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Abstract
BACKGROUND
Recently, the exclusive use of mesenchymal stem cell (MSC)-secreted molecules,
called secretome, rather than cells, has been evaluated for overcoming the
limitations of cell-based therapy, while maintaining its advantages. However, the
use of naïve secretome may not fully satisfy the specificity of each disease.
Therefore, it appears to be more advantageous to use the functionally reinforced
secretome through a series of processes involving physico-chemical adjustments
or genetic manipulation rather than to the use naïve secretome.

AIM
To determine the therapeutic potential of the secretome released from miR-122-
transfected adipose-derived stromal cells (ASCs).

METHODS
We collected secretory materials released from ASCs that had been transfected
with antifibrotic miR-122 (MCM) and compared their antifibrotic effects with
those of the naïve secretome (CM). MCM and CM were intravenously
administered to the mouse model of thioacetamide-induced liver fibrosis, and
their therapeutic potentials were compared.
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RESULTS
MCM infusion provided higher therapeutic potential in terms of: (A) Reducing
collagen content in the liver; (B) Inhibiting proinflammatory cytokines; and (C)
Reducing abnormally elevated liver enzymes than the infusion of the naïve
secretome. The proteomic analysis of MCM also indicated that the contents of
antifibrotic proteins were significantly elevated compared to those in the naïve
secretome.

CONCLUSION
We could, thus, conclude that the secretome released from miR-122-transfected
ASCs has higher antifibrotic and anti-inflammatory properties than the naïve
secretome. Because miR-122 transfection into ASCs provides a specific way of
potentiating the antifibrotic properties of ASC secretome, it could be considered
as an enhanced method for reinforcing secretome effectiveness.

Key words: Adipose-derived stem cells; Liver fibrosis; MicroRNAs; miR-122;
Mesenchymal stem cells; Secretome

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We herein intended to determine the antifibrotic effects of the secretome
released from miR-122-transfected adipose-derived stromal cells (miR-122-secretome).
miR122-secrectome and naïve secretome were intravenously administered to the mice
with liver fibrosis, respectively. miR122-secrectome infusion provided higher
therapeutic potential in terms of reducing collagen content in the liver, inhibiting
proinflammatory cytokines, and reducing abnormally elevated liver enzymes than the
infusion of the naïve secretome. Proteomic analysis of the miR122-secrectome indicated
that the contents of antifibrotic proteins were significantly elevated compared to those in
the naïve secretome. Our results demonstrate that miR122-secrectome has higher
antifibrotic and anti-inflammatory properties than the naïve secretome.

Citation: Kim KH, Lee JI, Kim OH, Hong HE, Kwak BJ, Choi HJ, Ahn J, Lee TY, Lee SC,
Kim SJ. Ameliorating liver fibrosis in an animal model using the secretome released from
miR-122-transfected adipose-derived stem cells. World J Stem Cells 2019; 11(11): 990-1004
URL: https://www.wjgnet.com/1948-0210/full/v11/i11/990.htm
DOI: https://dx.doi.org/10.4252/wjsc.v11.i11.990

INTRODUCTION
Stem cell research is one of the promising areas of biomedical research. However,
notwithstanding remarkable achievements in the field of mesenchymal stem cells
(MSCs),  their  clinical  applications  are  still  challenging,  especially  due  to  safety
concerns. To date, increasing evidence has been accumulating in support of the notion
that the principal  action mechanism of MSCs is  secretome-mediated[1-5].  Thus,  to
overcome the limitations of cell-based therapy, numerous researchers have focused on
the exclusive use of MSC-secreted molecules rather than the cells per se. The total set
of molecules secreted or surface-shed by cells is generally referred to as secretome.
The  secretome includes  bioactive  peptides,  such  as  cytokines,  chemokines,  and
growth factors[1,4]. These soluble factors are released from MSCs either alone or in the
form of extracellular vesicles.

The  therapeutic  potential  of  secretome  can  be  potentiated  by  adjusting  the
conditions under which MSCs are incubated. Among these conditions, the genetic
modification of MSCs can offer enormous and persistent reinforcements of the MSC
secretome. Literature supports that microRNAs (miRNAs) play a substantial role in
the process of liver fibrosis[6-8].  MicroRNAs are small non-coding RNA molecules
(containing about 22 nucleotides) that alter gene expression at the posttranscriptional
level, resulting in altered protein synthesis[9]. Hence, miRNAs can exquisitely adjust
the expression of numerous genes particularly responsible for fundamental cellular
processes, such as proliferation, development, and differentiation[10]. The miRNAs
responsible  for  liver  fibrosis  can largely be divided into fibrotic  and antifibrotic
miRNAs. Of these, miR-122 is one of the representative antifibrotic miRNAs that
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negatively regulates collagen production in hepatic stellate cells (HSCs)[11,12]. Thus,
harnessing MSCs to confer miR-122 to HSCs would be a potential novel therapeutic
approach for reinforcing the antifibrotic effects of MSCs. In this study, we aimed to
the  determine  the  antifibrotic  effects  of  the  secretome  released  from  miR-122-
transfected ASCs in both in vitro and in vivo models of liver fibrosis.

MATERIALS AND METHODS

Isolation of ASCs
Human adipose-derived stromal cells (ASCs) were obtained from lipoaspirated fat
with inform consent of the volunteers. This research was approved by Institutional
Review Board (IRB number 700069-201407-BR-002-01)  of  Hurim BioCell  Co.  Ltd.
(Seoul,  South  Korea).  ASCs  were  isolated  and  cultured  according  to  previous
reports[13].  Lipoaspirated fat was digested by 0.1% collagenase (Sigma-Aldrich, St.
Louis,  MO, United States) in saline and collected after centrifugation. Cells were
plated  into  culture  flask  in  low-glucose  Dulbecco’s  Modified  Eagle’s  Medium
(DMEM;  Thermo  Fisher  Scientific,  Hemel  Hempstead,  United  Kingdom)
supplemented with  10% FBS (Thermo Fisher  Scientific),  100  U/mL of  penicillin
(Thermo Fisher Scientific), and 0.1 mg/mL of streptomycin (Thermo Fisher Scientific).
ASCs were incubated at 37 °C in humidified chamber containing 5% carbon dioxide
and medium was changed every 3 d.

Transfection and attainment of secretome
ASCs were transfected with miR-122 (Exiqon, Germatown, MD) per well mixed with
the Lipofectamine RNAiMAX Reagent (Thermo). After 72hr of transfection, the cells
were morphologically observed by the inverted microscope. The cell numbers of the
experimental groups were counted automatic cell counter (Countess®, Invitrogen, San
Diego,  CA,  United  States)  using  trypan  blue  solution.  Transfected  cells  were
processed for cell phenotyping or differentiated into three-lineage induction.

ASCs with or without miR-122 transfection were grown in a 100 mm cell dishes
(Corning  Glass  Works,  Corning,  NY,  United  States).  After  reaching  70%-80%
confluence, 1.0 × 106 ASCs were cultured in 5 mL serum-free low-glucose DMEM for
48 h.  Therefore,  to  obtain 0.2  mL amount  of  secretome from 1.0  × 106  ASCs,  the
conditioned media were concentrated 25-fold using ultra filtration units with a 3-kDa
molecular weight cutoff (Amicon Ultra-PL 3; Millipore, Bedford, MA, United States).
We then injected 0.1 mL amount of secretome per mouse. This means that one mouse
is injected with the secretome obtained from 5 × 105 ASCs. In this study, NCM refers
to the secretome shed from ASCs after 48 h of incubation, and MCM refers to the
secretome shed from miR-122-transfected ASCs after 48 h of incubation.

Cell phenotyping by FACS analysis
The  immunophnotypes  of  the  experimental  groups  were  determined  by  flow
cytometry analysis (Cytomics FC500 flow cytometer, Beckman Coulter, Fullerton, CA,
United States) using FITC-conjugated CD31, CD45, and CD73 antibodies and PE-
conjugated CD90 and CD105 antibodies  (BD Pharmingen,  San Jose,  CA,  United
States). Isotype controls were performed with antibodies against IgG for samples.

Differentiation into adipocytes, osteocytes, and chondrocytes
Transfected cells were induced toward the three lineages for 21 d. The adipogenic,
osteogenic  and chondrogenic  differentiation ability  of  MSCs was determined as
previously described[14,15]. Briefly, the cells were plated at a density of 1 × 104 or 5 × 103

cells/cm2 in growth medium for 3 d, and then cultured in adipocyte and osteocyte
differentiation medium (StemProTM,  Gibco) for 3 wk. For chondrogenic induction,
expansion medium containing 8 × 104 cells was cultured for 2 h. Then, chondrogenesis
differentiation medium (StemProTM, Gibco) was added and cultured for 3 wk. After
differentiation, Lipid vesicles and calcium deposition were observed by oil Red O and
Alizarin Red staining. For chondrogenic induction, micromass cultures were plated
by  seeding  5  μL  droplets  of  8  ×  104  cells  into  the  center  of  48-well  plate.  After
incubating micromass cultures for 2 h at 37 °C, chondrogenic medium (StemPro,
GIBCO) was added to 400 μL per culture wells and cultured for 3 wk. Chondrocyte
induction was determined by immunohistochemical staining for collagen type I and II
and proteoglycan[16]. Primary antibodies were purchased from Millipore (Millipore,
CA,  United  States)  and  reacted  with  sections.  After  incubation  with  primary
antibodies,  sections  were  incubated  with  PE-conjugated  goat  anti-rabbit
immunoglobulin G (Abcam, Cambridge,  MA, United Kingdom) and rabbit  anti-
mouse immunoglobulin G (Abcam). Nuclei were counterstained with DAPI (4’,6-
diamidino-2-phenylindole, Invitrogen).
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Human HSC culture
The LX-2 human HSCs were obtained from were kindly donated by Dr. Won-il Jeong
in  KAIST  Biomedical  research  of  Korea.  LX-2  cells  were  maintained  in  DMEM
(Thermo, Carlsbad, CA, United States). The medium was supplemented with 10% FBS
(GibcoBRL, Calsbad, CA, United States), 1% antibiotics (Thermo), at 37 °C.

Western blot analysis
LX-2 cells and liver specimens obtained from mice were lysed using the EzRIPA Lysis
kit  (ATTO Corporation; Tokyo, Japan),  and quantified by Bradford reagent (Bio-
RadHercules, CA, United States). Proteins were visualized by western analysis using
the following primary antibodies (1:1000 dilution) at 4 °C overnight and then with
HRP-conjugated secondary antibodies (1:2000 dilution) for 1 h at 25°C. From Cell
Signaling Technology (Beverly, MA, United States), we obtained primary antibodies
against Proliferating cell nuclear antigen (PCNA), transforming growth factor-β (TGF-
β1),  alpha-smooth muscle  actin (α-SMA),  metallopeptidase inhibitor  1  (TIMP-1),
matrix metallopeptidase 2 (MMP2), collagen type- 1 alpha-1 (COL1A1), β-actin, and
horseradish peroxidase  (HRP)-conjugated secondary antibody.  Specific  immune
complexes  were  detected  using  the  Western  Blotting  Plus  Chemiluminescence
Reagent (Millipore, Bedford, MA, United States).

Animals and study design
Five-week male BALB/c mice (Orient Bio, Seongnam, Korea) were used in this study.
Animal studies were carried out in compliance with the guidelines of the Institute for
Laboratory  Animal  Research,  Korea  (IRB  No:  CUMC-2017-0317-04).  We  then
compared the  effects  of  the  MCM in  an  in  vivo  model  of  Thioacetamide  (TAA)-
induced hepatic fibrosis model. The in vivo model was generated by subcutaneous
injection of TAA (200 mg/kg, three times a week for 8 wk) into experimental mice.
Each group included 10 mice, and these were further divided into two subgroups:
those  for  Control  mice  (n  =  30),  and  those  for  TAA-treated  mice  (n  =  30).
Subsequently, control mice and TAA-treated mice were intravenously (using tail vein)
infused with normal saline, CM, and MCM, respectively.

Serology test and ELISA
Blood samples were collected from each mouse, centrifuged for 10 min at 9500 g, and
serum was collected. We measured the concentrations of markers for liver injury and
kidney injury, such as aspartate transaminase (AST), alanine transaminase (ALT), and
creatine, using an IDEXX VetTest Chemistry Analyzer (IDEXX Laboratories,  Inc.,
Westbrook, ME, United States). The concentrations of mouse interleukin (IL)-6 and
tumor  necrosis  factor  (TNF)-α  were  measured  by  sandwich  enzyme-linked
immunosorbent  assay  (ELISA  kits,  Biolegend,  San  Diego,  CA,  United  States)
according to the manufacturer’s instructions.

Immunohistochemistry, Sirius red staining and masson’s trichrome staining
For immunohistochemical analysis, formalin-fixed, paraffin-embedded tissue sections
were deparaffinized, rehydrated in an ethanol series and subjected to epitope retrieval
using standard procedures. Antibodies against of PCNA, TIMP-1, Albumin, α-SMA,
TGF-β1, MMP-2, SOD, Catalase and GPx (all from Cell Signaling Technology, MA,
United States)  were  used for  immunochemical  staining.  The  samples  were  then
examined under a laser-scanning microscope (Eclipse TE300; Nikon, Tokyo, Japan) to
analyze the expression of PCNA, TIMP-1, Albumin, a-SMA, TGF-β1, MMP-2, SOD,
Catalase and GPx. Sirius red staining and Trichrome staining were performed using
the  Sirius  red staining kit  and Masson’s  trichrome staining kit  according to  the
manufacturer’s protocol (Polysciences, Warrington, PA, United Kingdom).

Statistical analysis
All data were analyzed with SPSS 11.0 software (SPSS Inc., Chicago, IL, United States)
and SigmaPlot® ver. 12.0 (Systat Software Inc., Chicago, IL, United States). The data
are  presented as  mean ±  standard deviation (SD).  Statistical  comparison among
groups was determined using Kruskal–Wallis test followed by Dunnett’s test as the
post  hoc  analysis.  Probability  values  of  P  <  0.05  were  regarded  as  statistically
significant.

RESULTS

Determination of differentiation potential of miR-122-transfected ASCs
We  first  determined  whether  miR-122  transfection  impairs  ASC  functionality,
especially  their  multilineage  differentiation  potential.  Flow cytometric  analysis
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showed that miR-122 transfection did not alter the expression of surface markers of
ASCs (Figure 1A). Gross cell morphology was also identical regardless of miR-122
transfection (Figure 1B). In addition, transfecting miRNA did not affect multilineage
differentiation potential of ASCs, including the potentials of differentiating adipocytic
(Figure 1B) or osteogenic (Figure 1C) lineages, and the expression of collagens (type I
and type II) and proteoglycan (Figure 1D).

In vitro experiments validating the effects of miR-122transfection into ASCs
We investigated the expression of fibrosis-related markers in miR-122-transfected
ASCs. miR-122-transfected ASCs showed a decreased expression of fibrosis-related
proteins (TGF β1, MMP2, α-SMA, and TIMP) compared to control ASCs or ASCs
transfected with miR-122 (Figure 2A).  We obtained human HSCs (LX2 cells)  and
treated them with a varying concentration of TAA for determining in vitro model of
liver fibrosis. TAA elicited a concentration-dependent increase of fibrosis markers to a
certain extent, and we determined that 5.0 mmol TAA is appropriate for inducing
fibrosis in LX2 cells (Figure 2B and C).

Next, we obtained the secretome from the CM of ASCs as described in the method.
In this study, NCM refers to the secretome shed from ASCs after 48 h of incubation,
and MCM refers to the secretome shed from miR-122-transfected ASCs after 48 h of
incubation. The in vitro model of liver fibrosis was generated by treating human HSCs
cells (LX2 cells) with a hepatotoxin (TAA). We then treated the TAA-treated LX2 cells
with NCM or MCM, and investigated the expression of fibrosis-related markers using
western blot analysis (Figure 2D). Overall, the addition of each secretome (NCM or
MCM) to TAA-treated LX2 cells significantly decreased the expression of fibrotic
markers (MMP2, TGF-β1, and α-SMA) (P < 0.05). When comparing the two kinds of
secretome, MCM induced the more significant reduction of fibrotic markers than did
NCM (P < 0.05).

Determination of  antifibrotic  effects  of  the  secretome released from miR-122-
transfected ASCs in the in vivo model of liver fibrosis
We generated an in vivo model of liver fibrosis in mouse by subcutaneous injection of
TAA (200 mg/kg) three times a week for 5 wk and validated the effects of MCM in
this model. The mice were divided into two groups: control (n = 30) and TAA-treated
mice (n = 30), and the latter were intravenously infused normal saline (n = 10), NCM
(n = 10), or MCM (n = 10) twice (200 mg/kg, three times a week for 8 wk). On the 7th d
after infusion, the mice were euthanized and specimens were obtained for study.
Sirius red and Masson trichrome stains were used for the estimation of fibrosis. These
stains showed that, although both treatments (NCM and MCM) decreased the content
of  collagen,  MCM significantly  had the greatest  effect  (Figure 3A and B).  In  the
western blot analysis of the liver specimens, MCM infusion significantly increased the
expression  of  PCNA  (a  proliferation  marker),  and  significantly  decreased  the
expression  of  α-SMA,  TGF-β1,  and  MMP1  (fibrotic  markers)  and  increased  an
antifibrotic marker (TIMP-1) in the TAA-treated mice (Figure 3C).

Comparison of immunohistochemical stains
We compared the histological changes of the livers obtained from each mouse group.
PCNA was used as the marker for hepatocyte proliferation; α-SMA, TGF-β1, and
MMP1 for liver fibrosis;  albumin for hepatic synthetic function; TIMP-1 for liver
antifibrosis;  and SOD,  catalase,  and GPx for  liver  antioxidant  activity.  Through
immunohistochemical staining, the MCM group showed the highest expression of
PCNA, albumin, and TIMP-1,  and the lowest expression of α-SMA, TGF-β1,  and
MMP1 (Figure 4A and B). The MCM group also showed the highest expression of
SOD, catalase, and GPx (Figure 5).

Comparison of systemic markers and liver enzymes after each treatment
We compared the expression of systemic inflammatory markers, such as IL-6 and
TNF-α, in the serum of each mouse group. Secretome infusions (NCM and MCM)
significantly decreased the expression of these markers, and MCM decreased their
expression in a higher degree than NCM (P < 0.05) (Figure 6A). Finally, we compared
the serum levels of liver enzymes (AST and ALT) in each mouse group. Secretome
infusions significantly decreased the elevated levels of liver enzymes, and MCM had a
higher effect than NCM (P < 0.05) (Figure 6B).

Using liquid chromatography–mass  spectrometry (LC/MS),  we analyzed and
compared  the  protein  contents  of  NCM  and  MCM  (Figure  6C).  The  protein
constituents and concentrations of various important proteins varied widely between
NCM and MCM, validating the effects of miR-125 transfection. Specifically, MCM
exhibited a significantly decreased concentration of essential intermediates of the
TGF-β/Smad signaling, such as transgelin, PIN1, and profilin-1, compared to NCM.
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Figure 1

Figure 1  Assessment of multilineage differentiation potential of miR-122-transfected adipose-derived stem cells. A: Flow cytometric analysis showing that
miR-122 transfection did not alter the expression of surface markers of adipose-derived stem cells (ASCs). ASCs were negative for CD31 and CD45 (hematopoietic
stem cell-associated markers) expression and positive for CD73 and CD105 (mesenchymal stem cell-associated markers) expression regardless of miR-122
transfection; B: Comparison of gross cell morphology between ASCs with/without miR-122 transfection. Cells appear to be identical regardless of miR-122
transfection; C, D: Photomicrographs showing successful differentiation of ASCs into adipocytes, osteocytes, and chondrocytes regardless of miR-122 transfection.
The differentiated cells were identified using four distinct staining methods (Oil Red O, Alizarin Red, collagen type 1, and proteoglycan). Scale bars = 100 µm. Values
are presented as mean ± standard deviation of three independent experiments. aP < 0.05. ASC: Adipose-derived stem cell; HSC: Hepatic stellate cell; PG:
Proteoglycan.

DISCUSSION
In this study, we have shown that the secretome released from miR-122 transfected
ASCs  was  superior  to  the  naïve  secretome  in  improving  liver  fibrosis  while
minimizing  inflammatory  processes  in  mice  with  TAA-induced  liver  fibrosis.
Specifically,  infusion of  the secretome from miR-122-transfected ASCs provided
higher therapeutic potential in terms of: (A) Reducing collagen content in the liver; (B)
Inhibiting proinflammatory cytokines; and (C) Reducing abnormally elevated liver
enzymes than infusion of the naïve secretome. Thus, it can be postulated that miR-122
transfection into ASCs reconditions them to have higher antifibrotic properties and to
release a secretome with higher antifibrotic components. In reality, our proteomic
analysis of the secretome released from miR-122-transfected ASCs indicated that it
had significantly lesser contents of essential intermediates of liver fibrosis compared
to the naïve secretome. We could, thus, conclude that the secretome released from
miR-122-transfected ASCs has higher antifibrotic and anti-inflammatory properties
than the naïve secretome.

Accumulating evidence indicates that various miRNAs are essentially involved in
the process of fibrosis, particularly related with the action of HSCs[17].  Fibrogenic
injury of the liver prompts HSCs to undergo proliferation, migrate to injured sites,
and  transform  into  myofibroblast-like  cells  which  apparently  lose  their  lipid
droplets[18-20]. Subsequently, the activated HSCs, named fibroblast-like cells, produce
large  amounts  of  extracellular  matrix  proteins,  such as  collagen I  and II,  finally
leading to liver fibrosis[19,21-24]. Of various cytokines, TGF-β plays essential roles in the
process of liver fibrosis[25-28].

A number of miRNAs are involved in the processes of liver fibrosis,  by either
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Figure 2

Figure 2  In vitro experiments validating the effects of miR-122 transfection into Adipose-derived stem cells. A: Western blot analysis showing the expression
of fibrotic and antifibrotic markers in miR-122-transfected adipose-derived stem cells (ASCs). miR-122-transfected ASCs showed decreased expression of fibrotic
proteins (TGF β1, MMP2, and α-SMA) and increased expression of an antifibrotic protein (TIMP-1) than control ASCs. The graphs below microscopic figures show the
relative densities of these markers; B, C: RT-PCR (left) and western blot analysis (right) of LX2 cells for the determination of the thioacetamide (TAA) concentration
used for generating in vitro model of liver fibrosis. A TAA concentration of 2.5 mM was used for inducting LX2 cells into fibrosis; D: Effects of MCM in the in vitro model
of liver fibrosis. The in vitro model of liver fibrosis was generated by treating human HSCs cells (LX2 cells) with a hepatotoxin (TAA). In western blot analysis (Left),
MCM induced the lowest expression of fibrotic markers (MMP2, TGF-β1, and α-SMA) in the TAA-treated LX2 cells. Relative densities of fibrosis-related markers in
each group (Right). Values are presented as mean ± standard deviation of three independent experiments. aP < 0.05 vs Ct. cP < 0.05 between NCM and MCM. α-
SMA: Alpha-smooth muscle actin; COL1A1: Collagen type-1 alpha-1; Ct: Control; CM: The secretome obtained from ASCs after 48-h-incubation; MCM: The
secretome released from miR-122-transfected ASCs; MMP-1: Metalloproteinases-1; TAA: Thioacetamide; TGF-β: Transforming growth factor-β; TIMP-1: Tissue
inhibitor of metalloproteinases-1.
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Figure 3

Figure 3  Determination of antifibrotic effects of MCM in the in vivo model of liver fibrosis. Control mice and thioacetamide (TAA)-treated mice (mouse model of
liver fibrosis) were intravenously (using tail vein) infused with normal saline, CM, and MCM. A, B: Sirius red A and Masson’s trichrome B stains showing that MCM
infusion significantly decreased the collagen content of the liver in the mouse model of liver fibrosis. Magnification × 400. Percentages of fibrotic areas were measured
using NIH image J and expressed as relative values to those in normal livers; C: Western blot analysis of liver specimens. MCM infusion significantly increased the
expression of PCNA (a proliferation marker), and significantly decreased the expression of α-SMA, TGF-β1, and MMP1 (fibrotic markers) and increased an antifibrotic
marker (TIMP-1) in the mouse model of liver fibrosis. The relative densities of individual markers had been quantified using Image Lab 3.0 (Bio-Rad) software and then
were normalized to that of β-actin in each group. Values are presented as mean ± standard deviation of three independent experiments. aP < 0.05 vs Ct (TAA). cP <
0.05 between TAA + NCM and TAA + MCM. α-SMA: Alpha-smooth muscle actin; Ct: Control; CM: The secretome obtained from ASCs after 48-h-incubation; MCM:
The secretome released from miR-122-transfected ASCs; MMP-1: Metalloproteinases-1; PCNA: Proliferating cell nuclear antigen; TAA: Thioacetamide; TGF-β:
Transforming growth factor-β; TIMP-1: Tissue inhibitor of metalloproteinases-1.
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Figure 4

Figure 4  Immunohistochemical staining showing the effects of MCM on the expression of inflammatory and fibrotic markers in the livers. A, B: Upon
comparing immunohistochemical staining patterns, MCM infusion led to higher expression of PCNA (an inflammatory marker), albumin, and TIMP-1 (an antifibrotic
marker) A, and lower expression of α-SMA, TGF-β1, and MMP1 (fibrotic markers) B in the livers of TAA-treated mice. Percentages of immunoreactive areas were
measured using NIH image J and expressed as relative values to those in normal livers. Magnification × 400. Values are presented as mean ± standard deviation of
three independent experiments. aP < 0.05 vs Ct (TAA). cP < 0.05 between TAA + NCM and TAA + MCM. α-SMA: Alpha-smooth muscle actin; Ct: Control; CM: The
secretome obtained from ASCs after 48-h-incubation; MCM: The secretome released from miR-122-transfected ASCs; MMP-1: Metalloproteinases-1; PCNA:
Proliferating cell nuclear antigen; TAA: Thioacetamide; TGF-β: Transforming growth factor-β; TIMP-1: Tissue inhibitor of metalloproteinases-1.
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Figure 5

Figure 5  Effects of MCM on the expression of antioxidant enzymes in the liver. Upon comparing immunohistochemical staining patterns, MCM infusion was
observed to lead to a higher expression of SOD, catalase, and GPx in the livers of thioacetamide (TAA)-treated mice. The graphs below microscopic figures show the
relative densities of these markers. Percentages of immunoreactive areas were measured using NIH image J and expressed as relative values to those in normal
livers. Magnification × 400. Values are presented as mean ± standard deviation of three independent experiments. aP < 0.05 vs Ct (TAA). cP < 0.05 between TAA +
NCM and TAA + MCM. Ct: Control; CM: The secretome obtained from ASCs after 48-h-incubation; GPx: Slutathione peroxidase; MCM: The secretome released from
miR-122-transfected ASCs; SOD: Superoxide dismutase; TAA: Thioacetamide.

promoting or preventing it. For instance, profibrotic miRNAs include miR-29b, miR-
571, miR-199a, miR-200a, and miR-200b, and antifibrotic miRNAs include miR-122,
miR-199, miR-200, miR-542, miR-652, and imR-181b[29-32]. Specifically, miR-29b exerts
its antifibrotic properties by inhibiting activation of HSCs[31]. Increased serum level of
miR-571 has been proposed as a potential biomarker of liver fibrosis, and serum levels
of miR-542, miR-652, and imR-181b are decreased in cirrhosis. In addition, serum
levels of miR-199a, miR-200a, and miR-200b were highly associated with progression
of liver fibrosis in patients with chronic HCV infection[29].

miR-122 is highly expressed in liver, accounting for about 70% and 52% of total
miRNAs in liver of adult mouse and human, respectively[33-35]. miR-122 is essentially
involved in liver development, differentiation, homeostasis, and functions. Initially,
investigators revealed the crucial role of miR-122 in the regulation of cholesterol and
fatty acid metabolism in the adult liver[36-38]. Thereafter, anti-inflammatory and anti-
fibrotic properties of miR-122 have been revealed by the generation of both germline
knock-out (KO) mice and liver-specific KO[39-41]. Specifically, genetic deletion of miR-
122  led  to  liver  microsteatosis  and  inflammation,  ultimately  resulting  in
steatohepatitis and fibrosis[38,39]. Additionally, miR-122 expression was reduced in a
carbon  tetrachloride-induced  liver  fibrosis  mouse  model[11].  Interestingly,  the
restoration  of  miR-122  levels  in  miR-122  KO mice  reversed  the  process  of  liver
inflammation, by repressing two miR-122 targets, the chemokine Ccl2[39] and the pro-
fibrogenic Krüppel-like factor 6 (KLF6)[40], demonstrating potential utility of miR-122
in therapeutics. We, thus, selected the delivery of miR-122 into ASCs as a mean of
reinforcing the antifibrotic properties of ASCs in this study.

We  have  also  shown  that  the  expression  of  antioxidant  enzymes  in  the  liver
specimens was significantly increased in the mice infused with the secretome released
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Figure 6

Figure 6  Determination of systemic effects of MCM and analysis of secretome components. A: Results of ELISA showing serum levels of inflammatory markers
(IL-6 and TNF-α) in each group. MCM administration had the greatest effect on lowering the serum levels of IL-6 and TNF-α in thioacetamide (TAA)-treated mice; B:
Serology tests of AST and ALT in the mouse model of liver fibrosis. MCM infusion had the greatest effect on decreasing the serum levels of AST and ALT; C: Heat
map generated from label-free LC-MS for quantitative proteomics reflecting protein expression values of NCM and MCM. Samples are arranged in columns, proteins
in rows. Red shading indicates increased expression in samples compared to control; green shading indicates reduced expression; and black shading indicates
median expression. Each sample for LC-MS was pooled from three samples of the secretome. The components and concentrations of various essential proteins
varied widely between NCM and MCM, validating the effects of miR-125 transfection. Specifically, MCM exhibited a significantly lower concentration of essential
intermediates of TGF-β/Smad signaling, such as transgelin, PIN1, and Profilin-1, than NCM. Values are presented as mean ± standard deviation of three independent
experiments. aP < 0.05 vs Ct (TAA). cP < 0.05 between TAA + NCM and TAA + MCM. ALT: Alanine transaminase; AST: Aspartate transaminase; TAA:
Thioacetamide; TNF- α: Tumor necrosis factor-α.

from miR-122 transfected ASCs compared with the  mice  infused with the  naïve
secretome. Although a variety of functional capacities of MSCs or their secretome
have been reported, the protective effects against oxidative stress have rarely been
reported. Kim et al[42] reported that incubation with secretomes derived from ASCs
aided human dental fibroblast cells to resist free radicals, and increased antioxidant
enzymes, such as SOD and glutathione peroxidase. Recently, Arslan et al[43] showed
that MSC-derived exosome treatment decreased oxidative stress in the mouse model
of ischemia/reperfusion.
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It  has  been  demonstrated  that  oxidative  stress  involves  in  both  onset  and
progression of fibrosis arising from a variety origin, such as alcohol, viruses, iron or
copper overload, or cholestasis[44]. Both expression and synthesis of this inflammatory
and  profibrogenic  cytokines  are  mainly  modulated  through  redox-sensitive
reactions[45,46].  Further,  redox-sensitive  reactions  also  involve  in  other  essential
processes  of  liver  fibrosis,  such  as  activation  of  HSCs  and  expression  of
metalloproteinases and of their specific inhibitors[47-49]. We thus think that reduction of
oxidative stress could be another way of  antifibrotic  mechanisms exerted by the
secretome released from miR-122 transfected ASCs.

Here, we have focused on the effects of secretome and not those of the stem cells,
on liver fibrosis. The term secretome was first mentioned by Black et al[50] to refer to all
the factors secreted by a cell, along with the secretory pathway constituents. The main
constituents of a secretome include secretory proteins and extracellular vesicles. The
secreted proteins in humans account for 13%-20% of the entire proteome and include
growth factors,  cytokines,  chemokines,  adhesion molecules,  proteases,  and shed
receptors[51]. Extracellular vesicles are typically 30-2000 nm in diameter and can be
subdivided into exosomes, microvesicles, and apoptotic bodies, according to their
size. Extracellular vesicles usually contain and, thus, carry non-protein components,
such as lipids, DNAs, micro-RNAs, and mRNAs. In this study, we focused on the
effects of the whole secretome, not its individual constituents,  such as exosomes.
Exosomes,  for  example,  can be  obtained by protracted,  complex,  and expansive
processes[52].  We  expect  that  our  results  will  help  eliminate  the  laborious  and
expensive process of obtaining exosomes.

The  concept  of  using  miRNAs for  enhancing  the  therapeutic  potential  of  the
secretome released from stem cells is quite different from how they have been used
before. Previously used methods for potentiating secretome, which include physical
and chemical stimulation methods, such as hypoxic preconditioning[53,54] or the use of
lipopolysaccharides[55], can be categorized as nonspecific stimulation. By contrast, the
concept of  using miRNAs can be categorized as liver-specific  stimulation.  In the
future, the clinical application of secretome is expected to be tailored according to the
needs of patients, combining nonspecific and specific stimulations.

In  conclusion,  we  have  shown  that  the  secretome  released  from  miR-122-
transfected ASCs was superior to the naïve secretome in improving liver fibrosis,
while minimizing inflammatory processes, in mice with TAA-induced liver fibrosis.
Hence, it can be postulated that miR-122 transfection into ASCs reconditioned them to
have higher antifibrotic properties and to release a secretome with higher antifibrotic
components. We could, thus, conclude that the secretome released from miR-122
transfected ASCs has higher antifibrotic and anti-inflammatory properties than the
naïve secretome. Because miR-122 transfection into ASCs provides a specific way of
potentiating the antifibrotic properties of the ASC secretome, it could be considered as
an enhanced method of reinforcing secretome effectiveness.

ARTICLE HIGHLIGHTS
Research background
The therapeutic potential of mesenchymal stem cells (MSCs) is known to be mediated mainly by
the secretome that refers to the total collection of secretory materials from MSCs. Basically, naïve
secretome has anti-inflammatory, immunomodulatory, and tissue reparative properties. To
increase the amount or to reinforce the potential of naïve secretome, researchers have attempted
to adjust physico-chemical environment of MSCs or genetically manipulate MSCs. The former
has  the  advantage  of  being  simple  but  lacking  persistence,  while  the  latter  has  a  strong
persistence but has the disadvantage of a safety concern in the clinical application.

Research motivation
We have  been  considering  genetic  modification  as  a  way  of  persistently  potentiating  the
therapeutic  potential  of  naïve  secretome.  In  addition,  contrasted by the  use  of  genetically
modified MSCs, we thought that the use of the secretome could significantly lower the safety
concern. We also noted miRNAs as the materials to be used for genetic manipulation, because
miRNA is critically involved in the process of liver fibrosis.

Research objectives
Our aim was to determine the antifibrotic potential of the secretome released from miR-122-
transfected adipose-derived stromal cells (ASCs) in the model of liver fibrosis.

Research methods
Secretory materials released from ASCs that had been transfected with antifibrotic miR-122 were
collected and termed as miR122-secretome. The in vitro model of liver fibrosis was generated by
treating human hepatic stellate cells (LX2 cells) with a hepatotoxin (thioacetamide; TAA), and
the in vivo model of liver fibrosis was generated by subcutaneous injection of TAA (200 mg/kg,
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three times a week for 8 wk) into five-week male BALB/c mice. For determining in vivo effects of
miR122-secretome, each secretome (miR122-secrectome and naïve secretome) was intravenously
administered to the mice with liver fibrosis, respectively. The degree of liver fibrosis and other
alternations  in  cells  or  tissues  were  determined  using  by  molecular  and  histological
investigations, including cell viability assay, western blotting, immunohistochemistry, serology
tests, and sandwich enzyme-linked immunosorbent assays.

Research results
The addition of miR-122-secretome to fibrosis-induced LX2 cells significantly decreased the
expression  of  fibrotic  markers  (MMP2,  TGF-β1,  TIMP-1,  and  α-SMA)  and  increased  the
expression of an antifibrotic marker (TIMP-1). The western blot analysis showed that miR122-
secretome infusion significantly increased the expression of PCNA (a proliferation marker),
significantly decreased the expression of α-SMA, TGF-β1, and MMP1 (fibrotic markers), and
increased an antifibrotic marker (TIMP-1) in the livers of TAA-treated mice. In addition, miR122-
secretome infusion significantly reduced collagen content in the livers, inhibited serum levels of
proinflammatory cytokines, such as IL-6 and TNF-α, as well as serum levels of liver enzymes
than infusion of  the naïve secretome.  Finally,  our  analysis  of  the components  of  miR-122-
secretome showed that miR-122-secretome exhibited a significantly decreased concentration of
essential intermediates of the TGF-β/Smad signaling, such as transgelin, PIN1, and profilin-1,
compared to NCM.

Research conclusions
miR-122-secretome was found to be superior to the naïve secretome in improving liver fibrosis
while  minimizing  inflammatory  processes  in  mice  with  TAA-induced  liver  fibrosis.  Our
proteomic  analysis  of  the  miR-122-secretome  also  validated  that  miR-122-secretome  had
significantly lesser contents of essential intermediates of liver fibrosis. Therefore, transfecting
miR-122 into ASCs is worth considering as a way of reinforcing antifibrotic properties of the
secretome from ASCs.
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