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Abstract
Organs whose source is the mesoderm lineage contain a subpopulation of stem
cells that are able to differentiate among mesodermal derivatives (chondrocytes,
osteocytes, adipocytes). This subpopulation of adult stem cells, called
“mesenchymal stem cells” or “mesenchymal stromal cells (MSCs)”, contributes
directly to the homeostatic maintenance of their organs; hence, their senescence
could be very deleterious for human bodily functions. MSCs are easily isolated
and amenable their expansion in vitro because of the research demanding to test
them in many diverse clinical indications. All of these works are shown by the
rapidly expanding literature that includes many in vivo animal models. We do
not have an in-depth understanding of mechanisms that induce cellular
senescence, and to further clarify the consequences of the senescence process in
MSCs, some hints may be derived from the study of cellular behaviour in vivo
and in vitro, autophagy, mitochondrial stress and exosomal activity. In this
particular work, we decided to review these biological features in the literature
on MSC senescence over the last three years.

Key words: Mesenchymal stem cells; Aging; Autophagy; Mitochondrial stress;
Extracellular vesicles

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The point of interest of this work is the behaviour of the mesenchymal stromal
cell (MSC) through aging, which can occur over time in the culture (in vitro) or in its
own physiological niche (in vivo). This review defines the current knowledge published
in the MSC field that focuses mainly on the mechanisms that influence its senescence in
vivo and in vitro in the last three years. Three cellular mechanisms are of special
importance in this review, since they can decisively influence the behaviour of MSC in
aging, such as autophagy, oxidative stress and the production of extracellular vesicles.
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INTRODUCTION
Mesenchymal  stem  cells  (MSCs)  are  located  in  specific  areas  of  tissues,  called
“niches”, and are characterized as being in a state of relative quietness, from which
they  can  exit  under  the  proper  conditions  to  obtain  the  proliferative  potential
necessary for tissue regeneration[1]. MSCs have sustained interest among researchers
by contributing to tissue homeostasis and modulating inflammatory response, all
activities accomplished primarily by the secretion of cytokines and growth factors,
because  their  paracrine  action  is  the  main  mechanism  explaining  their  effects,
regardless of source.

Senescence is defined as a mechanism for limiting the regenerative potential of
stem cells which is involved with metabolic changes in the oxidative state of the cell,
this process that has been also linked to mitochondrial fission and fusion events could
indicate association between mitochondrial dynamics and senescence[2]. Furthermore,
senescence-associated phenotypes are characterized by increased activity of SA-β-gal,
altered autophagy, and increased G1 cell cycle arrest, reactive oxygen species (ROS)
production and expression of p53 and p21[3]. It is now evident that senescent cells
secrete dozens of molecules, for which the terms “senescence-associated secretory
phenotype (SASP)” and “senescence-messaging secretome (SMS) factors” have been
proposed. Premature aging produced by overexpression of mutant LMNA  called
progerin in  the rare  disease Hutchinson-Gilford Progeria  Syndrome is  linked to
upregulation of SASP by GATA4-dependent regulation via MCP-1 in human MSC
aging[4].  The  secreted  factors  contribute  to  cellular  proliferative  arrest  through
autocrine/paracrine pathways as well as in vivo and in vitro[5-8]. SMS factors released
by senescent cells play a key role in cellular senescence and physiological aging by
activation of cytoplasmic signalling circuitry, so SMS factors secreted in conditioned
medium of senescent MSCs induce a paracrine mechanism of premature senescence
in young cells[9].

The milestone in MSC investigation will  be discovering senescence markers to
determine the quality of the in vitro cells for cell-based therapies. Madsen et al[10] have
proposed TRAIL receptor CD264 as the first cellular senescence mesenchymal marker
in bone marrow-derived MSCs, because it has the same expression profile of p21
during culture passage and it is not linked to sex[10]. On the other hand, it is a good
approach to identify immunogenic markers from age tissue sources, and the first
study was developed by Amati et al[11],  who proposed the angiotensin-converting
enzyme CD143 as a marker expressed in adult tissue sources from the screening using
bone marrow- and cord blood-derived MSCs (Figure 1B).

MSCs’ BEHAVIOUR IN VITRO

After long-term expansion, the phenotype of MSCs keeps stable and cells present
similar  immunogenic  properties  to  lower  passage  cells.  However,  their  immu-
nosuppressive properties are reduced[12]. One of the drawbacks of MSCs is the decline
in their  self-renewal  capacity  with increased donor  age (Figure  1A)  and in  vitro
expansion[13-18] (Figure 1B). However, by increasing the number of umbilical cord vein-
MSC passages, immunosuppressive effects were promoted as a result of the greater
purity of the MSCs and their major compatibility with culture conditions[19]. These
results reveal the different implications of the application of high passage MSCs in the
clinic, it would help increase their production for therapeutic uses but might interfere
with their  efficacy.  The self-renewal  of  MSCs decrease  is  caused by shor-tening
telomeres in aged MSCs[14] and this was also demonstrated when overexpression of
hTERT bypassed a replicative senescence in hBM-MSCs[20]. Kouroupis et al[21] have
reported that the number of CD146+ UC-derived MSCs decreased with the in vitro age
and this is associated with the telomere length. This year,  it  was discovered that
epigenetic changes are implicated in the maintenance of stem cell properties of MSCs,
demonstrating that expression of the pluripotency marker Oct4 keeps self-renewal
and reverse aging in human hair follicle derived-MSCs through the inhibition of p21
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Figure 1

Figure 1  Effect of aging on self-renewal, differentiation and immunogenic potential from mesenchymal stem cells. A, B: Stem cell properties of mesenchymal
stem cells (MSCs) are limited by age donor (A), and their long-term in vitro culture (B); C: Some new agents can ameliorate the effect of cellular senescence on the
therapeutic capacity of MSCs; D: Treatment with senolytic drugs affects the behaviour of MSCs. MSCs: Mesenchymal stem cells; LPA: Lysophosphatidic acid.

by DNA methyltransferases[22].
Non-coding RNA can play a role in the cellular senescence in MSCs, though the

interfering lincRNA-p21 expression might allow the rejuvenation of aged BM-MSCs
from  C57BL/6  mice  via  the  Wnt/b-catenin  signalling  pathway[23].  Rn7SK  is  a
conserved small  nuclear  non-coding RNA,  which  is  overexpressed in  senescent
adipose tissue-derived MSCs. So, it is directly involved in the decrease of osteogenic
differentiation and proliferation[24].

There is an increase in the number of studies about the effect of natural-origin
regulators that prevent or ameliorate cellular senescence in MSCs. Vitamin C also has
the potential to re-establish the activity of telomerase reverse transcriptase (TERT) in
bone marrow-derived MSCs from senescence-accelerated mouse prone 6 (SAMP6)
mice[25]. Curcumin improves the proliferation of aged rat adipose tissue-derived MSCs
through TERT gene expression[26] (Figure 1C). Another option for treating age-related
diseases is  the use of senolytic drugs,  which eliminate target senescent cells  and
rejuvenate tissues[27]. Grezella et al[28] have studied the impact of these drugs on human
MSCs, such as ABT-263, quercetin, danazol and nicotinamide ribose, which don’t
have a positive effect on MSCs because they produce changes in the SASP of human
femoral bone marrow MSCs. However, Geng et al[29] have proposed quercetin as a
geroprotective compound for human MSCs from Werner syndrome. Because it re-
establishes the differentiation potential  and self-renewal through its  antioxidant
capacity and growth differentiation factor 6, secreted by young MSCs, it can restore
the osteogenic capacity of MSCs from elderly donors[29,30] (Figure 1D).

Human bone marrow MSCs from young donors have a better monocyte pola-
rization capacity than MSCs from old donors[31]. Non-senescent MSCs secrete some
bioactive factors, which can ameliorate the replicative senescence through enhanced
cell  proliferation  and  osteogenic  differentiation  potential  in  prolonged  in  vitro
culture[32]. Human umbilical cord blood MSCs stimulate the rejuvenation function in
human skin[33]. Lysophosphatidic acid (LPA) is a bioactive small glycerophospholipid
derived from cytoplasm that promotes cell proliferation, survival and migration[34].
Complementing those results, Kanehira et al[35] have stated that two components of
these  acids  (LPA1  and  3)  regulate  cellular  senescence  in  MSCs  positively  and
negatively, respectively.

MSCs’ BEHAVIOUR IN VIVO

MSCs isolated from the term umbilical cord vein have stronger immunomodulatory
capacity than preterm ones. Increased immunological maturity of term umbilical cord
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vein MSCs may be the explanation for that[19].
In vivo senescence of MSCs is associated with bone-related disease because the cells

lost the osteogenic capacity. In the last year, the number of studies based on gene
therapy has  increased  with  a  view to  improving  the  stem cell  properties  in  the
development of cell-based therapies. Non-coding RNA like miR-1292 was proposed
as a senescence regulator in human adipose-derived MSCs and delay bone formation
in vivo by targeting FZD4 via the Wnt/b-catenin pathway. It is a good target for the
prevention and treatment  of  osteoporosis[36].  The loss  of  the in  vivo  osteogenesis
potential  of  aged  bone  marrow  MSCs  is  mediated  by  p53  through  the  miR-17
pathway[37]. In cardiovascular disease, it was found that overexpression of miR-10a in
aged human bone marrow MCs activates AKT and improves the angiogenesis in
ischaemic  mouse  hearts[38].  The  overexpression  of  FOXQ1  in  UC-derived  MSCs
regulates the migration and anti-senescence effects[39]. SATB2-modified bone marrow-
derived MSCs significantly ameliorate ovariectomy-induced alveolar bone loss in
vivo[40].

In the last few years, the MSCs from human-induced pluripotent stem cells have
had low oncogenic potential and strong immune capacity to regulate T cells[41]. They
modulate  CD4  and  CD8  cells  and  lead  the  upregulation  of  immune  genes  and
downregulation of c-myc and DNA replicative pathways[42].

AUTOPHAGY IN MSCs
Autophagy increases when MSCs enter  the replicative aging state,  and p53 con-
tributes an important role in the upregulation of autophagy in this condition[43]. In
contrast, suppression of the p53 transcriptional activity produced strong cell death of
H2O2-treated  MSCs  through  autophagy  induction[44].  Autophagy  is  playing  an
important  role  in  the  mammalian stress  response  because  can be  modulated by
several ways through hypoxia induced stress in different organelles. Autophagy is
deeply  linked  to  senescence,  and  in  some  experimental  models,  the  onset  of
senescence is dependent on a preliminary autophagy induction: For instance, the
downregulation  of  IGF-1  protects  senescence  MSCs  from  hypoxic  condition  by
growing the level of autophagy, thereby allowing the survival of senescence bone
marrow MSCs after myocardial infarction transplantation[45] (Figure 2). Brunk and
Termal[46] presented the theory of aging which consisted in accumulation of damage in
mitochondrial-lysosomal axis as a result of imperfect autophagocytosis during aging
in  tissue  with  limited  turnover,  and  this  has  remained  valid  until  now,  when
reversible quiescence is the normal stem cell state throughout life-adds[46-48]. In the
opposite, in other contexts the decrease of autophagy provokes senescence, as shown
in  several  types  of  MSC  acute  senescence  which  the  autophagy  flux  is  heavily
imbalanced, indicating the autophagy counteracts damaged processes, and its decline
produces  senescence[49].  Reconciling these  opposite  events  would be possible  by
speculating that MSCs try to lead with stress by inducing autophagy that removes
damaged components; in this scenario, autophagy would protect from aging and its
malfunction might trigger senescence.  However,  if  autophagy cannot counteract
stress-induced  damage,  it  could  induce  senescence.  Hyperglycaemia  has  been
reported to MSC senescence[50].  Chang et al[51]  researched the role of high-glucose-
induced  autophagy  in  MSC  senescence  publishing  that  high  glucose  increased
autophagosome formation, which was linked with the development of senescence
process in the cell. 3-methyladenine treatment in MSCs prevented their senescence
because of increasing apoptosis. However, N-acetylcysteine or Diphenyleneiodonium,
an inhibitor of NADPH oxidase, treatments were effective blocking autophagy and
senescence through preventing high-glucose-induced autophagy[51].

All these results indicate that hyperglycaemia induces MSC aging and an increase
of inflammation through oxidant-mediated autophagy, contributing to MSCs’ niche
dysfunction. On the other hand, methionine restriction may mediate its anti-aging
effects through the induction of macroautophagy/autophagy as well[52].

MSCs are extremely sensitive and very low doses of radiation can induce sene-
scence because of impairing autophagy and their limited DNA repair capacity[53].
Activation of autophagy restored bone loss in aged mice, suggesting that autophagy
has a key role in the aging of  MSCs,  and an increase of  autophagy can partially
reverse this senescence process and might represent a new potential  therapy for
clinically treating age-related bone loss[54,55].

MSCs in lysosomal storage disorders (LDS), which impair lysosomal homeostasis,
are prone to apoptosis and senescence due to impaired autophagy and DNA repair
capacity[56]. Recently, a study showed that novel small molecules can selectively and
sensitively respond to acidic pH, promoting lysosomal acidification and inhibiting
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Figure 2

Figure 2  Autophagy influences senescence in mesenchymal stem cells. The self-renewal potential of young
mesenchymal stem cells (MSCs) is influenced by their autophagy capacity to regulate the good levels of oncogenic
factors like p53 and inflammatory signals like senescence-associated secretory phenotype and IGF-1, which
produces overexpression of reactive oxygen species in the mitochondria, accumulation of mutations at DNA levels
and acidification in the lisosomal apparatus together with an increase of LMNA in the nucleus. When autophagy is
downregulated by the pathologic process, young MSCs become old MSCs in an accelerated way, losing their self-
renewal capacity. MSC: Mesenchymal stem cell; ROS: Reactive oxygen species.

senescence  in  MSCs  through  autophagy[57].  Decreased  autophagy  is  one  of  the
mechanisms underlying aging. Yang et al[58] demonstrated that reducing autophagy
decreases the hypoxia tolerance of senescent MSCs and Yun et al[59] demonstrated that
high p-Cresol serum concentration caused by chronic kidney failure produced cell
senescence through the induction of autophagy response and could be potentially
rescued by the administration of melatonin through inhibiting mTOR-dependent
autophagy[58,59].  Maintaining  optimal  levels  of  autophagy  might  serve  as  a  new
strategy for using MSC transplantation.

MITOCHONDRIAL STRESS IN MSCs
Oxidative stress is characterized by unregulated production and/or the elimination of
reactive  oxygen  and  nitrogen  species.  The  main  ROS  generation  sites,  under
physiological  conditions,  are  found  within  the  electron  transport  chain  in  the
mitochondria.  MSC  differentiation  processes  ROS  are  mainly  generated  from
mitochondrial complexes I and III and the NOX4 isoform of NADPH oxidase[60]. The
deregulation of ROS generation by CI and CIII can be an important factor for aging
and it has been shown that an increase in ROS levels and the resulting oxidative
damage are highly correlated with aging[61-63]. Deschênes-Simard et al[64] linked the
bypassing of senescence in premalignant lesions to a decrease of differentiation, an
increase  of  self-renewal  potential  and  an  increase  in  their  dependence  of  mito-
chondrial  functions.  Aged  adipose  tissue-derived  MSCs  and  their  adipogenic
differentiation are decreased by downregulation of Sirtuin 1 through miR-34a[65].
Another component, Sirtuin 3 (SIRT3), protects aged human MSCs against oxidative
stress through positive regulation of MnSOD and CAT via activation of FoxO3a[39].
Huang et al[66] have reported that the reduction of ERRalpha-directed mitochondrial
glutaminase expression suppresses the osteogenic differentiation in aged mice MSCs.
Melatonin  reduces  endoplasmic  reticulum  stress  (ERS)  in  the  liver  and  several
diseases in the nervous system and lung.  It  is  involved in maintaining stemness
during long-time in vitro expansion[67]. Yun et al[59] demonstrated that MSCs from rats
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with chronic kidney disease exhibited greater senescence induced by oxidative stress
than normal MSCs, whereas when treated with melatonin, it protected them from
H2O2 and excessive associated senescence. Fang et al[68] have reported that it prevents
senescence in canine adipose-derived MSCs through activation of  Nrf2 with the
inhibition of NFK beta and ERS. L-carnitine is a transport of long-chain fatty acids
into the mitochondria for degradation by beta-oxidation and it has the potential to
increase telomerase activity by changing the methylation status of the human TERT
promotor  in  aged adipose  tissue-derived MSCs[69,70].  Wang et  al[57]  postulate  that
treatment with curcumin gives bone marrow MSCs the ability to survive and this
could be attributed to their protection in the mitochondrial function, destabilization of
HIF-1α and the activation of  the  Epac1-Akt  signalling pathway.  Therefore,  they
suggest  that  curcumin  influences  the  preconditioning  of  MSCs  to  facilitate  cell
therapy in the treatment of tissue repair. Oh et al[71] propose the role of 17β-estradiol
(E2) as a potential target to prevent or treat metabolic disorders in the production of
reactive  mitochondrial  oxygen  species  induced  by  glucose  (mtROS)  through
signalling mediated by the oestrogen receptor in MSCs from umbilical cord blood in
vitro,  suggesting that E2 serves as a potent antioxidant. Denu et al[72]  propose that
SIRT3 is a sirtuin involved in aging (it is the main mitochondrial deacetylase) that
decreases mitochondrial ROS and promotes an efficient oxidative metabolism. It has
been shown that SIRT3 reduces the decrease in function and senescence associated
with age in multiple cell types. Then, the increase in nuclear translocation of Nrf2
triggered the positive regulation of SIRT3 and the activation of manganese superoxide
dismutase (MnSOD), which plays an important role in the decrease of mtROS levels.
During  MSC  expansion  in  vitro,  they  experience  a  replicative  senescence  that
compromises their immunomodulatory and differentiation functions due to increased
ROS and oxidative  stress  in  aged stem cells.  MSCs accelerate  aging  and inhibit
differentiation in adipocytes and osteoblasts because of the elimination of SIRT3, and
because the overexpression of SIRT3 in the last step of the MSC restores its capacity
for differentiation and reduces oxidative stress[73]. The study by Yao et al[74] attempts to
demonstrate that human umbilical cord MSC-derived EVs carrying MnSOD could
alleviate oxidative stress in liver tissue in vivo.

Oxidative stress is a key process in the induction of cellular senescence according to
several studies[75-77]. Afterwards low-grade chronic inflammation during aging and
associated pathologies can lead to oxidative stress and rupture of the cells that cause
senescence. According to Platas et al[78], chronic oxidative stress related to aging or
mechanical  stress  can  cause  cellular  senescence  in  joint  tissues  and  age-related
alterations in the differentiation and function of MSCs.

MSC-DERIVED EXTRACELLULAR VESICLES
Exosomes and microvesicles are small vesicles included in the term extracellular
vesicles (EVs). Recently, it is unravel their function in cell-to-cell communication and
their capacity for transporting proteins,  signalling lipids and miRNAs which are
relieved to target cells via endocytosis and membrane fusion. Lately, MSC-derived
EVs are being studied for their role in MSC-based cellular therapy. These VEs have
the  capacity  to  alter  cell  or  tissue  metabolism  at  short  or  long  distances  in  the
organism. The EVs are influencing tissue responses to infection, injury and disease.
MSC-derived EVs could be used for cell-free therapies. However, these therapies
might be applied in clinic when parameters as quality, reproducibility and potency of
their production can be controlled. In addition, it must be taken into account the MSC-
derived EV content is not static, they are produced by MSCs and they are influenced
by specific MSC´s niche. So, MSC-derived EVs are altered when MSCs are co-cultured
with different types of cells in vitro or with tumour microenvironment in vivo[79,80]. It
has been demonstrated that MSCs can induce tumour growth, and MSC-derived EVs
can be very important in the tumour microenvironment transferring information
between cells along disease’s development. There are some findings supporting a new
mechanism,  suggesting  the  contribution  of  these  MSC-derived  EVs  to  tumour
growth[81].  So,  EVs  secreted  by  MSCs  might  have  therapeutic  effects  on  the
reconstruction process through promoting the cell cycle and inhibiting cell apoptosis,
as happens in vaginal epithelium[82].

Articles focused on a murine model have shown that a brief interaction of old
MSCs with young MSC-derived Evs rejuvenated them and restored their functionality
via inter-cellular communication. These EVs contained autophagy-related mRNAs
through inhibition of AKT in aged MSCs increased the levels of autophagy-related
mRNAs in their EVs[83]. MSC-derived EVs are also involved in the transport of anti-
immunoinflammatory markers aging depending, confirming variations with aging of
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Toll-like receptor 4 pathway activation in rat bone marrow MSCs and containing pro-
inflammatory miRNAs (miR-21, miR-155, miR-146 and miR-21) in their MSC-derived
EVs[13]. Surprisingly, recent experiments show that the self-renewal power of these
EVs is even better than that of the young MSCs. It has been demonstrated that such ex
vivo self-renewal from old MSCs could increase the donor cohort improving efficacy
in transplantation therapies[84].

CONCLUSION
Aging affects the behaviour of MSCs in different ways depending on several factors,
such as their status, source and pathological process. MSCs in vitro go into senescence
earlier than in vivo and the pathological process stimulates their senescence in vivo.
Despite this, or perhaps because of it, MSCs are an excellent tool to keep exploring in
cellular therapy and to study senescence both in vivo and in vitro and their versatility
seems to be extensively to their derived EVs.
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