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Abstract
The success achieved over the last decade with islet 
transplantation has intensified interest in treating 
diabetes, not only by cell transplantation, but also 
by stem cells. The formation of insulin-producing 
cells from pancreatic duct, acinar, and liver cells is an 
active area of investigation. Protocols for the in vitro  
differentiation of embryonic stem (ES) cells based 
on normal developmental processes, have generated 
insulin-producing cells, though at low efficiency and 
without full responsiveness to extracellular levels of 
glucose. Induced pluripotent stem cells, which have 
been generated from somatic cells by introducing 
Oct3/4, Sox2, Klf4, and c-Myc, and which are similar 
to ES cells in morphology, gene expression, epigenetic 
status and differentiation, can also differentiate into 
insulin-producing cells. Overexpression of embryonic 
transcription factors in stem cells could efficiently 
induce their differentiation into insulin-expressing cells. 
The purpose of this review is to demonstrate recent 
progress in the research for new sources of β-cells, 
and to discuss strategies for the treatment of diabetes.

© 2009 Baishideng. All rights reserved.

Key words: Pancreatic stem cells; Embryonic stem 
cells; Islets; Pancreatic β-cells; Islet transplantation

Peer reviewer: Richard Schäfer, MD, Specialist for Internal 
Medicine and Transfusion Medicine, Head Mesenchymal 
Stem Cell Laboratory, Institute of Clinical and Experimental 
Transfusion Medicine, Eberhard Karls University Tübingen, 
Otfried-Müller-Str. 4/1, D-72076 Tübingen, Germany

Noguchi H. Recent advances in stem cell research for the 
treatment of diabetes. World J Stem Cells 2009; 1(1): 36-42  
Available from: URL: http://www.wjgnet.com/1948-0210/full/
v1/i1/36.htm  DOI: http://dx.doi.org/10.4252/wjsc.v1.i1.36

INTRODUCTION
The pancreas is a mixed exocrine and endocrine grand 
that controls many homeostatic functions. The exocrine 
pancreas consists of  acinar cells and the ductal epithelium, 
while the endocrine pancreas consists of  four cell types 
(α-, β-, δ-, and pancreatic-polypeptide cells). The pancreas 
controls body metabolism, including the digestion of  
foods by exocrine enzymes secreted from acinar cells and 
the regulation of  blood glucose levels by insulin secreted 
from β-cells. Clinical studies have shown that transplanta-
tion of  a pancreas or purified pancreatic islets can sup-
port glucose homeostasis in type 1 diabetic individuals, 
in whom the β-cells have been destroyed by an autoim-
mune reaction[1-5]. Islet transplantation carries the special 
advantages of  being less invasive and resulting in fewer 
complications compared with the traditional pancreas or 
pancreas-kidney transplantation. However, islet transplan-
tation efforts have limitations including the short sup-
ply of  donor pancreata, the paucity of  experienced islet 
isolation teams, side effects of  immunosuppressants and 
poor long-term results[6]. These limitations have led to the 
search for other stem/progenitor cell sources of  β-cells 
and intense interest in how the differentiation of  such 
progenitors can be directed, or “programmed”, efficiently. 
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The programming efforts are based on understanding 
how β-cells are normally generated in the embryo and 
how they arise during regeneration in adults, in response 
to tissue damage and disease. Here, we review recent stud-
ies on β-cell development and regeneration, and highlight 
unresolved issues in the field.

PANCREATIC β-CELL DEVELOPMENT
The pancreas is specified from the endoderm germ layer 
and develops from a dorsal and ventral protrusion of  the 
primitive gut epithelium[7-9]. These two pancreatic buds 
grow, branch, and fuse to form the definitive pancreas. 
Initially, broad suppression of  mesodermal Wnt and 
fibroblast growth factor (FGF) signaling in the foregut 
enables pancreas induction, whereas active mesodermal 
Wnt signaling in the posterior gut suppresses these tissue 
fates[10,11]. Retinoic acid signaling, apparently from par-
axial mesoderm cells, helps to further refine the anterior-
posterior position, in which the liver and pancreas can 
develop from the gut endoderm[12-15]. Subsequently, in 
the ventral foregut, FGF from the cardiac mesoderm 
and bone morphogenetic protein/transforming growth 
factor-β (BMP/TGF-β) from septum transversum mes-
enchyme cells coordinately induce the liver program and 
suppress the pancreas program[16-19]. In the dorsal fore-
gut, signals from the notochord, including activin and 
FGF, suppress sonic hedgehog (shh) signaling within the 
endoderm and allow the pancreatic program[20,21].

The newly specified pancreatic endoderm is initially 
marked by the expression of  the pancreatic and duodenal 
homeobox gene 1 (Pdx1; also known as Ipf1) and then by 
the pancreas specific transcription factor 1a (Ptf1a)[22,23]. 
Both proteins are crucial for pancreatic development. 
Pdx1 marks all pancreatic and midgut progenitors[22] and 
is crucial for development after the bud stage[24,25]. Pdx1 
levels also help to control the balance between the en-
docrine and exocrine (acinar and duct) progenitors that 
differentiate within the pancreas[26]. Notch signaling also 
helps to regulate the balance of  exocrine and endocrine 
cells, probably by allowing the expansion of  an undif-
ferentiated pancreatic-progenitor population[27-29]. Loss of  
Notch signaling allows the endocrine lineage to develop, 
which is marked by and requires the basic helix-loop-helix 
(bHLH) transcription factor, neurogenin 3 (Ngn3)[22,27,30]. 
Ngn3 directly influences the expression of  another islet 
specific bHLH gene, neurogenic differentiation (NeuroD; 
also known as BETA2)[31]. A loss of  function assay of  
NeuroD/BETA2 implicates a phenotype similar to, but 
less severe than, Ngn3, leading to a diminished number 
of  all endocrine cell types[32]. Then, definitive β cells are 
generated under the influence of  the v-maf  musculoapo-
neurotic fibrosarcoma oncogene homolog A (MafA) tran-
scription factor[33,34].

EMBRYONIC STEM (ES) CELLS
ES cells, which are pluripotent diploid cells and can be 
induced to differentiate into cells of  all three germ lay-
ers both in vivo and in vitro[35,36], are a potentially abundant 

source of  β-cells. It has been reported that ES cells from 
mouse[37-40], monkey[41], and human[38,42] were able to dif-
ferentiate into insulin-positive cells, a potential source of  
new β-cells. Numerous groups have been developing ES 
cell differentiation protocols that attempt to mimic nor-
mal embryonic development. The first step of  pancreatic 
development is the induction of  a definitive endoderm 
using high concentrations of  activin A treatment[43,44]. 
Further treatment in sequential stages with keratinocyte 
growth factor (KGF), retinoic acid, Noggin, and cyclo-
pamine (the hedgehog-signaling inhibitor) can then di-
rect definitive endoderm toward Pdx1-expressing poste-
rior foregut endoderm cells[45,46]. Treatment with DAPT 
and exendin-4 recruited the Pdx1-expressing posterior 
foregut endoderm cells to the pancreatic and endocrine 
lineages, which expressed Pdx1, Nkx6-1, Nkx2-2, Ngn3, 
and/or Pax4. After treatment with exendin-4, IGF-1, 
and HGF, endocrine cells expressing the pancreatic hor-
mones insulin, glucagon, somatostatin, pancreatic poly-
peptide and ghrelin are produced (Figure 1). 

Melton’s group recently reported small molecules that 
efficiently direct endodermal differentiation of  mouse 
and human embryonic stem cells[47]. In a screen of  4000 
compounds, they identified two cell-permeable small 
molecules that direct differentiation of  ES cells into the 
endodermal lineage. The efficiency of  differentiation 
into definitive endoderm using these compounds was 
higher than that achieved by Activin A or Nodal, which 
commonly used protein inducers of  endoderm. The 
definitive endoderm induced by these compounds was 
able to participate in normal development when injected 
into developing embryos, and was able to form pancreatic 
progenitors. These small molecules could induce 
reproducible and efficient differentiation of  ES cells into 
endoderm.

On the other hand, a significant number of  problems 
remain unsolved in terms of  clinical application 
of  ES cells, such as the risk of  tumorigenicity and 
immunosuppression after transplantation. The ethical issue 
is another major obstacle to the clinical use of  ES cells.

INDUCED PLURIPOTENT STEM (iPS) 
CELLS
iPS cells are also pluripotent diploid cells that can be 
induced to differentiate into cells of  all three germ layers 
both in vivo and in vitro. Moreover, iPS cells have fewer 
ethical issues compared with ES cells, because iPS cells 
can be established from somatic cells. Initial iPS cells 
have been generated from mouse and human somatic 
cells by introducing Oct3/4 and Sox2 with either Klf4 
and c-Myc or Nanog and Lin28, using retroviruses[48-51]. 
Recently, it has been reported that valproic acid (VPA), a 
histone deacetylase inhibitor, enables reprogramming of  
primary human fibroblasts with only two factors, Oct4 
and Sox2, without the need for the c-Myc or Klf4[52]. 
The results support the possibility of  reprogramming by 
chemical means, which would make therapeutic use of  
reprogrammed cells safer and more practical. Another 
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group showed that adult mouse neural stem cells 
(NSCs) expressed higher endogenous levels of  Sox2 and 
c-Myc than embryonic stem cells[53] and that exogenous 
expression of  the germline-specific transcription factor 
Oct4 was sufficient to generate pluripotent stem cells 
from adult mouse NSCs[54]. These data suggest that, in 
inducing pluripotency, the number of  reprogramming 
factors can be reduced when using somatic cells that 
endogenously express appropriate levels of  comple
menting factors.

On the other hand, retroviral integration of  the 
transcription factors might activate or inactivate host 
genes, resulting in tumorigenecity, as was the case in 
some patients who underwent gene therapy. Yamanaka’s  
group reported the generation of  mouse iPS cells 
with transient expressions of  Oct3/4, Sox2, Klf4, and 
c-Myc from plasmids. Repeated transfection into mouse 
embryonic fibroblasts of  two expression plasmids, 
one containing complementary DNAs (cDNAs) for 
Oct3/4, Sox2, and Klf4 and the other containing the 
c-Myc cDNA, resulted in iPS cells without evidence 
of  plasmid integration[55]. At the same time, another 
group demonstrated the generation of  mouse iPS cells 
from fibroblasts and liver cells using non-integrating 
adenoviruses transiently expressing Oct4, Sox2, Klf4, and 
c-Myc[56]. Moreover, Ding’s group reported generation 
of  protein-induced pluripotent stem cells (piPSCs) from 
murine embryonic fibroblasts using recombinant cell-
penetrating reprogramming proteins without transfection 
of  any genes[57]. For efficient transduction of  four 
reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, into 
cells, they used protein transduction technology[58-61]. A 
poly-arginine (11R) protein transduction domain (PTD) 
fused to the C terminus of  these reprogramming factors 
efficiently delivered the proteins into cells and induced 
iPS cells, which demonstrated long-term self-renewal 
and were pluripotent in vitro and in vivo. These reports 
provide strong evidence that insertional mutagenesis is 
not required for in vitro reprogramming. The production 
of  iPS cells without integration into the host genome 
addresses a critical safety concern for potential use of  iPS 
cells in regenerative medicine. 

Although some papers have shown the generation 
of  insulin-secreting islet-like clusters from human iPS 
cells[62,63], the efficiency of  the method seems low. The 
method, as detailed in this review in the ES cells section, 

might represent a critical step in the development of  
insulin-producing cells from iPS cells (Figure 1). Indeed, 
Melton’s group recently reported generation of  iPS cells 
from patients with type 1 diabetes and differentiation 
from the iPS cells into insulin-producing cells using this 
method[64].

PANCREATIC STEM/PROGENITOR CELLS
Although it is clear that the majority of  new β-cells derive 
from pre-existing insulin-expressing cells after surgical 
injury[65,66], several in vitro studies have shown that insulin-
producing cells can be generated from adult pancreatic 
ductal tissues[67-71]. A recent study has shown that duct li-
gation can activate Ngn3-positive β-cell precursors in the 
ductal epithelium[72]. The Edmonton group has shown 
that, in clinical islet transplantation, a significant positive 
correlation exists between the number of  ductal-epithelial 
cells transplanted and long-term metabolic success, as as-
sessed by an intravenous glucose tolerance test at approx-
imately two years post-transplantation. No significant 
correlation was observed between the total islet equiva-
lents and long-term metabolic success[73]. Cells in the pan-
creatic anlage migrate from the ducts while differentiating 
to form clusters that will eventually become islets during 
embryonic development [74]; therefore, the post-natal pan-
creatic duct might harbor islet precursor/stem cells. Inada  
et al[75] generated transgenic mice expressing human car-
bonic anhydrase Ⅱ (CAⅡ) promoter-Cre recombinase 
or inducible CreER to cross with ROSA26 loxP-Stop-
loxP LacZ reporter mice. CAⅡ-expressing cells within 
the pancreas act as progenitors that give rise to both new 
islets and acini normally after birth and after injury (ductal 
ligation). This identification of  a differentiated pancreatic 
cell type as an in vivo progenitor of  all differentiated pan-
creatic cell types has implications for a potential expand-
able source of  new islets for replenishment therapy for 
diabetes[75]. Such interesting results suggest the possibility 
of  multipotent progenitors in adult pancreatic ducts.

Mouse pancreatic stem cells have been isolated from 
duct-rich population, which are capable of  self-renewal 
and multipotency[76,77]. On the other hand, human cells 
from the duct-rich population were unable to divide after 
30 d under several culture conditions, although the cells 
were able to differentiate into insulin-producing cells[78]. 
There are some differences between the methodologies 
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used by the two groups, such as culture conditions, isola-
tion stresses, and/or species themselves. The ability of  
β-cells to expand is limited, especially in the adult, and 
the partial growth ability is insufficient to permit recov-
ery from cell loss in type 1 diabetes[79]. Therefore, it is 
important to isolate human pancreatic “stem” cells com-
prising a sufficient number of  β-cells for the treatment 
of  diabetes. 

The transdifferentiation of  acinar cells to islets has 
also been proposed[80-82]. Melton’s group showed in vivo re-
programming of  adult pancreatic exocrine cells to β-cells 
by viral delivery of  the developmental transcription fac-
tors Pdx1, Ngn3, and MafA[83]. Pancreatic exocrine cells 
greatly outnumber β-cells; therefore, the transdifferentia-
tion of  acinar cells to β-cells is also an interesting possi-
bility.

MESENCHYMAL STEM CELLS
Another interesting stem cell in this field is the mesen
chymal stem cell (MSC). It has been reported that mar
ginal mass islet transplantation with autologous MSCs 
promotes long-term islet allograft survival and sustained 
normoglycemia[84]. MSCs also prevent the rejection of  
fully allogenic islet grafts by the immunosuppressive 
activity of  matrix metalloproteinase-2 and -9[85], and 
protect NOD mice from diabetes by inducing regulatory 
T cells[86].

PERSPECTIVES
Several reports have suggested that epitopic transdif-
ferentiation is also possible. In vivo transduction of  mice 
with an adenovirus expressing Pdx-1[87,88], and both be-
tacellulin and NeuroD[89], or a modified form of  Pdx-1 
carrying the VP16 transcriptional activation domain[90], 
or MafA together with Pdx-1 and NeuroD[91], mark-
edly increased insulin biosynthesis and induced various 
pancreas-related factors in the liver. The existence of  
potential β-cell precursors in the adult liver is of  obvious 
medical interest. Moreover, overexpression of  embry-
onic transcription factors in stem cells could efficiently 
induce their differentiation into insulin-expressing cells. 
We reported that transduction of  Pdx-1 and NeuroD 
proteins induces insulin gene expression[67,92,93]. Other 
groups also showed that transduction of  NeuroD in vivo 
or TAT-Ngn3 fused TAT-PTD induced insulin-produc-
ing cells[94,95]. The production of  insulin-producing cells 
using protein transduction technology without gene 
transduction addresses a critical safety concern for po-
tential use of  the cells in regenerative medicine. Further 
investigations to induce differentiation of  stem/progeni-
tor cells into insulin-producing cells will help to establish 
cell-based therapies in diabetes.
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