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Abstract
Over the last two decades, cancer-related alterations in 
DNA methylation that regulate transcription have been 
reported for a variety of tumors of the gastrointestinal 
tract. Due to its relevance for translational research, great 
emphasis has been placed on the analysis and molecular 
characterization of the CpG island methylator phenotype 
(CIMP), defined as widespread hypermethylation of CpG 
islands in clinically distinct subsets of cancer patients. 
Here, we present an overview of previous work in this 
field and also explore some open questions using cross-
platform data for esophageal, gastric, and colorectal 
adenocarcinomas from The Cancer Genome Atlas. We 
provide a data-driven, pan-gastrointestinal stratification 
of individual samples based on CIMP status and we 
investigate correlations with oncogenic alterations, in
cluding somatic mutations and epigenetic silencing of 
tumor suppressor genes. Besides known events in CIMP 
such as BRAF V600E mutation, CDKN2A silencing or MLH1 
inactivation, we discuss the potential role of emerging 
actors such as Wnt pathway deregulation through trun
cating mutations in RNF43 and epigenetic silencing of 
WIF1. Our results highlight the existence of molecular 
similarities that are superimposed over a larger backbone 
of tissue-specific features and can be exploited to reduce 
heterogeneity of response in clinical trials.
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Core tip: Awareness of the CpG island methylator pheno
type (CIMP) is growing for all adenocarcinomas. Here, 
we summarize previous work on the topic and discuss 
unanswered questions regarding commonalities and 
differences of CIMP tumors from esophageal, gastric, and 
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colorectal adenocarcinomas, where data has been made 
available from the Cancer Genome Atlas. Our analysis 
includes a review of our pan-cancer method to stratify 
tumors based on CIMP and addresses the most frequent 
mutations found in those samples. We include new data 
implicating truncating mutations in RNF43 and silencing of 
WIF1I. We also describe in detail the methylation of CpG 
sites within the MLH1 promoter across these tumor types. 
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INTRODUCTION
Aberrant patterns of DNA methylation occur in human 
cancers[1-3], with the most notable being a widespread 
and pronounced gain of methylation at CpG islands in 
tumor cells[4]. A prominent increase in global levels of 
CpG island methylation observed across multiple samples 
was first reported in a subset of patients with colorectal 
cancer (CRC) and it is now a clinically recognized cha
racteristic of many types of tumor, referred to as the 
CpG island methylator phenotype (CIMP)[5]. In this 
commentary, we discuss the classification and functional 
ramifications of CIMP across four types of gastrointestinal 
adenocarcinomas (esophageal, gastric, colon and rectal), 
using data from The Cancer Genome Atlas (TCGA) to 
address lingering questions and identify novel areas of 
inquiry to spur future investigation. Finally, we explore 
CIMP’s potential application to cancer diagnostics and 
subtyping, while emphasizing that much remains un
known regarding the molecular mechanisms of tumor-
associated DNA methylation, including CIMP generation 
and maintenance.

CpG islands play a crucial biological role in development 
and disease by acting as transcriptional regulatory 
elements in the genome and controlling the expression 
of ubiquitously expressed genes. Approximately 50% 
of all CpG islands are located within promoter regions[6], 
and approximately 70% of all annotated promoters 
are associated with a CpG island[7]. Hypermethylation 
of CpG dinucleotides within these regions results in the 
establishment or reinforcement of repressive chromatin 
and the steric occlusion of transcription factor binding[4,8], 
reducing gene expression. When promoters of tumor sup
pressor genes are methylated, repression can represent 
a critical “hit”, in the terminology of the double-hit theory 
of gene inactivation, conferring a selective advantage to 
affected cancer cells[9]. For example, the heterozygous 
silencing of BRCA1 via DNA methylation plays a critical role 
in breast cancer oncogenesis and tumor proliferation[10]. 
Other well-known examples of silencing involve MLH1 
in CRCs[5,11] and MGMT silencing in gliomas[12]. In the 

case of MLH1, methylation-derived silencing inhibits DNA 
repair[11,13,14], which leads to microsatellite instability (MSI) 
and cascades into many other downstream functional 
consequences. 

Researchers have identified reproducible, tissue-
specific patterns of CpG island promoter hypermethylation 
in various types of tumors[15]. The specificity of hyper
methylation appears to result from the precise targeting 
of CpG islands by polycomb repressors[16], resulting 
in the preferential deposition of DNA methyl groups 
during oncogenesis[17-19]. Because these patterns are 
frequently occurring in cancer patients, they have been 
used as novel, clinically relevant molecular markers 
for cancer diagnosis and prognosis[20]. To cite two exa
mples, hypermethylation of the GSTP1 promoter in 
more than 90% of prostate adenocarcinomas has been 
used to improve diagnosis of this disease[21], whereas 
hypermethylation of SET pseudogene 9 allows researchers 
to differentiate among different stages of CRC[22]. 

The demonstration that tumors exhibiting CIMP re
present a distinct clinical subtype of CRC[5] provided the 
first evidence that, by subdividing cancers into methylation 
subclasses, clinicians could potentially refine treatment 
outcomes. Numerous studies have since demonstrated 
the presence of CIMP in additional cancer types[23-25]. 
However, little overlap has been detected among these 
CIMP incarnations, indicating the tissue-specific nature 
of the effect. Current models indicate that tumorigenesis 
affects DNA methylation at CpG islands where repressive 
H3K27me3 modifications are already present[26], providing 
a more permanent layer of suppression in differentiated 
cells and explaining the origin of tissue-specific patterns. 
According to such models, aberrant DNA methylation 
is not a stochastic outcome, but a targeted, albeit ab
normal, process. In this light, it becomes reasonable 
to speculate that distinct tumor types could use similar 
cellular pathways to target their own characteristic CpG 
islands for DNA methylation. Mechanistic congruity among 
different tumor types would allow us to understand multi-
cancer and pan-cancer processes from a unified molecular 
perspective. However, testing this hypothesis requires us 
to use consistent methods to assess DNA methylation 
across tumor types and to analyze large numbers of 
samples to provide statistical power. In the rest of this 
article, we provide examples of such analyses.

EVALUATING CIMP: FROM GENE PANELS 
TO GENOME-WIDE METHYLATION 
PROFILES
A quick overview of important milestones in the study 
of CIMP within the context of gastrointestinal cancers is 
provided in Table 1. Given the diversity of methods for 
assessing DNA methylation, profiling has been performed 
over a wide range of technical depths and breadths. 
Initially, the implementation challenges of wide-scale 
methylation profiling limited the scope of CIMP evaluation. 
Researchers working on CRC employed panels of genes 
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using a low-throughput approach, such as methylation-
specific PCR. These panels varied in size from four[27] to 
several dozen genes[28], and invariably included subsets 
of the sequences originally employed by Toyota et al[5,29]. 
Although other CIMP-tumor characterizations have 
emerged, CRC remains the most heavily investigated 
tumor type with respect to CIMP subtypes. A variety of 
gene panels are still in use[30], some of which include 
MLH1[31-35] due to its aforementioned connections to 
MSI[36,37]. 

Following an increase in the scope of methylation 
studies, individual CpG sites started being used to detect 
aberrant methylation across multiple cancer types. 
For example, CDKN2A profiling has been used in at 
least 10 cancer types[24], and MLH1 profiling has been 
extended to pancreatic cancer[38], leukemia[39], ovarian 
cancer[40], endometrial cancer[41], gastric cancer[42], and 
lung cancer[43]. Although these sites are consistently 
differentially methylated in multiple tumor types, none of 
them are informative enough to classify samples as CIMP 
in an independent manner.

The limitations of these early ascertainment methods 
and lack of extensive overlaps across tumor types, 
coupled with a variable range of methylation at any 
given CpG site, fueled a debate over the relevance of 
CIMP in cancer[44]. The advent of array-based platforms 
for measuring DNA methylation, such as the Illumina 
Infinium HumanMethylation27 and HumanMethylation450 
arrays[45], helped end this debate[46]. Recent genome-
wide experiments using high-throughput data have not 
only corroborated the biological relevance of CIMP to 
CRC diagnostics and survival rates, but have led to finer 
subdivisions of methylation levels, such as CIMP-low and 
CIMP-zero[47-49]. These classifications better reflect global 
patterns of hypermethylation, which often fail to fit within 
“high” or “low” classes in colorectal and other cancers. 
For example, our early studies of gynecological tumor 
epigenomes showed a finely increasing signal of CpG 
island hypermethylation among ovarian and endometrial 
tumors, rather than a binary methylation signature[50]. 
This signature represented an intermediate ranking 
between the fully methylated and unmethylated states, 
where the CIMP intermediate group corresponded to the 

serous subtype with TP53 mutations. This observation 
weighed heavily into our recently demonstrated method 
to stratify DNA methylation patterns of most cancer types 
collected by TCGA at the time for CIMP classification. 
Categories that we defined include CIMP+, CIMP-inter
mediate (CIMPi), and CIMP-[51]. Such broad-scale analyses 
provide a means of subtyping individual tumor collections 
into relatively homogenous methylation subgroups, 
notwithstanding the fact that each subgroup can contain 
a gradient in methylation levels. The absence of a highly 
dichotomous methylation pattern suggests that a complex 
interplay of factors determines CIMP status, including 
tumor heterogeneity and clonality[52], multiple somatic/
germline mutations[53], copy number variation, and 
mutation heterozygosity[54].

Within the ongoing effort to better the understanding 
of cancer biology, we argue that evaluating methylation 
on an epigenome-wide scale should be favored over 
the analysis of a few, select loci. For example, large-
scale analyses have revealed the now widely recognized 
phenomenon that DNA methylation occurs at genes with 
a role in early development and morphogenesis, leading 
to the discovery that polycomb binding is a precursor to 
aberrant DNA methylation[25,55,56]. Also, a number of recent 
studies have highlighted important similarities in terms of 
somatic alterations and epigenetic patterns across cancers 
of different organs and tissues[51,57-59]. This type of multi-
cancer or pan-cancer approach benefits from increased 
statistical power compared with smaller studies of in
dividual cancer types, which, however, are better suited 
to capturing tissue-specific features. Researchers can 
harness the advantages of both approaches by studying 
related cancer types that occur in tissues derived from 
common cell lineages. A good example of this approach is 
provided by previous multi-cancer analyses of tumors of 
the gastrointestinal tract[60]. 

GENOMIC CHARACTERISTICS 
ASSOCIATED WITH CIMP IN 
GASTROINTESTINAL TUMORS 
TCGA has used patterns of mutation to classify colo

Table 1  Overview of previous studies of CpG island methylator phenotype in tumors from the gastrointestinal track

Year Event Ref.

1999 CIMP is first reported in a set of CRC patients [5]
2004 Nature Reviews paper discussing CIMP in a variety of tumors besides CRC [23]
2006 Refined molecular subtyping includes CIMP-low and CIMP-0 categories in CRC, with associations to KRAS mutations [47]

New insights are gained about the interplay between BRAF V600E mutations, MSI status, MLH1 promoter methylation and 
CIMP in CRC

[14]

2006-2012 High throughput DNA methylation arrays become widely available, enabling the use of larger gene panels for CIMP 
characterization

[45,46]

2014 TCGA marker paper on gastric cancer highlights the biological relevance of CIMP for molecular subtyping, exploring 
associations with EBV infection

[64]

A better mechanistic understanding of CIMP in CRC is gained through elucidation of the role of MAFG in the context of MLH1 
silencing and BRAF V600E mutations

[76]

2015 Pan-cancer stratification of solid tumors reveals similarities in CIMP across a wide variety of cancer types [51]

CIMP: CpG island methylator phenotype; CRC: Colorectal cancer; MSI: Microsatellite instability; TCGA: The Cancer Genome Atlas.
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rectal sample genomes into two large groups, non-
hypermutated and hypermutated[61]. Colon and rectal 
tumor samples in the former class largely possess CIMP-
low phenotypes and have almost indistinguishable 
molecular signatures in terms of copy number variation, 
mRNAs, and miRNAs. By contrast, hypermutated sam
ples are predominantly tumors of the colon. Roughly 
three-quarters exhibit CIMP-high status, as well as ML 
H1 silencing and MSI, whereas the other quarter are 
characterized by mutations in other mismatch repair 
genes such as MLH3 and mutations in POLE. The contrast 
between samples exhibiting high chromosomal instability 
(CIN) and samples exhibiting large mutational load is not 
unique to CRCs, as it has been described in other cancer 
types, including the endometrioid vs serous subtypes of 
both ovarian and endometrial cancers[50,62]. Consistent with 
these observations, the importance of CIMP as a mutually 
exclusive alternative to CIN has been underscored in 
describing dysfunctional events in tumor genomes[63]. As 
we have reported previously[51], the MSI vs CIN duality 
largely corresponds to a CIMP+ vs CIMP- dichotomy. This 
can be extrapolated to a pan-cancer dichotomization of 
tumors into a “mutator” class, characterized by a large 
number of somatic mutations, closer to CIMP+, and a “copy 
number” class, characterized by an abundance of copy-
number alterations but lacking excessive mutations, closer 
to CIMP-. This duality has been previously referred to as 
the cancer genome hyperbola[57]. 

Even if it is conceptually helpful, the simple high-
level dichotomy assessed by mutations or copy number 
alterations fails to adequately represent all of the me
chanisms of diversity in gastric tumors. For example, 
a comprehensive molecular study carried out by TCGA 
subdivided gastric tumors into four distinct subgroups[64]. 
Two distinct CIMP-high tumor subgroups were identified: 
One associated with Epstein-Barr virus (EBV), and one 
associated with MSI. Among 10 different cancer types 
analyzed by TCGA, the EBV-CIMP subgroup exhibited 
the highest frequency of DNA hypermethylation at 
gene promoters, highlighting the interplay, causative or 
correlational, between environmental exposures such 
as viral infection and DNA methylation of the tumor 
genome. Studies involving other infectious agents also 
suggest potentially relevant associations between pre
sence of pathogens, gastric cancer prognosis and CIMP 
status. For example, in patients infected with Helicobacter 
pylori, CIMP+ tumors exhibit higher rates of recurrence 
and metastasis than CIMP- tumors[65].

Of the four types of gastrointestinal cancer examined 
in the present article, esophageal cancers have been 
the least thoroughly studied with regards to CIMP str
atification. However, CIMP and its associated driver 
mutations have been investigated in the context of some 
esophageal tumor subtypes[66]. In particular, subsets 
of tumors exhibiting high levels of methylation have 
been reported in both esophageal adenocarcinoma and 
Barrett’s esophagus, a precursor lesion to esophageal 
adenocarcinoma[67]. Moreover, the overall amounts of 
DNA hypermethylation in Barrett’s esophagus predict 
progression to esophageal adenocarcinoma[68,69]. Genes 
such as CDKN2A, APC, CDH1, TAC1 and MGMT have 
been reported to exhibit increased methylation in eso
phageal adenocarcinomas, esophageal squamous cell 
carcinomas and Barrett’s esophagus when compared to 
normal esophageal DNA[70]. By contrast, MLH1 promoter 
methylation has been reported in esophageal squamous 
cell carcinomas, but not adenocarcinomas[70,71], confirming 
differences in methylation profiles between esophageal 
subtypes.

ANALYSES OF CIMP IN 
GASTROINTESTINAL CANCERS
Here, we investigated CIMP in four types of gastrointestinal 
adenocarcinoma (GIAD) samples provided by TCGA: 
Esophageal adenocarcinoma (EAC), which is a subset 
of esophageal carcinoma (or ESCA, using the TCGA 
nomenclature); stomach adenocarcinoma (STAD); colon 
adenocarcinoma (COAD); and rectal adenocarcinoma 
(READ). Using a previously described approach[51], we 
assessed mean methylation levels in tumor and healthy 
adjacent tissues and ranked samples using unsupervised 
clustering. Specifically, we measured DNA methylation 
levels at a set of informative probes (i.e., sets of loci that 
were differentially methylated between tumor and normal 
samples at statistically significant levels) using statistical 
selection criteria applied independently for each tumor 
collection (Table 2; see research). We then evaluated 
CIMP status by classifying samples according to average 
methylation levels across the set of informative probes. 
This type of CIMP stratification, in which samples with 
similar methylation intensity levels are grouped together, 
reduces heterogeneity within the full tumor collection and 
facilitates the identification of functional somatic alterations 
that may play a shared role across different cancer types 
(and subtypes). 

Table 2  Gastrointestinal adenocarcinoma types, sample sizes, probe set sizes, and CpG island methylator phenotype status

Cancer type Differentially methylated probes Control samples Tumor samples CIMP- CIMPi CIMP+

EAC 6717 11   87   26 31 30
STAD 1110   2 260 109 95 56
COAD 2656 38 274   96 92 86
READ 1255   7   96   31 39 26

CIMP: CpG island methylator phenotype; CIMPi: CIMP intermediate; COAD: Colon adenocarcinoma; EAC: Esophageal adenocarcinoma; READ: Rectal 
adenocarcinoma; STAD: Stomach adenocarcinoma.
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After clustering based on average methylation le
vels across the probes, samples were categorized into 
three distinct groups: CIMP+, CIMPi, and CIMP-. CIMP- 
samples had CpG island methylation profiles that were 
closer to those observed in normal samples, whereas 
CIMP+ samples showed a reproducible pattern of DNA 
hypermethylation with respect to non-cancer controls 
(Figure 1A). CIMPi samples displayed methylation levels 
that fell between the CIMP+ and CIMP- groups. In 
subsequent analyses, we compared CIMP- and CIMP+ 
samples and excluded the intermediate group, to avoid 
borderline cases and to guarantee that the tumors being 
compared were sufficiently different from a molecular 

point of view.
In a previous study, we showed that our CIMP+ and 

CIMP- assignments largely coincided with independent 
assignments by the TCGA for an overlapping sample 
set of CRC tumors[51]. Here, we compared our CIMP 
classification with the four molecular subtypes defined 
by TCGA for gastric tumors: (1) EBV+; (2) MSI; (3) 
genomically stable (GS); and (4) CIN[64] (Table 3). We 
observed a significant association between CIMP+ status 
and the EBV+ and MSI subtypes, in agreement with the 
extreme CIMP reported for these subtypes by TCGA. 
Highlighting the previously mentioned incompatibility of 
CIMP and CIN, CIN samples were significantly skewed 
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toward CIMP- status. However, other samples also 
occupied the CIMP- category, including GS samples, 
which displayed few alterations in DNA methylation and 
lacked MSI.

In addition to evaluating CIMP in each of the four 
cancer types independently, we combined all of the 
data into a single set. Here, the intersection of the loci 
selected in the four previous, independent analyses was 
considered informative (n = 151, Figure 1B). In this 
new classification of samples (Figure 1C), CIMP labels 
remained largely consistent with the previously assigned 
labels. Importantly, when samples in the pooled data 
set were ranked according to their average level of DNA 
methylation across the set of selected probes, they 
tended to cluster by CIMP status rather than tissue of 
origin. This novel finding implies commonalities in the 
underlying generation of aberrant methylation across 
cancer types.

CIMP AND MLH1 PROMOTER 
HYPERMETHYLATION
Early studies of CIMP established that the MLH1 promoter 
is consistently hypermethylated in CRC[5]. This observation 
has since been extended to other cancer types[72], and its 
importance is highlighted by the inclusion of MLH1 in many 
gene panels used to evaluate CIMP. The strong association 
between CIMP and MLH1 promoter hypermethylation 
continues to be reinforced by recent studies with large 
sample sizes, such as a pan-cancer analysis performed 
by our group[51] using a catalog of 479 somatic functional 
events (Ciriello et al[57], 2013). In this previous work, we 
investigated a cohort of 3299 samples that spanned 9 
different cancer types and found that MLH1 promoter 
silencing was the single genomic functional event that 
displayed the strongest statistical association with CIMP.

Since promoter hypermethylation is usually asso
ciated with gene silencing[4,8], one could compare the 
effects of MLH1 promoter hypermethylation and disabling 
gene mutations, addressing parallels with loss-of-
function. Indeed, MLH1 promoter silencing replicates 
the phenotype of MLH1 loss-of-function mutations in 
hereditary nonpolyposis colon cancer, which displays 
dinucleotide repeat instability[73]. Moreover, research in 
cell lines demonstrates that reversing MLH1 promoter 

hypermethylation increases transcription of the gene 
and restores mismatch repair capacity[11,74]. It is there
fore tempting to hypothesize that MLH1 promoter hyper
methylation, which is strongly associated with CIMP and 
displays the functional hallmarks of a loss-of-function 
mutation, is a causal event in the onset of CIMP. However, 
previous studies, including our own, have shown that 
CIMP can be observed in the absence of MLH1 promoter 
hypermethylation or mutation[51,61,75], implying either a 
relationship that is correlational but not causal, or multiple 
mechanisms underlying CIMP development.

Only recently has experimental evidence emerged to 
help elucidate the role of MLH1 promoter hypermethylation 
in CIMP. In CRC, Fang et al[76] have shown that the 
common BRAF V600E mutation leads to elevated levels of 
the protein MAFG. In turn, MAFG binds to the promoter of 
MLH1 and other genes, where it recruits a heterodimeric 
partner, BACH1; a chromatin remodeling factor, CHD8; 
and a DNA methyltransferase, DNMT3B - ultimately 
resulting in increased methylation at the target sites. 
These results suggest that mutations such as BRAF V600E 
orchestrate aberrant methylation patterns; therefore, 
MLH1 promoter hypermethylation might be thought of as 
part of the CIMP onset process rather than an initiating 
event. 

Many interesting genes may fit into a model in which, 
following the onset of somatic mutations, a cascade of 
downstream methylation events occurs. For instance, 
CDKN2A promoter hypermethylation is also linked to 
BRAF mutations, through increased expression of the DNA 
methyltransferase DMNT3B[77]. Similarly, hypermethylation 
and silencing of the INK4-ARF locus (also known as 
CDKN2A and CDKN2B) occurs through KRAS activation 
of ZNF304, which recruits the DNA methyltransferase, 
DNMT1[78]. 

MLH1 PROMOTER METHYLATION IN 
GASTROINTESTINAL TUMOR DATA 
FROM TCGA
We analyzed GIAD data supplied by TCGA to learn 
more about the relationship between MLH1 promoter 
methylation and CIMP. First, we identified 41 probes 
from the Illumina Infinium HumanMethylation450 array 

Table 3  Comparison between our CpG island methylator phenotype classification of stomach adenocarcinomas and the four 
subtypes defined by The Cancer Genome Atlas Research Network1

CIN EBV+ GS MSI Total

CIMP+ 212 (26.6)  313 (5.4)    22 (11.3)  327 (10.7)   -54
CIMPi    43 (45.75)   12 (9.4)  20 (19.5)   18 (18.4)   93
CIMP-    367 (49.68)         20 (10.2) 330 (21.2)      24 (20.0) 101
Total 122 25 52 49 248

1Numbers outside parentheses correspond to actual sample counts, whereas numbers in parentheses show expected counts under the null model of 
independent classification; 2Indicates under-represented counts; 3Indicates cells with significantly over-represented counts (P < 0.05, based on Fisher’s 
exact test). CIMP: CpG island methylator phenotype; CIMPi: CIMP intermediate; CIN: Chromosomal instability; EBV+: Epstein-Barr virus positive; GS: 
Genomically stable; MSI: Microsatellite instability.

Sánchez-Vega F et al . Methylator phenotype in digestive tract adenocarcinomas
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located in the extended MLH1 promoter, operationally 
defined as 1.5 kb upstream and 500 bp downstream 
of the transcription start site (TSS) (Figure 2A). We 
then examined methylation levels for each cancer ty
pe, comparing CIMP+ to CIMP- samples, and found 
that COAD and STAD tumors displayed the strongest 
differences (Figure 2B). We next looked at the positions 
of differential methylation. A set of 24 probe sites we
re differentially methylated between the CIMP+ and 
CIMP- groups in COAD tumors, and an extended region 
of 38 probe sites were differentially methylated in STAD 
tumors (after Bonferroni correction for 41 positions). By 
contrast, we found no significantly differentially meth
ylated positions in READ samples, and only three in 
EAC samples. The strongest association between MLH1 
promoter hypermethylation and CIMP occurred in COAD 
tumors (Figure 2B): One-third (20/60) of CIMP+ samples 
in COAD exhibited MLH1 promoter hypermethylation, in 

contrast to less than 3% of CIMP- samples (2/71) (P = 2.1 
× 10-6, Fisher’s exact test). At the other extreme, no READ 
CIMP+ samples exhibited hypermethylation of the MLH1 
promoter. 

We also examined the association between mutations 
that disable MLH1 and the presence of CIMP. First, we 
collected all somatic mutations mapped to MLH1 in 
samples whose CIMP status had been determined (Table 4 
and Figure 2C). The most detrimental somatic alterations 
in MLH1 are frameshift mutations, which render large 
fractions of the protein product nonfunctional. We observed 
frameshift mutations in all three CIMP classes (CIMP+, 
CIMPi and CIMP-), without a significant bias toward 
CIMP+ samples. In fact, several truncating mutations 
within the DNA mismatch repair functional domain of the 
protein occurred in CIMPi and CIMP- samples. These data 
suggest that loss of function alterations at MLH1 might not 
be sufficient for the onset of CIMP. 
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COAD READ

M
utations

3            0
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Missense mutation
Truncating mutation
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Figure 2  MLH1 promoter methylation and somatic mutations. 
A: Diagram of the MLH1 promoter region and the adjacent 
gene, EPM2AIP1, obtained from the UCSC Human Genome 
Browser. The probes in this region from the Illumina Infinium 
HumanMethylation450 array are shown with color bars relative to the 
CpG island present at this locus: The north shore (orange), the CpG 
island (red), and the south shore (dark red); B: Heat maps of GIADs 
showing DNA methylation status across a large genomic region that 
encompasses the MLH1 promoter. Probes are displayed from left 
to right, and samples are ordered from top to bottom by average 
methylation across the region. Color side bars indicate CIMP status: 
CIMP+ (gold), CIMP intermediate (CIMPi; magenta), CIMP- (green), 
and control tissue (blue); C: Distribution of 16 somatic mutations 
in the coding region of MLH1. Color boxes correspond to different 
functional domains, as specified in the cBioPortal at MSKCC[99], and 
the vertical axis shows the number of mutations affecting a given 
codon. GIADs: Gastrointestinal adenocarcinomas; CIMP: CpG 
island methylator phenotype.
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CIMP AND PROMOTER 
HYPERMETHYLATION OF TUMOR 
SUPPRESSOR GENES
The evidence pointing to MLH1 inactivation as a corollary 
to the appearance of CIMP suggests that other tumor 
suppressor genes could potentially be silenced through 
promoter hypermethylation and result in comparable 
functional vulnerabilities as well; moreover, the silencing 
of these genes could represent actionable clinical targets. 
We explored this concept by searching for known tumor 
suppressor genes that exhibited concerted promoter 
hypermethylation in all four GIAD cancer types. Using 
the TSGene database[79], we found that 26 of 634 tumor 
suppressor genes (4.1%) contained at least one probe 
site in the promoter region that exhibited methylation 
levels significantly different between CIMP+ and CIMP- 
samples across all four cancer types (Table 5). These 
genes included ERBB4, WT1, WIF1, and RASSF2. By 
contrast, only 2.4% of genes not included in the TSGene 
database exhibited concordant differential methylation in 
CIMP+ samples across the four cancer types (P = 0.007, 
hypergeometric test). 

Furthermore, in affected tumor suppressor genes, such 
as DFNA5, RASSF2 and WIF1, promoter methylation was 
significantly negatively correlated with mRNA expression 
across several tumor types (Table 5), which is indicative of 
epigenetic silencing. DNFA5 is a tumor suppressor gene 
involved in apoptosis and response to DNA damage[80,81]. Its 
hypermethylation has been reported in colorectal and gastric 
cancer, where it is associated with EBV-positive status[82,83]. 
In addition, WIF1 and RASSF2, whose methylation and 
expression levels were significantly correlated across all 
four cancer types in our study, have been described in the 

context of CIMP in gastrointestinal adenocarcinomas[60,65,84-86]. 
These data suggest that, in a subset of genes, selective 
pressure may favor loss-of-function events caused by DNA 
methylation, facilitating tumor growth. 

CIMP AND ASSOCIATED SOMATIC 
MUTATIONS
An outstanding question that remains is the causal 
connection between somatic mutations and the onset 
of CIMP. Over the years, extensive association analyses 
in colon and rectal cancers have been performed to 
address this problem[30,87]. The results have highlighted 
the diverse mutation spectrum across tissues, which 
refutes the hypothesis of a universal driver mutation 
being responsible for altered DNA methylation levels[51]. 
Mutations associated with CIMP have been found in 
CDKN2A, IDH1/2, TET2 and RB1, among other genes[25]. 
In addition, as discussed, mutations in BRAF directly lead 
to hypermethylation at specific loci[76,77], and their effects 
probably extend to myriad targets across the genome. 

We further explored the association between somatic 
mutations and DNA methylation using data from TCGA. 
For this purpose, we compared the recurrence of somatic 
mutations in CIMP+ and CIMP- samples across the entire 
GIAD cohort. A decision tree analysis pointed to several 
alterations associated with CIMP+ status (Figure 3A and 
B). This approach ranks mutations in descending order of 
statistical significance based on their presence or absence 
in CIMP+ samples. The top-scoring mutation was a 1-bp 
deletion at chr17:56,435,161 (Figure 3A), which was 
present in 21 of 22 STAD CIMP+ samples (Figure 3B). 
This mutation causes a frameshift in the last exon of 
RNF43, a tumor suppressor that encodes a RING-type 

Table 4  Somatic mutations found in the tumor suppressor gene MLH1 in gastrointestinal adenocarcinoma samples

Sample Cancer type CIMP class Mutation Mutation type AA pos. Aff. AAs VEST score1

TCGA-A6-6780-01 COAD CIMP+ chr3:37038192.G>A Missense substitution 67 1 0.994
TCGA-CA-6719-01 COAD CIMP+ chr3:37067243.G>A Missense substitution 385 1 0.701
TCGA-CM-6171-01 COAD CIMP+ chr3:37070349.C>- Frameshift deletion 495 262 -
TCGA-EI-6917-01 READ CIMP+ chr3:37058999.C>T Missense substitution 265 1 0.981
TCGA-BR-6452-01 STAD CIMP+ chr3:37107356.A>G 3' UTR - - -
TCGA-FP-A4BE-01 STAD CIMP+ chr3:37090086.C>T Nonsense substitution 659 98 -
TCGA-A6-6138-01 COAD CIMPi chr3:37035084.G>A Missense substitution 16 1 0.901
TCGA-AD-6889-01 COAD CIMPi chr3:37053348.->A Frameshift insertion 195 562 -
TCGA-AZ-6601-01 COAD CIMPi chr3:37067242.C>T Missense substitution 385 1 0.952
TCGA-CM-4746-01 COAD CIMPi chr3:37059062.A>- Frameshift deletion 286 471 -
TCGA-EI-6884-01 READ CIMPi chr3:37058995.A>G Acceptor splice site 264 493 -
TCGA-BR-6802-01 STAD CIMPi chr3:37053348.A>- Frameshift deletion 195 562 -
TCGA-F1-6874-01 STAD CIMPi chr3:37050312.

ACCTTTTTTACAACATAGCC>-
Frameshift deletion 154 603 -

TCGA-A6-6781-01 COAD CIMP- chr3:37053348.A>- Frameshift deletion 195 562 -
TCGA-CM-6674-01 COAD CIMP- chr3:37058999.C>- Frameshift deletion 265 492 -
TCGA-F4-6856-01 COAD CIMP- chr3:37089123.GAA>- In-frame deletion 615 1 -
TCGA-R6-A6KZ-01 EAC CIMP- chr3:37034874.T>C 5’ UTR - - -
TCGA-CG-5723-01 STAD CIMP- chr3:37053550.G>- Frameshift deletion 213 544 -

1Computed using the VEST tool[100], which evaluates only the effect of missense substitutions. AA pos.: Amino acid position; Aff. AAs: Number of 
affected amino acids (the MLH1 protein contains 756 residues); CIMP: CpG island methylator phenotype; CIMPi: CIMP intermediate; COAD: Colon 
adenocarcinoma; EAC: Esophageal adenocarcinoma; READ: Rectal adenocarcinoma; STAD: Stomach adenocarcinoma; VEST: Variant effect scoring tool. 
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E3 ubiquitin ligase (p.G659fs*41). RNF43 is upregulated 
in colon cancer[88] and inhibits Wnt/β-catenin signaling in 
pancreatic cancer cells[89]. Two other top-scoring mutations 
affect APC, a tumor suppressor whose inactivation is 
associated with the onset of colon cancer. One was a 
nonsynonymous C-to-T substitution at chr5:112,175, 639, 
and the second was an AA insertion at chr5:112,175,951. 
Although these alterations were present in a relatively 
small number of samples (14 in total), they were ob
served almost exclusively in CIMP+ tumors (13 out 
of 14). Not surprisingly, we also found a BRAF V600E 
mutation (A-to-T change at chr7:140,453,136) that was 
significantly associated with CIMP+ status (Figure 3A). 
Together with a common KRAS mutation (C-to-T change 

at chr12:2,539,281; p.G13D), these represent the only 
two mutations significantly associated with CIMP+ in 
COAD samples; this is consistent with their already 
characterized presence in COAD[14,78]. Finally, a T insertion 
at chr1:6257785 affecting RPL22 was also significantly 
associated with CIMP+ status across GIAD samples, 
although the number of affected samples was relatively 
small (6 out of 7 were CIMP+). In the future, these 
associations may be explored further to investigate their 
potential functional role in the context of aberrant DNA 
methylation.

We also compared mutations in CIMP+ and CIMP- 
samples by aggregating point mutations at the gene level 
(Table 6). Amid the top scorers in this analysis, we found 
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Figure 3  Binary decision trees for separating gastrointestinal adenocarcinomas into CpG island methylator phenotype categories. Recursive partitioning 
of GIADs from TCGA using binary classification trees based on CIMP status and mutational profiles. Results are provided for A: The combined GIAD data set at 
the individual mutation level; B: The STAD and COAD data sets at the individual mutation level; C: The combined GIAD data set at the mutated gene level; D: The 
STAD and COAD data sets at the mutated gene level. Red and green branches illustrate whether a specific mutation is present or absent (or whether a given gene 
is mutated or not) in the corresponding subset of tumors. Terminal nodes show the number of samples and the associated CIMP+ vs CIMP- fractions, as well as the 
proportion of different cancer types represented in each subset. GIADs: Gastrointestinal adenocarcinomas; TCGA: The Cancer Genome Atlas; CIMP: CpG island 
methylator phenotype.
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chromatin remodeling genes such as ARID1A, which is 
an important member of the SWI/SNF complex, and 
histone methyltransferase genes such as KMT2D (MLL2) 
and KMT2C (MLL3). These two MLL complexes are 
involved in H3K27 demethylation and H3K4 methylation, 
which regulate the transcription of many developmental 
genes, including the HOX gene family[90]. The list of 
genes whose mutation levels were associated with CIMP 
status was also significantly enriched for genes from the 
RTK/RAS/PI(3)K signaling pathway (FDR < 4 × 10-8), 
including ERBB2, ERBB3, ERBB4, KRAS, PIK3CA, NRAS, 
and PTEN. These results suggest that the cumulative 
signal of somatic mutations in coding genes could con
tribute to CIMP.

Finally, we applied binary decision trees to identify 
combinations of mutated genes that correlate with CIMP+ 
or CIMP- status (Figure 3C and D). Using the pooled 
GIAD data set, our tree shows that KMT2D mutations 
recur in gastroesophageal (i.e., STAD and EAC) samples 
(Figure 3C). In fact, tumors with mutated KMT2D and 
wild-type TP53 consist exclusively of CIMP+ samples (n 
= 21). We observed a second set of samples (including 
representatives from all four histologies) that contained 
SOX7 mutations and lacked KMT2D mutations; all 11 
of these tumors were CIMP+. Our trees from individual 

cancers (Figure 3D) show that KRAS and BRAF mutations 
in COAD, as well as RNF43, PIK3CA, and KRAS mutations 
in STAD, are associated with CIMP+ status.

CONFOUNDING FACTORS IN THE 
EVALUATION OF CIMP
Basing CIMP classification on mean methylation levels 
in tumor vs normal tissues allows us to separate cancer-
related features from tissue-of-origin signals, but it also 
makes stratification vulnerable to a number of potential 
technical and biological artifacts. For example, our clas
sification algorithm relies on the assumption of having 
a sufficiently large and sufficiently heterogeneous set of 
controls for each individual tumor type in order to guard 
against potentially confounding variables such as age, 
gender, race or anatomic location. Since only two non-
tumor control samples were available for STAD, we may 
have encountered false positives in the probe selection 
process for this cancer type[51]. Another confounding 
effect may come from tumors’ stimulation of the immune 
response, leading leukocytes (including T cells, NK cells, 
and macrophages) to infiltrate cancerous tissues and 
skew the methylation signature[91]. Additionally, tumor 

Table 5  Association between methylation and gene expression in tumor suppressor genes with significantly hypermethylated 
promoters in CpG island methylator phenotype + samples across four gastrointestinal adenocarcinoma types1

Differential methylation Correlation with expression

Gene symbol Promoter probes Significant probes per cancer type EAC STAD COAD READ

COAD EAC READ STAD cor p-val cor p-val cor p-val cor p-val

TP73 24 18   3   2 23 -0.34 4.E-01 -0.24 1.E-01 -0.10 1.E+00 -0.20 1.E+00
MAL   8   6   5   2   7 -0.37 3.E-01 -0.46 2.E-07 -0.47 7.E-09 -0.45 3.E-02
C2orf40   8   5   3   1   7 -0.51 2.E-03 -0.57 5.E-13 -0.39 2.E-05 -0.24 6.E-01
TMEFF2   7   7   7   7   7 -0.54 2.E-03 -0.49 2.E-08 -0.41 2.E-03 -0.32 5.E-01
ERBB4   6   7   7   2   7 -0.26 5.E-01 -0.15 5.E-01 NA 1.E+00 -0.30 6.E-01
TWIST2  5   5   4   1   4 -0.26 3.E-01 -0.33 3.E-04 -0.38 2.E-06 -0.37 3.E-02
LRRC3B 13   9   7   1 12 -0.36 5.E-01 -0.38 2.E-04 -0.41 4.E-03 -0.11 1.E+00
HTRA3 10   6   3   1   6 0.02 1.E+00 -0.03 1.E+00 -0.10 1.E+00 -0.07 1.E+00
UNC5C 13 13 13   8 13 -0.38 7.E-02 -0.34 5.E-04 -0.43 4.E-08 -0.40 3.E-02
FAT4 13 13   9   2 13 -0.33 2.E-01 -0.44 4.E-07 -0.34 4.E-05 -0.28 4.E-01
IRX1   5   3   4   3   4 -0.37 2.E-01 -0.37 3.E-04 NA 1.E+00 NA 1.E+00
SCGB3A1   9   9   4   2   9 -0.27 4.E-01 -0.37 3.E-05 -0.22 3.E-01 -0.12 1.E+00
AKAP12 10   9   5   1 10 -0.19 1.E+00 -0.42 1.E-06 -0.42 7.E-08 -0.27 6.E-01
DFNA5 12 10   8   1   9 -0.75 0.E+00 -0.56 1.E-12 -0.36 1.E-05 -0.34 1.E-01
TFPI2 15 22 14 19 22 -0.49 3.E-03 -0.54 2.E-11 -0.38 4.E-06 -0.22 1.E+00
NRCAM   7   6   1   1   6 -0.52 3.E-04 -0.47 2.E-08 -0.19 8.E-02 -0.17 1.E+00
CNTNAP2 14 14 11   1 14 -0.14 1.E+00 -0.27 2.E-02 -0.14 1.E+00 -0.12 1.E+00
PAX6 12 12   5   3 11 -0.22 1.E+00 -0.18 6.E-01 -0.04 1.E+00 -0.32 3.E-01
WT1 12 12 12   3 12 -0.25 1.E+00 -0.04 1.E+00 -0.26 8.E-03 -0.23 1.E+00
PHOX2A 11 11   6   5   11 -0.26 1.E+00 -0.13 1.E+00 -0.38 3.E-03 -0.26 1.E+00
WIF1   8   5   5   3   7 -0.57 2.E-03 -0.32 5.E-03 -0.44 9.E-07 -0.56 2.E-04
SLC5A8   9 11 10   4 12 -0.26 1.E+00 -0.28 2.E-01 -0.17 1.E+00 -0.33 9.E-01
TBX5 17 11   7   1 16 -0.32 5.E-01 -0.09 1.E+00 0.03 1.E+00 -0.16 1.E+00
ATP8A2   8   5   4   2   5 -0.28 1.E-01 -0.37 2.E-05 -0.24 5.E-03 -0.24 3.E-01
ADAMTS18   8   7   5   3   7 -0.27 3.E-01 -0.36 6.E-05 -0.34 5.E-05 -0.30 2.E-01
GALR1 29 27   5   8 27 -0.17 1.E+00 -0.47 2.E-04 0.00 1.E+00 -0.14 1.E+00
RASSF2   5   6   4   3   6 -0.52 5.E-04 -0.31 1.E-03 -0.41 1.E-07 -0.40 2.E-02
CDH4   3   2   2   2   4 -0.17 6.E-01 -0.09 8.E-01 -0.16 3.E-01 -0.32 1.E-01

1Promoter regions were designated as 2-kb regions encompassing 1.5 kb upstream and 0.5 kb downstream of the transcription start site. For each cancer 
type, probes were considered significant if the P-value after a one-sided Mann-Whitney U test with Bonferroni correction for multiple testing was < 0.05. 
The total number of probes considered across all four cancer types was 395814. COAD: Colon adenocarcinoma; EAC: Esophageal adenocarcinoma; READ: 
Rectal adenocarcinoma; STAD: Stomach adenocarcinoma.
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samples often consist of a heterogeneous mixture of 
cancer cells and non-cancer cells from adjacent tissues, 
the latter unwittingly included as a result of some biopsy 
collection procedures. As of today, there are no universally 
accepted methods to correct for tumor heterogeneity in 
DNA methylation studies; however, estimates of tumor 
heterogeneity can be computed from molecular data, 
such as copy number changes and mRNA expression, 
and these estimates can be used to discard problematic 
samples or to eliminate potential biases in downstream 
analyses[92,93]. As an alternative, future studies may benefit 
from improved sample collection requirements (e.g., tumor 
microdissection) that lead to enhanced tumor purity and 
lower stromal contamination.

ASSESSING THE IMPACT OF 
TUMOR HETEROGENEITY ON CIMP 
CLASSIFICATION
We examined our CIMP classifications using the measure 

of tumor purity calculated with ABSOLUTE, a com
putational method based on the analysis of somatic DNA 
alterations[92]. As a proof of principle, we reclassified 
CIMP status for the STAD data set using only high-purity 
(i.e., ≥ 50%) samples, as determined by the purity 
estimates available through TCGA[64]. We then compared 
sets of selected probes and CIMP designations before 
and after filtering for purity. After removing low-purity 
samples, the number of differentially methylated probes 
increased from 1110 to 1610. This result is consistent 
with the removal of samples that added background 
noise and masked the methylation signal of tumor cells. 
Since the new set of differentially methylated probes 
encompassed the original probe set, the inclusion of 
low-purity samples does not appear to have appreciably 
impacted our precision for feature selection, although 
it may have impoverished recall due to an increased 
number of false negatives. After using the new probe set, 
only five samples changed status from CIMP+ to CIMPi, 
and 11 samples changed status from CIMPi to CIMP-. 
However, no sample changed from CIMP+ to CIMP- or 

Table 6  Genes differentially mutated between CpG island methylator phenotype+ and CpG island methylator phenotype- 
gastrointestinal adenocarcinoma samples1

Gene Count CIMP+ % CIMP+ Count CIMP- % CIMP- P% Diff P -value FDR Pathway

KMT2D 35 20.30% 10   4.30% 16.00% 6.22E-07 2.24E-05 Chromatin
ARID1A 60 34.90% 32 13.90% 21.00% 1.15E-06 2.24E-05 Chromatin
RNF43 42 24.40% 17   7.40% 17.10% 3.04E-06 3.79E-05 Wnt
CSF3R 19 11.00%   2   0.90% 10.20% 4.19E-06 3.79E-05 ERK
SOX7 14   8.10%   0   0.00%   8.10% 4.86E-06 3.79E-05 ERK
PIK3CA 48 27.90% 26 11.30% 16.70% 2.62E-05 1.70E-04 PI3K/RAS
PAX6 17   9.90%   2   0.90%   9.00% 3.96E-05 2.21E-04 Differentiation
ATM 37 21.50% 17   7.40% 14.20% 5.05E-05 2.46E-04 DNA damage
KRAS 52 30.20% 32 13.90% 16.40% 1.04E-04 4.53E-04 PI3K/RAS
EGR1 15   8.70%   2   0.90%   7.90% 1.63E-04 6.37E-04 Differentiation
GATA3 19 11.00%   5   2.20%   8.90% 2.22E-04 7.87E-04 NF-KB
KMT2C 38 22.10% 22   9.50% 12.60% 6.15E-04 2.00E-03 Chromatin
ALDH2 10   5.80%   1   0.40%   5.40% 1.18E-03 3.30E-03 Metabolic
CDK12 18 10.50%   6   2.60%   7.90% 1.18E-03 3.30E-03 PI3K/RAS
SAFB 15   8.70%   4   1.70%   7.00% 1.44E-03 3.73E-03 Chromatin
BCOR 19 11.00%   7   3.00%   8.00% 1.68E-03 4.09E-03 Chromatin
PTEN 24 14.00% 11   4.80%   9.20% 1.97E-03 4.32E-03 PI3K/RAS
AXIN2 21 12.20%   9   3.90%   8.30% 2.00E-03 4.32E-03 Wnt
CTCF 14   8.10%   4   1.70%   6.40% 2.73E-03 5.41E-03 Chromatin
PALB2 11   6.40%   2   0.90%   5.50% 2.77E-03 5.41E-03 DNA repair
ERBB3 18 10.50%   7   3.00%   7.40% 2.96E-03 5.49E-03 PI3K/RAS
ERBB4 29 16.90% 17   7.40%   9.50% 4.05E-03 6.97E-03 PI3K/RAS
FBXW7 32 18.60% 20   8.70%   9.90% 4.11E-03 6.97E-03 Notch
CIC 23 13.40% 12   5.20%   8.20% 6.55E-03 1.06E-02 Proliferation
HLA.A 17   9.90%   8   3.50%   6.40% 1.13E-02 1.71E-02 Immune
MSH6 19 11.00% 10   4.30%   6.70% 1.14E-02 1.71E-02 MMR
ERBB2 15   8.70%   8   3.50%   5.30% 2.98E-02 4.21E-02 PI3K/RAS
CASP8 13   7.60%   6   2.60%   5.00% 3.02E-02 4.21E-02 Apoptosis
SMAD4 27 15.70% 20   8.70%   7.00% 4.05E-02 5.45E-02 Wnt
TFE3   6   3.50%   1   0.40%   3.10% 4.53E-02 5.90E-02 Wnt
APC 82 47.70% 87 37.70% 10.00% 5.24E-02 6.60E-02 Wnt
NRAS 10   5.80%   5   2.20%   3.60% 6.55E-02 7.74E-02 PI3K/RAS
SMARCB1 10   5.80%   5   2.20%   3.60% 6.55E-02 7.74E-02 Chromatin
IGFBP7   3   1.70%   0   0.00%   1.70% 7.70E-02 8.65E-02 DNA Damage
TBL1XR1   6   3.50%   2   0.90%   2.60% 7.76E-02 8.65E-02 Wnt

1Results are based on a combined set of 179 CIMP- and 154 CIMP+ gastrointestinal adenocarcinoma samples. P-values were computed using a two-tailed 
Fishers’ exact test. Only genes with FDR < 10% are shown. CIMP: CpG island methylator phenotype.
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vice versa. Thus, our CIMP classification system is robust 
in the presence of varying sample purity. 

CONCLUSIONS AND PERSPECTIVES
Ever since the original study in CRC by Toyota et al[5,29], 
evaluation of CIMP status in cancer has been an ac
tive area of research. CIMP stratification has direct 
implications for patient treatment[24]. Because DNA 
methylation is potentially reversible, it represents an 
attractive target for therapies that can be tailored to 
individual cancer epigenomes[20,94]. Nucleoside analogs, 
such as 5-azacytidine, can be incorporated into DNA to 
reversibly block DNA methylation, and their effectiveness 
is being tested in numerous clinical trials. 

In this commentary, we have provided evidence that 
supports refining the molecular profiles of gastrointestinal 
tumors based on CIMP status, to look beyond traditional 
tissue-of-origin interpretations. Our analysis of four types 
of gastrointestinal tumors not only confirms known CIMP 
associations but also leads to several new observations 
relevant to current models of DNA methylation and 
cancer. For example, we report recurrence of a frameshift 
mutation in RNF43 that is significantly associated with 
CIMP status in stomach and, to a lesser extent, colon 
tumors. A recent study linked RNF43 mutations to MSI 
in colorectal and endometrial tumors, which are Wnt-
dependent[95]. The tumor suppressor function of this 
gene qualifies its mutations to be potential drivers of 
STAD, although mechanistic links to DNA methylation 
remain inconclusive. In addition, RNF43 mutations had 
been identified in endometrioid and mucinous ovarian 
carcinomas[96]; we have shown the former tumor sub
type is largely CIMP+[50]. The RNF43 frameshift mutation 
that we highlighted in STAD samples in this paper is 
located within a 7-bp, CG-rich tract, and it may be 
created by the mismatch repair deficiency responsible 
for the MSI phenotype. Thus, the mutation’s connection 
to CIMP status may occur downstream of MSI. However, 
RNF43-truncating mutations, which are common in 
MSI+ colorectal tumors, display mutual exclusivity with 
inactivating APC mutations[95], suggesting a more direct 
role in oncogenesis. Furthermore, our results point to 
additional events that could target the Wnt signaling 
pathway, such as epigenetic silencing of WIF1, which 
is consistently observed across the four GIAD types, or 
several of the somatic mutations highlighted in Table 6. 

We believe that subdividing samples according to CIMP 
status has the potential to reduce heterogeneity within 
cancer subtypes and lead to more uniform molecular 
and phenotypic characteristics, thus producing more 
uniform response rates in clinical trials. Whether employed 
within cohort analyses or individual-level assessments, 
CIMP profiles have the potential to orient researchers 
and clinicians toward the biological properties of a tumor 
through their associations with MSI phenotypes, specific 
mutational profiles, and the repression of important tumor 
suppressor genes. Each of these avenues could potentially 

identify complementary therapeutic modalities. Guided 
in this way, researchers may identify new candidates for 
synthetic lethal therapeutic targeting, in which bottlenecks 
in pathways necessary for tumor cell survival can be 
targeted, resulting in more precise interventions than 
many of the current standard-of-care regimens. 

RESEARCH
Data
We downloaded level 3 DNA methylation data from TCGA’
s data portal (https://tcga-data.nci.nih.gov/tcga/). Data 
had been acquired using the Illumina HumanMethylation 
450K platform and pre-processed following TCGA stan
dard protocols. We further normalized the data from each 
sample using the BMIQ method[97], which corrects for 
technical differences between type Ⅰ and type Ⅱ probes 
in the Illumina HumanMethylation platform. We also 
downloaded level 3 RNA-Seq data from the Broad Institute 
TCGA Genome Data Analysis Center (standard run dated 
06/01/2015, http://dx.doi.org/10.7908/C1251HBG). For 
EAC, COAD, and READ, we used log2, normalized RSEM 
RNA-SeqV2 values. For STAD, we used log2 RPKM RNA-
Seq values, since RSEM estimates were not available. In 
addition, somatic mutation data for all four cancer types 
were downloaded through the bulk download interface 
of the TCGA portal (https://tcga-data.nci.nih.gov/tcga/
findArchives.htm). Finally, CpG island and transcript 
annotation data were downloaded from the UCSC genome 
browser (cpgIslandExt track for CpG islands, and refFlat 
and knownGene tracks for transcripts).

Algorithms and statistical analysis
All statistical analyses were done using the R statistical 
package. We used CpG island annotations from UCSC 
for hg19 and gene annotations provided by Illumina for 
the HumanMethylation 450K platform. Promoter regions 
were defined as 2-kb regions encompassing the TSS 
of protein-coding loci (1.5 kb upstream of the TSS and 
500 bps downstream of the TSS). Our DNA methylation 
analysis was restricted to probes located within CpG 
islands. Within each individual cancer type, we discarded 
probes with low variance across samples (SD < 0.1, 
based on normalized β values between 0 and 1), as well 
as probes located on the X and Y chromosomes. 

Discriminative probes were selected by requiring 
minimal methylation in control samples (average methy
lation in controls < 0.05) and increased methylation in 
tumor samples (average methylation in tumors > 0.25). 
After a set of discriminative probes had been chosen 
separately for each tumor type, samples were classified 
into CIMP categories using k-means clustering on the 
vector of average methylation values computed across 
the set of selected probes (k = 3, initial centroids chosen 
to match population quartiles). Binary decision trees 
were computed using the R package “partykit”[98-100].

Probe selection, CIMP classification, and decision tree 
analysis were performed as published in our previous 
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pan-cancer study[51]. We computed Spearman correlation 
values between expression values for each of the 28 
genes in Table 5 and methylation values for probes in the 
corresponding TSSs. P-values were adjusted using the 
Bonferroni correction to account for the multiple probes 
associated with each gene. 
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