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Abstract 
Recent research has shown that the alteration of com
binations in gene expression contributes to cellular 
phenotypic changes. Previously, it has been demonstrated 
that the combination of cadherin 1 and cadherin 2 ex
pression can identify the diffuse-type and intestinal-
type gastric cancers. Although the diffuse-type gastric 
cancer has been resistant to treatment, the precise 
mechanism and phenotypic involvement has not been 
revealed. It may be possible that stem cells transform 
into gastric cancer cells, possibly through the involvement 
of a molecule alteration and signaling mechanism. In 
this review article, we focus on the role of catenin beta 
1 (CTNNB1 or β-catenin) and describe the regulation of 
CTNNB1 signaling in gastric cancer and stem cells. 
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Core tip: CTNNB1 signaling is essential for revealing 
cancer mechanisms. The molecular dynamism in stem 
cells and cancer is illustrated with a pathway cascade. The 
CTNNB1 protein interacts with signaling molecules upon 
stimulation, leading to the transcription of genes related 
to cell proliferation. Mutations of signaling molecules are 
also important factors for cancer development. CTNNB1 
signaling in stem cells and cancer are mainly described in 
the article. 
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INTRODUCTION
Transformed cells have dynamic molecular alterations, 
which can be identified via gene profiling[1]. Essential 
genes can be identified using advancing human genomic 
techniques, such as the clustered regularly interspaced 
short palindromic repeats (CRISPR) gene editing system[2]. 
In gastrointestinal cancers, various molecules, including 
catenin beta 1 (CTNNB1 or β-catenin), have important 
roles in phenotypic transitions[3-6]. Mutations in β-catenin 
or adenomatous polyposis coli (APC) induce β-catenin/T 
cell transcription factor (TCF) signaling in colon cancer[7,8]. 
Meanwhile, WNT/β-catenin signaling has a role in stem cell 
signaling[3,9]. The inhibition of glycogen synthase kinase 3 
beta (GSK3β) promotes v-myc avian myelocytomatosis 
viral oncogene homolog (c-Myc or MYC) and β-catenin 
activity toward endoderm identification via forkhead box 
A2 (FoxA2) expression[9]. In cancer stem cells (CSCs), 
β-catenin signaling, which is downstream of the CSC 
marker prominin 1 (CD133 or PROM1), is required for 
CSC maintenance[10]. Although CD133-induced β-catenin 
signaling activation is cancer cell-type specific, β-catenin 
binds to the proximal promoter regions of integrin subunit 
beta 6 (ITGB6) and ITGB8 in gastric cancer cell lines[10]. 
This β-catenin signaling may be regulated by specific 
target genes[10].

Genomic rearrangements in the telomerase reverse 
transcriptase gene (TERT) and the up-regulation of TERT 
are important factors in high-risk neuroblastoma[11]. The 
detection of causative mutations in cancers has been 
facilitated since the completion of the Human Genome 
Project[12,13]. Because several individual mutations in 
gastrointestinal cancers have been identified as being 
targeted by tumor infiltrating lymphocytes, the mutations 
in cancer signaling cascades should be analyzed in the 
context of possible cancer immunotherapy[14]. Signaling 
molecules, including β-catenin and signal direction switch 
caused by misregulation of expression, are the main 
focus of this article.  

CTNNB1 AND WNT SIGNALING
The canonical Wnt signaling pathway includes Wnt-
Frizzled, dishevelled (DVL), Axin, GSK3 inactivation, 
and β-catenin dephosphorylation, stabilization and trans
location into the nucleus[3]. The translocated β-catenin 
together with TCF transcriptionally regulates Wnt target 
genes, whereas the disruption of Wnt signaling caused 
by mutations in pathway genes can cause cancer[3]. The 
interaction of β-catenin and E-cadherin may be involved 
in cell-cell communication and signal transduction[15]. 
The disruption of VE-cadherin localization is involved in 
β-catenin phosphorylation and signaling via microparticles 
that are important for cell-cell communication in endothelial 
cells. However, this β-catenin activation is independent 
of Wnt/Frizzled[16]. Tubeimoside-1, which has anti-tumor 
properties, has been shown to inhibit the growth and 
invasion of colorectal cancer cells through inhibiting the 
Wnt/β-catenin signaling pathway[17]. The Wnt/β-catenin 

pathway is essential to the epithelial-mesenchymal 
transition (EMT) in breast cancer cells over-expressing 
C-X-C motif chemokine ligand 12 (CXCL12, or stromal 
cell-derived factor-1; SDF-1)[18]. The E6 region of high-
risk human papillomavirus (HPV)-16, one of the possible 
causes of esophageal cancer, induces cell growth of 
esophageal cancer through activation of the Wnt/β-catenin 
signaling pathway and downregulation of miR-125b[19]. 
GSK3-mediated β-catenin phosphorylation is a key event 
in Wnt/β-catenin signaling[20]. GSK3 associates with AXIN 
to phosphorylate and regulate β-catenin[20]. These studies 
indicate the importance of Wnt/β-catenin signaling in 
tumorigenesis and EMT.

CTNNB1 SIGNALING IN GASTRIC 
CANCER
TERT activates Wnt/β-catenin signaling and promotes 
MYC expression[21]. The expression of TERT in gastric 
cancer is correlated with advanced TNM stages and 
lymphatic metastasis, which suggests TERT may be a 
therapeutic target for GC patients[21]. GC invasion and 
metastasis are associated with molecular mechanisms 
for TERT[21]. MYC expression is regulated by TERT via 
the Wnt/β-catenin pathway[21]. Dishevelled-Axin domain 
containing 1 (DIXDC1), a positive regulator of the Wnt 
pathway, is a significant prognostic indicator of intestinal-
type gastric carcinoma[22]. DIXDC1 contains a DIX do
main that is involved in the formation of a complex along 
with Axin, Dvl, APC, GSK3β, and β-catenin[22,23]. It has 
been shown that GSK3β-dependent phosphorylation 
of β-catenin is inhibited in the presence of Axin[23]. Axin 
regulates Wnt signaling as scaffold for the APC-glycogen 
synthase kinase-3β-β-catenin complex to down-regulate 
β-catenin, and Axin mutations in the DIX domain abolish 
JNK activity, whereas β-catenin signaling is not affected 
by Axin mutations[24]. MicroRNA-1225-5p (miR-1225-5p) 
has been reported to function as a tumor suppressor for 
gastric carcinoma, acting through inhibition of the insulin 
receptor substrate-1 (IRS1) and β-catenin signaling path
ways to suppress gastric carcinoma proliferation and 
metastasis[25].

CTNNB1 SIGNALING IN STEM CELLS
Wnt/β-catenin signaling plays an important role in stem cell 
maintenance. The self-renewing mesenchymal cells with 
stem cell characteristics inhabit a niche for maintaining their 
stemness[26]. By modifying β-catenin in mouse osteoblasts, 
acute myeloid leukemias with common chromosomal alter
ations occur, and Notch signaling increases in hematopoietic 
cells[26,27]. The stem cell niche may be regulated by Wnt 
signaling and the nuclear accumulation of β-catenin[27]. 
Upon activation of β-catenin, the Notch ligand jagged 1 is 
up-regulated in osteoblasts, which leads to the activation 
of Notch signaling in hematopoietic stem cell progenitors, 
moving them towards malignant transformation[27].

In glioma stem cells, interleukin 17 receptor (IL-17R) 
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expression is involved in self-renewal[28]. IL-17 up-regul
ates the expression of stemness/mesenchymal markers, 
such as fibronectin, CD44 and SOX2, in glioma stem 
cells[28]. IL-17 regulates signal transducer and activator 
of transcription 3 (STAT3), nuclear factor k-light-chain-
enhancer of activated B cells (NF-kB), GSK3β and β-catenin 
in glioma stem cells[28].

In CXCL12 (or SDF-1)-overexpressed breast cancer 
cells, the Wnt/β-catenin pathway is required for the EMT, 
which induces cancer stem cell-like phenotype formation 
toward proliferation and metastasis in breast cancer 
cells[18,29]. Breast tumorigenesis can be suppressed by 
inhibition of β-catenin/LEF-1 signaling[30]. A synthesized 
peptide (TAT-NLS-BLBD-6) inhibits the nuclear interaction 
of β-catenin and LEF-1 in human breast cancer cells, 
suppressing Wnt/β-catenin signaling and resulting in 
inhibition of tumorigenesis[30]. Considering that TAT-NLS-
BLBD-6 inhibits β-catenin/LEF-1 downstream target 
genes, including CDKN2A, CLDN1, ID6 and SOX2, Wnt/
β-catenin signaling is likely to promote oncogenesis via 
LEF-1-targeted gene expression[30].

The Notch and Wnt/β-catenin signaling pathways play 
important roles in maintaining and promoting liver cancer 
stem cells[31]. Liver cancer stem cells expressing stemness 
markers, such as CD90, CD24, CD13 and CD133, with 
poor prognosis in patients are maintained by Notch and Wnt/
β-catenin signaling[31]. Upon niche formation, WNT-SHH 
signaling modulates stem cell fates[32]. While canonical 
Wnt signaling mediated by β-catenin and LEF-1 is essential 
for placode formation, the combination of SHH and Wnt 
signals may be crucial for stem cell niche formation[32].

Interleukin-22 (IL-22) induces epithelial regeneration 
through intestinal stem cells (ISCs), whose niche provides 
Wnt, Notch and epidermal growth factor signals for 
normal epithelial maintenance[33]. Wnt/β-catenin signaling 
maintains these ISCs, whereas the IL-22 pathway may be 
involved in STAT3 signaling and cross-linked[33].  

CTNNB1 AND THE EPITHELIAL-
MESENCHYMAL TRANSITION
SNAI1 and CTNNB1 pathway in EMT
The loss of E-cadherin and the transformation of cells 
to the mesenchymal phenotype are involved in Smad 
signaling and the formation of β-catenin/LEF-1 com
plexes[34]. Transforming growth factor β 1 (TGFβ1) pro
motes the EMT via the Smad-independent Ras-Raf-
MEK-ERK-AP-1 signaling pathway, which up-regulates 
the expression of the snail family zinc finger 1 (SNAI1) 
gene[34]. IL-8 plays a role in the maintenance of the tumor 
EMT through both autocrine and paracrine pathways[35]. 
The IL-8 pathway transduces the Ras-ERK and PI3K-
AKT signals to induce IL-8 transcription through Snail 
and Twist, which activate the autocrine IL-8 pathway[35]. 
Moreover, IL-8 promotes E-cadherin transcription through 
Brachyury[35]. The paracrine IL-8 pathway consists of 
the recruitment of tumor–associated macrophages 
and neutrophils into tumor sites to promote EMT using 

cytokines[35].
The expression of EMT regulator SNAI1 is correlated 

with an increased risk of tumor relapse in breast cancer 
patients and the progression of colorectal cancer[36]. 
E-cadherin loss promotes the expression of EMT regulators, 
including β-catenin and NF-kB, which suggests that the 
pathway for SNAI1 and β-catenin may be crosslinked[36-39]. 
The expression of cadherin 1 (CDH1 or E-cadherin) is a 
marker of tumor aggressiveness in routinely processed 
radical prostatectomy specimens[40]. The disease pro
gression in patients with high-stage category cancers can be 
predicted with the expression of CDH1[40]. Decreased CDH1 
may release β-catenin from the β-catenin complex, allowing 
it to translocate into the nucleus and activate transcription 
of target genes, such as MYC[40,41]. The cancer metastatic 
process is mediated via circulating tumor cells expressing 
EMT markers such as ETV5, NOTCH1, SNAI1, TGFB1, ZEB1 
and ZEB2[42]. Considering that the expression of CTNNB1 
is up-regulated in endometrial circulating tumor cells in 
endometrial cancer, CTNNB1 is a potential therapeutic 
target for endometrial cancer[42]. SNAI1, SNAI2, and SNAI3 
expression in the ductal epithelium is up-regulated during 
development, and SNAI1 and SNAI2 are co-expressed 
with insulin[43]. CDH1 expression decreases during the EMT 
process in β-cell differentiation into islets. The expression of 
β-catenin is altered in process of β-cell clustering formation 
in islets[43].    

TGFβ and CTNNB1 signaling in EMT
The TGFβ-induced EMT is regulated by phosphatase and 
tensin homologue deleted from chromosome 10 (PTEN), 
a tumor suppressor gene in lung cancer cells[44]. Upon 
stimulation with TGFβ, β-catenin translocates into nucleus. 
This activity is inhibited by the deletion of the phosphatase 
and C2 domains of unphosphorylated PTEN[44]. The 
expression of E-cadherin is down-regulated with TGFβ, 
which is inhibited by the phosphatase and C2 domains of 
unphosphorylated PTEN[44]. The isoflavone calycosin-7-
O-β-D-glucopyranoside induces osteogenic differentiation 
through the BMP and WNT/β-catenin-signaling path
ways[45]. Osteogenic differentiation is regulated by TGFβ 
signaling, which suggests some coordination of the β-catenin 
and TGFβ signaling pathways[45]. Jumonji domain-containing 
protein 2B (JMJD2B) may also be involved in TGFβ1-
mediated β-catenin nuclear accumulation[46]. Nuclear 
translocation of β-catenin may be regulated by JMJD2B in 
the EMT process[46]. TGFβ1 down-regulates the canonical 
WNT signaling pathway and inhibits photoreceptor differ
entiation of adult human Müller stem cells[47]. In human 
Müller stem cells, TGFβ1 down-regulates WNT2B, dickkopf 
WNT signaling pathway inhibitor 1 (DKK1) and active 
β-catenin and up-regulates WNT5B to inhibit canonical 
Wnt signaling[47].   

CTNNB1 IN CANCER STEM CELLS
Extrinsic factors are important when assessing cancer 
risk[48]. Stem cell division is related to cancer development, 
emphasizing the importance of understanding the mole
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cular pathways involved in stem cell maintenance, gastric 
cancer and cell proliferation[48]. Ginsenoside Rh2, which 
inhibits growth of some types of cancer, decreases the 
number of CSC-like cells in hepatocellular carcinoma, 
possibly through β-catenin signaling[49]. Furthermore, the 
CSC markers CD133 and Epithelial cell adhesion molecule 
(EpCAM) are decreased by ginsenoside Rh2[49]. It is sugg
ested that high levels of β-catenin are a signature of CSC-
like cells[49]. Wnt/β-catenin signaling leads to the translocation 
of β-catenin into nucleus and the transcription of c-Myc, 
Axin2 and Brachyury[50]. Axin is stabilized with GSK3β and 
inhibits β-catenin signaling[50]. The proliferation of CSCs 
may also be regulated by Wnt/β-catenin signaling[50]. The 
periprostatic adipose tissue-derived adipocytes regulate 
migration of prostate cancer cells[51]. The chemokine CCL7 
secretion of adipocytes stimulates the migration of CCR3-
expressing prostate tumor cells[51]. This signaling that is 
mediated by chemokines in CSCs could be a future target 
for investigation.  

MUTATIONS IN CTNNB1-RELATED 
SIGNALING AND CANCER
Mutations of SMAD family member 4 (Dpc4 or Smad4) 
and Apc in mice cause malignant intestinal tumors and 
stromal cell proliferation[52]. The DPC4 (SMAD4) gene 
is important for the TGFβ signaling pathway, which inhi
bits normal cell growth and promotes malignant cell 
growth[52]. APC mutations in papillary thyroid carcinoma 
are associated with familial adenomatous polyposis[53]. 
Through binding to 20-amino acid repeats, the APC/
β-catenin signaling pathway is related to the development 

of thyroid cancer in patients with familial adenomatous 
polyposis[53]. Mutations in AXIN2 cause colorectal cancer, 
in which the mutations stabilize β-catenin and activate 
β-catenin/TCF signaling[54]. The AXIN2 mutations result 
in accumulated nuclear β-catenin[54]. CTNNB1 and APC 
mutations also occur in colorectal cancer with defective 
DNA mismatch repair[54]. For the treatment of cancer, 
identifying novel genome-wide therapeutic targets is 
essential, which suggests the importance of mutational 
studies in the cancer genome[55]. Main WNT/β-catenin 
pathway involved in cancer and stem cells is shown in 
cartoon (Figure 1). The network information source is 
mainly from Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (http://www.genome.jp/kegg/).

CONCLUSION
Our knowledge is increasing due to recent advances 
in bioinformatics and computational capacity. How to 
efficiently utilize this new data and knowledge is an 
important issue for future development of the big data 
era. The WNT/β-catenin pathway is involved in cancer 
and pluripotent stem cell signaling, which may suggest 
the mechanism underlying cancer stem cells. As cancer 
therapeutics has different effects in different genomic 
condition, individual medicine may be predicted with gen
etic variants. One useful direction for the use of genomic 
information may be the identification of targets for the 
treatment of diseases with appropriate predictions.
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