle-cell lymphoma
Mantle-cell lymphoma is an intermediate-grade B-cell 
neoplasm that predominantly occurs in older male pa-
tients who present with systemic disease involving the 
peripheral lymph nodes, spleen and bone marrow[36]. It 
shows a striking tendency to affect the lower GI tract 
(30% of  patients) but only represents the primary dis-
ease site in a minority of  patients. Mantle-cell lymphoma 
accounts for no more than 10% of  all GI lymphomas. 
It may produce multiple intestinal polyps, termed lym-
phomatous polyposis[37]. This type of  B-cell lymphoma 
features aberrant CD5 expression, simulating the phe-
notype of  naïve B-cells in the follicle mantle (1). Nearly 
90% of  GI mantle-cell lymphomas display cyclin-D1 
overexpression due to a t(11;14)(q13;q32) which juxta-
poses the heavy-chain Ig-encoding region on chromo-
some 14q32 next to the CCND1-oncogene on chro-
mosome region 11q13[38]. CCND1 encodes cyclin-D1, 
which is an important regulator of  the G1-S transition 
phase in the cell cycle. Uncontrolled overexpression of  
cyclin-D1 leads to B-cell growth and mantle-cell lym-
phomagenesis[39]. Morphologically, mantle-cell lympho-
mas are more monomorphic than MALT-lymphomas, 
are devoid of  immunoblasts and centroblasts, and lack 
plasmacytic differentiation (Figure 2E). Recognition of  
mantle-cell lymphoma is straightforward in most cases of  
lymphomatous polyposis, but early tumors show subtle 
endoscopic findings, in which case a histologic diagnosis 
may prove difficult. Most mantle-cell lymphomas demon-
strate strong nuclear staining for cyclin D1 (Figure 2F), 
although this feature is not entirely specific as it is also 
present in 2% of  DLBCLs. Molecular tests that investi-
gate the presence of  t(11;14)(q13;q32) in biopsy material 
are useful in challenging cases. Primary GI tract mantle-
cell lymphomas have a poor prognosis with a median sur-
vival of  3-4 years[37]. Chemotherapy is the treatment of  
choice for these patients, although historic data showed 
its limited efficacy. Newer approaches, including addition 
of  anti-CD20 (Rituximab) to conventional chemotherapy 
and myeloablative therapy with stem-cell transplantation 
support, have significantly improved outcome, but it still 
remains an incurable lymphoma[40,41]. 

DLBCLs
DLBCLs frequently arise at extranodal sites, including 
the gut, and are composed of  a diffuse infiltrate of  large 
transformed blasts with the morphology of  centroblasts 
and/or immunoblasts (Figure 3A and B). Uncommon 
morphologic variants include T-cell/histiocyte rich and 
anaplastic B-cell lymphomas[42]. These tumors develop 
via a variety of  mechanisms. Some represent transformed 
small B-cell non-Hodgkin’s lymphomas (MALT-, follicu-

lar or mantle-cell lymphomas) but most arise de novo as 
a result of  various genetic events, including BCL6-gene 
rearrangements and mutations[43,44]. Gastric DLBCLs may 
contain a low-grade MALT lymphoma in the adjacent 
mucosa and may feature prominent lymphoepithelial 
lesions. Some of  these cases have been previously classi-
fied as ”high grade“ or ”blastic“ MALT lymphomas, but 
the current WHO classification discourages the use of  
these terms and recommends labeling tumors comprised 
of  solid sheets of  B-cell blasts as a DLBCL[12]. Microar-
ray analyses have revealed biological subtypes of  DL-
BCL[45,46]. One category is characterized by a gene expres-
sion signature resembling that of  GC B-cells. Another 
has a genotype similar to that of  activated post-GC B-cells 
(ABC). Distinguishing between these subtypes of  DL-
BCL may be important because GC-type DLBCLs have 
a better prognosis than ABC-type tumors[45,46], but also 
because the latter may benefit from therapies targeting 
the NF-κB pathway[47]. Because gene expression profiling 
cannot be routinely used to sub-classify these tumors, im-
munohistochemistry seems the best option due to practi-
cal/economic reasons. Various immunohistochemical 
algorithms have been developed to replicate the microar-
ray results and/or stratify patients according to survival. 
The most helpful panel of  markers that may be used for 
these purposes includes BCL6, CD10, FOXP1, multiple 
myeloma oncogene 1, interferon regulatory factor 4 and 
germinal center B cell-expressed transcript-1[48]. However, 
use of  these markers to stratify DLBCL into prognostic 
groups remains controversial[48]. An optimal treatment 
strategy specific for primary GI DLBCL has not been 
established yet and remains controversial. Various treat-
ment protocols have been tried, such as systemic chemo-
therapy similar to that used to treat nodal DLBCL[49,50]. 
Recently, it was shown that these tumours may benefit 
from surgical resection followed by chemotherapy (with 
an acceptable quality of  life deterioration because of  the 
invasive surgical procedure)[51].

Burkitt lymphomas
Burkitt lymphomas are among the most proliferative of  
all human malignancies, and are endemic in regions with 
high rates of  neonatal Epstein-Barr virus (EBV) infec-
tion and malaria, such as equatorial Africa, where they 
clinically present as jaw tumours[52]. Systemic disease may 
also occur among AIDS patients, but patients who lack 
immunodeficiency may rarely develop tumors as well[53,54]. 
Sporadic Burkitt lymphomas tend to affect young patients 
and cause symptoms of  small bowel obstruction due 
to tumour development in the ileocaecal region. These 
tumours grow as sheets of  medium-sized lymphoblasts 
with a neoplastic “starry sky” appearance reflecting the 
presence of  numerous pale macrophages removing ap-
optotic debris[55] (Figure 3C and D). The tumour-cell 
nuclei are medium-sized with thick rims of  chromatin 
and multiple prominent nucleoli. Their contours are 
round to ovoid without cleaves or folds. The cytoplasm 
of  the tumour-cells is basophilic reflecting an abundance 
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of  polyribosome with clear vesicles that represent lipid 
droplets. Classical Burkitt lymphoma is genetically charac-
terized by a C-MYC translocation, usually t(8;14)(q24;q32), 
which places C-MYC under control of  the Ig heavy-chain 
gene enhancer. Rarer variants, including three-way trans-
locations, t(8;14;18), t(2;8)(p12;q24) and t(8;22)(q24;q11), 
have been described, all of  which involve C-MYC and the 
Igκ or Igλ light-chain genes respectively[56]. Demonstration 
of  C-MYC rearrangement by molecular genetics is an 
important tool in distinguishing Burkitt lymphoma from 
DLBCL since adults require different treatment regimens 
for these entities[57,58]. Some B-cell lymphomas used to be 
classified as 'Burkitt-like' lymphoma in the Revised Euro-
pean-American Lymphoma classification of  1994. How-
ever, the 2008 WHO classification abandoned the term 
Burkitt-like because it was used inconsistently for a vari-

ety of  lymphomas, including atypical Burkitt lymphomas 
and DLBCLs with high proliferation rate[12]. Burkitt lym-
phomas remain a highly curable condition when treated 
with high doses of  systemic chemo- and immunotherapy.

Post-transplantation lymphoproliferative disorders
Post-transplantation lymphoproliferative disorders (PTLDs) 
represent explosive B-cell proliferations that develop as 
a result of  immunosuppression and immunomodulation 
among transplant recipients. They often arise in extra-
nodal sites, particularly in the transplanted organs them-
selves and in the GI tract[59]. Risk factors for development 
of  PTLD include mismatched EBV serologic status, such 
as transplant of  a donor organ from a seropositive donor 
into a seronegative patient, and intensive drug-induced 
immunosuppression[60,61]. The prevalence of  PTLD de-
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Figure 3  Histology of other gastrointestinal B-cell lymphomas. A: Hematoxylin eosin (HE) staining of a gastric diffuse large B-cell lymphoma (magnification 200 ×); 
B: Polymorphic appearance of the large tumor B-cells in a gastric diffuse large B-cell lymphoma (magnification 400 ×); C: HE staining of an intestinal Burkitt lymphoma 
with the typical “starry sky” appearance (magnification 100 ×); D: Presence of multiple pale macrophages filled with apoptotic debris in an intestinal Burkitt lymphoma 
(magnification 400 ×); E: HE staining of an intestinal monomorphic post-transplantation lymphoproliferative disorders (PTLD) (magnification 200 ×); F: In situ hybrid-
ization demonstrates presence of EBV-encoded RNA (= red colored nuclei) in the neoplastic cells of an intestinal monomorphic PTLD (magnification 100 ×).

Sagaert X et al . Gastrointestinal B-cell lymphomas



244WJGO|www.wjgnet.com December 15, 2012|Volume 4|Issue 12|

pends on the type of  organ transplantation performed. 
It occurs in 0.5% of  bone marrow recipients, 1%-2% of  
liver transplant patients, 0.7%-4% of  renal transplant pa-
tients, 2%-10% of  patients with heart transplants, and up 
to 30% of  patients who undergo small bowel transplan-
tation[59]. PTLDs are heterogeneous, ranging from reac-
tive hyperplasia over polymorphic B-cell proliferations 
to monomorphic lymphomas (Figure 3E), usually of  
B-cell type. This heterogeneity is reflected in the current 
WHO classification of  PTLDs[12]. Early forms of  PTLD 
and polymorphic PTLD may respond to reduction of  
immunosuppression, but only 10% of  monomorphic 
proliferations respond to this mode of  treatment[62]. For 
this reason, recognition and classification of  these lesions 
is very important. Clues to the diagnosis include aware-
ness of  the clinical history and histologic detection of  
nuclear polymorphism, scattered apoptotic cells, variable 
plasmacytic maturation, multilobated immunoblasts remi-
niscent of  those seen in acute infectious mononucleosis, 
and geographic necrosis[60,61]. Most PTLD proliferations 
are EBV driven, so demonstration of  EBV viral proteins 
using immunostains (e.g., latent membrane protein) or 
in situ hybridization for EBV-encoded RNA (Figure 3F) 
may aid the diagnosis, even in small endoscopic biopsy 
samples[59,63]. While cases of  polymorphic PTLD are usu-
ally clonal at the molecular level, clonality studies are use-
ful in distinguishing polymorphic B-cell lymphoma from 
reactive lymphoid proliferations. Similar lymphoprolifera-
tive disorders are observed in HIV patients, congenital 
immunodeficiency syndromes, or after administration of  
immunomodulatory drugs in autoimmune disorders like 
rheumatoid arthritis. 

MOLECULAR PATHOLOGY OF GI B-CELL 
LYMPHOMAS
A variety of  molecular changes in GI lymphomas can be 
investigated using routine molecular techniques, namely 
polymerase chain reaction (PCR), real-time PCR (RT-
PCR), karyotyping, and fluorescence-in-situ hybridization 
(FISH). Evaluation of  the presence or absence of  Ig-
gene-rearrangements is most commonly performed using 
a PCR-based assay followed by the demonstration of  
lymphoma-specific translocations using (RT-)PCR, karyo-
typing, or FISH. 

Detection of  the same Ig heavy- and light-gene re-
arrangements in a B-cell population by PCR confirms 
the clonal nature of  the B-cells, which does not always 
correspond to a neoplastic lesion. These assays rely on 
amplification of  the rearranged variable region of  the Ig 
heavy-(or light-)chain gene in tissue samples, followed by 
analysis of  product size by a capillary electrophoresis[64,65]. 
Reactive or polyclonal B-cell populations produce numer-
ous antibodies marked by different V(D)J-segments. Am-
plification of  the rearranged Ig heavy-(or light-)chain gene 
variable region results in a range of  products of  different 
sizes, which appear as a broad smear or ladder on a gel. In 
contrast, monoclonal B-cells produce the same antibody 

marked by the same V(D)J-segments, and, thus, give rise 
to one or two dominant PCR-products (Figure 4A). These 
days, most labs use multiplex PCR protocols to detect B-cell 
clonality: the rearranged Ig heavy-(or light-)chain gene vari-
able regions are amplified using multiplex Biomed-primers 
and analysed by a Genescan or heteroduplex analysis, 
which will result in a Gaussian curve or a peak in the case 
of  a polyclonal or monoclonal B-cell population respec-
tively (Figure 4A and B).

Most molecular changes in (GI) lymphomas involve 
chromosomal translocations or inversions and lead to 
juxtaposition of  genes that are normally separate. These 
translocations may have either a qualitative or quantitative 
effect on gene expression. Translocations that cause gene 
disruption and recombination generate novel gene-se-
quences that encode chimeric oncoproteins. An example 
of  these qualitative changes includes the BIRC3-MALT 
fusion/t(11;18)(q21;q21), which occurs in approximately 
25% of  all gastric MALT-lymphomas[13] (Figure 5A). 
A translocation that juxtaposes enhancers, or promot-
ers, of  constitutionally highly expressed genes results in 
inappropriate expression of  an intact gene. Examples 
of  such quantitative changes include overexpression of  
BCL2, CCND1 and CMYC as a consequence of  trans-
location of  these genes to the adjacent Ig heavy-chain 
gene enhancer. These changes occur in t(14;18)(q32;q21), 
t(11;14)(q13;q32) and t(8;14)(q24;q32) associated with 
follicular, mantle-cell and Burkitt lymphoma, respectively 
(31;38;54), and may be demonstrated in tissue samples by 
either (RT-)PCR, karyotyping or FISH.

(RT-)PCR
The PCR-based approach to molecular analysis is use-
ful because it can demonstrate B-cell monoclonality as 
well as detect lymphoma-associated translocations by 
amplifying the fusion gene[66]. RT-PCR not only amplifies 
target gene-sequences, but may be used to quantify gene 
expression[67]. Amplified DNA is detected as the reaction 
progresses in real time, whereas the product is detected 
at the end of  standard PCR. Labeled probes bind to their 
target DNA-sequences which are not detected as long as 
the probe is intact. Upon initiation of  PCR, however, the 
probe is destroyed and the label is released and measured. 
The suitability of  (RT-)PCR analysis for detection of  
lymphoma-associated translocations is limited when chro-
mosomal breakpoints are spread over a large genomic 
region, as is the case for t(11;14)(q13;q32) involving the 
BCL1-gene and t(11;18)(q21;q21) involving the MALT1-
gene[68,69] (Figure 5A). Anomalies such as t(14;18)(q32;q21) 
may also be found in healthy individuals, so the high sen-
sitivity of  RT-PCR can yield false-positive results[70].

Karyoytyping 
Conventional karyotyping describes the number and ap-
pearance of  chromosomes under a light microscope. 
Features assessed include chromosome length, position 
of  centromeres, differences between sex chromosomes, 
and any other physical characteristic. Freshly prelevated 
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tumor cells are brought into culture, stimulated to pro-
liferate by addition of  growth factors, and forced to 
enter metaphase, which is the mitotic stage during which 
highly coiled chromosomes align in the middle of  the 
cell before being separated into each of  two daughter 
cells. Mitosis is arrested using a colchicine solution, the 
preparation is squashed on a glass slide, and the chro-
mosomes are histochemically stained using a Giemsa or 
similar stain resulting in a characteristic banding pattern. 
The chromosomes are then photomicrographed and 
arranged by trained technicians in a karyogram that fa-
cilitates evaluation for structural abnormalities. Recently, 
the ability of  conventional metaphase cytogenetics to 
detect genome-wide genetic changes has been expanded 
by the introduction of  multicolour painting of  the chro-
mosomes by using mixtures of  different fluorochromes, 
which allows easier detection of  structural chromosomal 
aberrations[71,72]. However, the time-consuming nature of  

this type of  analysis prohibits its use for routine diagnosis 
in non-specialized centers. Also, karyotyping is useless 

when dividing tumor cells cannot be obtained as a con-
sequence of  lack of  sufficient, fresh material or limited 
tumor load in the biopsy (e.g., endoscopic GI biopsies). 
This disadvantage of  conventional cytogenetics has led to 
the creation of  genome-wide methods that do not need 
dividing tumor cells, such as FISH, conventional compar-
ative genetic hybridization (CGH) and its successor array 
CGH[73,74]. The latter 2 are out of  scope of  this review as 
they are only applied in specialized academic centres.

FISH 
FISH is a cytogenetic technique that detects specific DNA-
sequences with (in)directly fluorescent-labeled DNA-probes 
that bind only to chromosomal regions with which they 
share a high degree of  sequence similarity. Two probe 
categories are used for detection of  translocations: dual-
fusion probes and break-apart pobes[75]. These probes 
differ in terms of  the type of  information they yield, 
their sensitivity, and ease of  interpretation. Dual-fusion 
probes consist of  pairs of  probes labeled with different 
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Figure 4  Polymerase chain reaction. A: Polyclonal B-cell pathology results in a broad smear of the polymerase chain reaction (PCR) product on a gel, while a 
monoclonal pathology (lymphoma) will give rise to a sharp band on a gel, hereby reflecting PCR products that have the same size. +C: Positive control; -C: Negative 
control; 6592: Tumor case; 6590: Reactive case; B: Gaussian curve in a polyclonal B-cell population examined by multiplex PCR; C: Peak in a neoplastic B-cell clone 
examined by multiplex PCR.
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colors, each of  which binds to a different chromosome. 
Dual-fusion probes are designed to span the breakpoint-
region in the two genes involved in a reciprocal transloca-
tion. For example, differently colored probes binding to 
the BIRC3 (red) and MALT1 (green) genes are used to 
detect t(11;18)(q21;q21) in gastric MALT-lymphomas[76] 
(Figure 5B). Two separate red and two separate green 
signals should be visible in normal cells, whereas a 
t(11;18)(q21;q21)-positive MALT-lymphoma will generate 
two fused red/green signals that may appear as a single 
yellow signal, accompanied by one red and one green 

signal that represent normal loci. Break-apart probes 

also consist of  pairs of  two differently colored individual 
probes. Each probe binds to sequences flanking the 
known breakpoint-region in a locus of  interest. Two sets 
bicolored fused signals will be visible in a normal diploid 
cell and represent the two alleles. Abnormal diploid cells 
in which one allele has been split by a translocation will 
show a separated signal in addition to the normal fused 
signal. FISH is now a firmly established technique in the 
diagnosis and assessment of  lymphoid malignancies[69,77,78]. 
In contrast to karyotyping, FISH does not require fresh 
material and dividing cells, labor and time-intensive 
manual preparation, or analysis of  slides by a technolo-
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gist and it can be used on paraffin-embedded material. Its 
main disadvantage is the limited number of  commercially 
available probes. This assay will only provide information 
about the probe being tested, but other aberrations will 
not be detected. 

CONCLUSION
The adequate diagnosis and classification of  a lymphoid 
lesion in an endoscopic biopsy of  the gut may challenge 
clinicians, mainly because of  the small size of  endoscopic 
tissue samples, but also because of  reactive conditions 
that may mimic lymphomas. By understanding normal 
B-cell physiology and the pathways that lead to B-cell 
lymphoma development, one may have insight how this 
knowledge was translated into the application of  mor-
phological, immunohistochemical and especially molec-
ular-genetic tests (PCR, cytogenetics, FISH). These tests 
have assumed an increasingly important role in the evalu-
ation of  GI lymphoid lesions and provides an important 
adjunct to classical histological assessment of  mucosal 
biopsy samples.
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